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QUANTUM K-THEORY OF IG(2, 2n)

V. BENEDETTI, N. PERRIN AND W. XU

Abstract. We prove that the Schubert structure constants of the quantum K-theory rings of

symplectic Grassmannians of lines have signs that alternate with codimension and vanish for
degrees at least 3. We also give closed formulas that characterize the multiplicative structure

of these rings, including the Seidel representation and a Chevalley formula.

Contents

1. Introduction 1
2. Preliminaries and proof strategy 4
3. Replacing stable maps by evaluations 8
4. Large degrees 14
5. Degree 2 16
6. Degree 1 22
7. Non rationally connected cases 26
8. Seidel representation 29
9. Chevalley formula 30
References 33

1. Introduction

To a complex projective manifold X one can attach various algebraic structures capturing
different kinds of information. For instance, cohomology rings encode the behavior of (classes
of) subvarieties: how they intersect (ordinary or equivariant cohomology) or how they are
connected by rational curves (quantum cohomology). In this paper we are interested in K-
theory rings, which in turn encode information about coherent (or locally free) sheaves: how
they form short exact sequences and the behavior of their tensor product. It turns out that
classical K-theory can be seen as a refinement of classical cohomology - via the Chern character
homomorphism. Moreover, one can define a quantum K-theory ring which is both a deformation
of the classical K-theory ring and a refinement of the quantum cohomology ring. Indeed, if
quantum cohomology is an intersection theory of the space of genus zero stable maps to X,
quantum K-theory, which was introduced by [Giv00], deals with the K-theory of this space
and requires a more careful study of stable maps with reducible sources. Quantum cohomology
and K-theory have gathered some attention in the context of homogeneous spaces where it
generalizes classical Schubert calculus. We will focus on this case.

From now on, X = G/PX will be a rational projective homogeneous space. It is nowadays
classical that the transitive action of G on X implies many positivity properties in cohomology
and its various generalizations (see [Gra01, Bri02, Buc02, Mih06, GK09, AGM11, BCMP22]
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and references therein). From previous positivity results and first explicit computations, it was
soon conjectured that positivity should also hold in quantum K-theory. To state a precise
conjecture, we introduce a few notations. Schubert varieties in X are indexed by WX and for
u ∈WX , let Xu be the Schubert variety with codimX(Xu) = `(u) (see Subsection 2.1). Denote
by Ou = [OXu ] its class in QK(X), the (small) quantum K-theory ring of X. These classes
form a basis for QK(X) and their products are defined by structure constants as follows:

Ou ?Ov =
∑
d

∑
w∈WX

Nw,d
u,v q

dOw,

where the first sum runs over all effective classes d ∈ H2(X,Z) (see Subsection 2.2 for more
details). It can be proved (see [BCMP13, Kat18, ACT22]) that this sum is actually finite.
The structure constants Nw,d

u,v are expected to satisfy the following positivity property (see
[LM06, BM11, BCMP18]):

Conjecture 1.1. For u, v, w ∈WX and d ∈ H2(X,Z), we have

(−1)`(uvw)+
∫
d
c1(TX)Nw,d

u,v ≥ 0.

This conjecture has been proven in a few cases: for minuscule spaces in [BCMP22] and for
the point/hyperplane incidence varieties in [Ros22] and [Xu21]. In this paper, we consider the
case where X = IG(2, 2n) is the variety of isotropic lines in a symplectic vector space. Our first
result is:

Theorem 1.2. Conjecture 1.1 is true for X = IG(2, 2n).

We also obtain several more precise results on the structure of QK(X).

Proposition 1.3 (see Corollary 2.12 and Remark 2.16). For X = IG(2, 2n) and u, v ∈WX , in
the product Ou ?Ov:

(1) Terms with qd occur only for d ∈ [0, 2];
(2) The powers of q that occur form an interval.

Although these properties also hold for the product [Xu] ? [Xv] in quantum cohomology,
the maximum power of q appearing in Ou ? Ov is sometimes greater than that appearing in
[Xu] ? [Xv]. See Remark 7.2 for more details.

In addition, we prove the following closed formula for multiplying with the unique Schubert
divisor class. Recall that Schubert varieties in X = IG(2, 2n) are indexed by pairs (p1, p2) of
integers with 1 ≤ p1 < p2 ≤ 2n and p1 + p2 6= 2n+ 1. Explicitly, let (Ek)k∈[1,2n] be an isotropic
flag and set

Xp1,p2 := {x ∈ X | Vx ∩ Ep1 6= 0 and Vx ⊂ Ep2},
where Vx is the 2-dimensional subspace in C2n representing x ∈ X. For a < b ≤ 2n such that
a+ b 6≡ 1 mod 2n, we recursively set

Oa,b =


[OXa,b ] if 1 ≤ a < b ≤ 2n

qOb,a+2n if a ≤ 0,

0 otherwise.

Theorem 1.4 (see Theorem 9.5). The product O2n−2,2n ?Oq1,q2 equals:

(1) Oq1−1,q2 if q1 = q2 − 1;
(2) Oq1−1,q2 +Oq1,q2−1 −Oq1−1,q2−1 if q1 < q2 − 1 and q1 + q2 6= 2n+ 2, 2n+ 3;
(3) Oq1−1,q2 +Oq1,q2−1−Oq1−1,q2−2−Oq1−2,q2−1 +Oq1−2,q2−2 if q1 < q2− 1 and q1 + q2 =

2n+ 3;
(4) 2Oq1−1,q2−1+Oq1−2,q2 +Oq1,q2−2−2Oq1−2,q2−1−2Oq1−1,q2−2+Oq1−2,q2−2 when q1+q2 =

2n+ 2 and q1 6= 2, n;
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(4.1) 2Oq1−1,q2−1 +Oq1,q2−2 − 2Oq1−1,q2−2 −Oq1−2,q2−1 +Oq1−2,q2−2 when q1 = 2, q2 = 2n;
(5) 2Oq1−1,q2−1 +Oq1−2,q2−2Oq1−2,q2−1−Oq1−1,q2−2 +Oq1−2,q2−2 when q1 = n, q2 = n+2.

For quantum cohomology, Seidel [Sei97] proved that there is a representation of π1(Aut(X))
in the group QH(X)×loc of invertibles in QH(X)loc, the localization of quantum cohomology
QH(X) where he quantum parameters are inverted. This representation was made explicit first
for cominuscule spaces and then in general in [CMP07, CMP09, CP23]. Later, in [BCMP22]
these results were extended to the quantum K-theory of cominuscule spaces. We prove that the
Seidel representation in quantum K-theory also exists for X = IG(2, 2n). In this case, the group
π1(Aut(X)) has order 2 and Seidel representation maps the unit to O2n−1,2n = 1 ∈ QK(X) and
the unique non-trivial element to On−1,n = [OXn−1,n

] ∈ QK(X).

Theorem 1.5 (see Theorem 8.3). We have On−1,n ?Op1,p2 = Op1−n,p2−n.

A geometric version of the above formula was conjectured in [BCP23] for all projective ho-
mogeneous spaces, and we prove it for X = IG(2, 2n) in Theorem 1.6. We call a homoge-
neous space Y = G/PY cominuscule if the unipotent radical of the parabolic subgroup PY is
abelian. Let W be the Weyl group of G and let wY be the minimal length representative of
the longest Weyl group element modulo WY , the Weyl group of PY . A classical result states
that π1(Aut(X)) ' W comin = {1} ∪ {wY ∈ W | Y cominuscule}. For G = Sp2n, this group
is {1, wLG(n,2n)}, where LG(n, 2n) is the Lagrangian Grassmannian of maximal isotropic sub-
spaces. For u,w ∈ W , let dmin(u,w) be the smallest power of q appearing in the quantum
cohomology product [Xu] ? [Xw], and for A,B ⊆ X, let Γd(A,B) be the locus swept out by
degree d curves in X meeting A and B.

Theorem 1.6 (see Theorem 8.1). Let u ∈W , w ∈W comin, then

Γdmin(u,w)(Xw0w, X
u) = w−1.Xwu.

Let us sketch a few steps in our strategy for proving the positivity result (Theorem 1.2).
Following [BCMP13] and [Mih22], we prove in Section 2 that to compute the quantum prod-
uct Ou ? Ov, we only need to deal with irreducible source curves or source curves with two
components: a main component of degree d − 1 and a tail of degree 1. To compute structure
constants in K-theory, which are defined by pushforwards, we apply a result of Kollár [Kol86]
(see Theorem 2.10), which requires rational connectedness of general fibers of restrictions of the
evaluation map. A key ingredient in proving rational connectedness of these fibers is Propo-
sition 3.13, which says that it suffices to prove rational connectedness of the general fibers of
restrictions of the projection X3 → X. Then, using a result of Brion [Bri02] we reduce Theorem
1.2 to the statement that the image in X of stable maps as above - i.e. the curve neighborhoods
- have rational singularities and nice dimensional properties. We explain these reductions in
Section 3, and then prove rational connectedness results in Sections 4 (d ≥ 3), 5 (d = 2), and 6
(d = 1).

While proving Proposition 3.13, we also obtain the following result of general interest:

Proposition 1.7 (see Proposition 3.3). Let A be a projective, irreducible and normal variety
and g : A → B, h : B → C be surjective morphisms. If the general fibers of the maps g and h
are rationally connected, so are the general fibers of the composition h ◦ g.

However, for maps with non-irreducible sources, there are a few explicit cases for which
rational connectedness does not hold. We deal with these cases in Section 7. We use the
definition of structure constants to explicitly compute the product and conclude the proof of
Theorem 1.2. Seidel representation is discussed in Section 8, and we prove the Chevalley formula
in Section 9.

Varieties will always be assumed to be complex, of finite type and reduced, but not necessarily
irreducible.
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2. Preliminaries and proof strategy

In this section we introduce some notations and prove our main results assuming some rational
connectedness results. The proof of these results will be provided in Sections 4, 5, 6 and 7.

2.1. Schubert varieties. Let Z be a projective rational variety homogeneous under the action
of a reductive group G. Let B ⊂ G be a Borel subgroup and let T ⊂ B be a maximal torus.
Denote by B− the Borel subgroup opposite to B defined by B ∩ B− = T . The variety Z
contains a unique B-invariant point, and we denote the parabolic subgroup stabilizing this
point by PZ ⊂ G and the point itself by 1.PZ . We identify Z with the quotient G/PZ .

Let W = NG(T )/T be the Weyl group of (G,T ), let WZ be the Weyl group of PZ and let
WZ ⊂W be the subset of minimal representatives of the cosets in W/WZ . Each element u ∈W
defines a T -fixed point u.PZ ∈ Z, the Schubert cells and opposite Schubert cells are

◦
Zu = Bu.PZ

and
◦
Zu = B−u.PZ , respectively, and the Schubert varieties and opposite Schubert varieties are

Zu =
◦
Zu and Zu =

◦
Zu, respectively. These varieties and cells depend only on the coset uWZ in

W/WZ , and for u ∈WZ we have dim(Zu) = codim(Zu, Z) = `(u).
Let ≤ denote the Bruhat order on W . For u, v ∈ WZ we then have v ≤ u ⇔ Zv ⊂ Zu ⇔

Zu ∩ Zv 6= ∅. In this case the intersection Zvu = Zu ∩ Zv is called a Richardson variety. This
variety is reduced, irreducible, rational, and dim(Zvu) = `(u)− `(v) [Ric92]. The Poincaré dual

element of u ∈ WZ is u∨ = w0uw0,Z ∈ WZ , which satisfies Zu
∨

= w0.Zu where w0 ∈ W and
w0,Z ∈WZ are the longest elements.

For a variety Y , denote by K(Y ) its K-homology group and by χY (F) the sheaf Euler-
characteristic of F ∈ K(Y ). We set Ou = [OZu ] ∈ K(Z) and Ov = [OZv ] ∈ K(Z). Then
(Ou)u∈WZ and (Ov)v∈WZ are two basis of K(Z). The following result was proved in [Bri02],
and we will use it in Sections 7 and 9.

Theorem 2.1. For Y ⊂ Z a Cohen-Macaulay closed subvariety and for g ∈ G general, we have

[OY ] =
∑

w∈WZ

χY ∩gZw(OY ∩gZw)[OZw(−∂Zw)].

When Y = Zu, we obtain:

Corollary 2.2. For u ∈WZ , we have

Ou =
∑

w∈WZ : w≤u

[OZw(−∂Zw)].

2.2. Quantum K-theory and Curve neighborhoods. For any effective degree d ∈ H2(Z,Z),
let Md,n := M0,n(Z, d) be the moduli space of genus zero degree d stable maps with n marked
points and Md = Md,3 (we always assume n ≥ 3 if d = 0). Let evi : Md → Z for i ∈ [1, 3]
be the evaluation map at the corresponding marked point. Let d = (d0, · · · , dr) be a sequence
of effective curve classes and set |d| =

∑r
i=0 di. Let Md be the closure in Md of maps from a

chain of irreducible curves of degrees (d0, · · · , dr) such that the first two marked points lie on
the first component and the third marked point lies on the last component. The varieties Md

are irreducible with rational singularities (see [Tho98, KP01, FP97]).
Given K-theory classes (Fi)i∈[1,n] in K(Z), define the n-pointed K-theoretic Gromov–Witten

invariant

〈F1, · · · ,Fn〉d = χ
Md,n

(
n∏
i=1

ev∗i (Fi)

)
.
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The quantum K-theory of Z is defined to be QK(Z) = K(Z) ⊗ Q[q] as a module. Let Zu
and Zv be Schubert and opposite Schubert varieties. We write (O∨u )u∈WZ for the dual basis
of (Ou)u∈WZ for the Euler pairing in K(Z). Following Givental [Giv00], we may define an
associative Q[q]-bilinear product ? on QK(Z) via

Ou ?Ov =
∑
d≥0

∑
w∈WZ

κw,du,v q
dOw,

with

κw,du,v =
∑

(−1)r〈Ou,Ov,O∨w1
〉d0

r∏
i=1

〈Owi ,O∨wi+1
〉di ,

where the sum is over all decompositions d = d0 + · · ·+dr with di > 0 for i > 0 and all elements
wi ∈ WZ for i ∈ [1, r] where we set wr+1 = w. Note that this product is well-defined since the
above sum is finite (see [BCMP13, Kat18, ACT22]).

We reformulate Conjecture 1.1 as follows:

Conjecture 2.3. For u, v, w ∈WZ , we have

(−1)`(uvw)+
∫
d
c1(TZ)κw,du,v ≥ 0.

Remark 2.4. We have the equality

Nw,d
u,v = κw

∨,d
u∨,v ,

with u∨ = w0uw0,Z and `(u∨) = dimZ − `(u). In particular, the constants Nw,d
u,v and κw,du,v are

conjectured to share the same positivity properties.

The Grassmannian X = IG(2, 2n) of isotropic lines for a symplectic form ω on C2n is homo-
geneous for the symplectic group G = Sp2n. One of our main results is a proof of Conjecture
2.3 for X = IG(2, 2n). From now on we assume that Z = X = IG(2, 2n). For x ∈ X, we denote
by Vx ⊂ C2n the 2-dimensional subspace corresponding to x. Note that Pic(X) ∼= Z so that we
can assume that the degree d of any stable map is a non-negative integer.

2.3. A first reduction. Given n subvarieties Ai ⊂ X for i ∈ [1, n], define the n-point degree
d Gromov–Witten variety as Md,n+1(A1, · · · , An) = ev−1

1 (A1)∩ · · · ∩ ev−1
n (An) and the n-point

degree d curve neighborhood as Γd(A1, · · · , An) = evn+1(Md,n+1(ev−1
1 (A1) ∩ · · · ∩ ev−1

n (An)).
For n = 2, we extend this definition to non-irreducible curves and drop the reference to n: set
Md(A,B) = Md,3(A,B) ∩Md and Γd(A,B) = ev3(Md(A,B)).

We will mainly consider these definitions for Schubert varieties and pairs of opposite Schubert
varieties. In particular, it follows from [BCMP13, Proposition 3.2] that Γd(Xu) and Γd(X

v) are
Schubert varieties. Define u(d), v(−d) ∈ WX via Xu(d) = Γd(Xu) and Xv(−d) = Γd(X

v). For
opposite Schubert varieties Xu, X

v ⊂ X, we have the Gromov–Witten varieties Md(Xu, X
v) =

ev−1
1 (Xu) ∩ ev−1

2 (Xv) and Md(Xu, X
v) = Md(Xu, X

v) ∩Md with surjective evaluation maps

ev
d
3(u, v) : Md(Xu, X

v)→ Γd(Xu, X
v).

[BCMP13, Corollaries 3.1 and 3.3] and the fact that Md is irreducible with rational singularities
imply that the Gromov–Witten varieties Md(Xu, X

v) are irreducible with rational singularities.
It follows from [BCMP13, Lemma 5.1] and the projection formula that the product in QK(X)
can be reformulated using the above maps via the formula

Ou ?Ov =
∑
d≥0

∑
d,|d|=d

(−1)rqd(ev3)∗[OMd(Zu,Zv)].

We prove that, in the above formula, for the quantum product we only need to consider
curves of degree d = d or d = (d− 1, 1). We start with the following geometric result on curves.
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Lemma 2.5. Let x, y ∈ X be general points. Then there exists a conic as well as a chain of
two lines through x and y.

Proof. Let V = Vx⊕Vy be the four dimensional subspace of C2n spanned by x and y. Because x
and y are general, the symplectic form has rank 4 on V . Then X ∩Gr(2, V ) is a smooth quadric
of dimension 3 containing x and y, and the result follows. �

Corollary 2.6. Any point in Γd(Xu) can be joint to Xu by a chain of d lines.

Remark 2.7. This result is true for any cominuscule variety [BCMP13, Lemma 4.7] and for any
coadjoint non-adjoint variety [CP11, Proposition 3.15]. However, it is not true for homogeneous
spaces in general (see [CP11, Proposition 3.10] for the case of adjoint varieties for which this
does not hold).

We include a proof of [Mih22, Corollary 2.5] for completeness.

Proposition 2.8. Assume that for all d ≥ 0, any point in Γd(Xu) can be joint to Xu by a chain
of d lines. Then

κw,du,v = 〈Ou,Ov,O∨w〉d −
∑
κ

〈Ou,Ov,O∨κ 〉d−1〈Oκ,O∨w〉1.

Proof. Define

Sd−d0 =
∑

(−1)r
r∏
i=1

〈Owi ,O∨wi+1
〉di

where the sum is over all decompositions d − d0 = d1 + · · · + dr with di > 0 for i > 0 and all
elements wi ∈WX for i ∈ [1, r]. We have

κw,du,v =
∑

w1∈WX

d∑
d0=0

〈Ou,Ov,O∨w1
〉d0Sd−d0 ,

thus we only need to prove that Sd−d0 = 0 for d−d0 ≥ 2. As an easy consequence of [BCMP13,
Proposition 3.2], we have 〈Ou,O∨w〉d = δu(d),w. Hence,

Sd−d0 =
∑

(−1)r
r∏
i=1

δwi(di),wi+1
.

For any i and w, Γi(Xw) = Γ1(Γ1(· · ·Γ1(Xw) · · · )), where Γ1 is repeated i times in the right-hand
side. By induction on i1 and i2, this implies that w(i) = (w(i1))(i2) for any i1 + i2 = i. Thus,
for any decomposition as above, we have (· · · (w1(d1))(d2) · · · )(dr) = w1(d1 + · · · + dr). This
ultimately implies that

∏r
i=1 δwi(di),wi+1

= δw1(d1+···+dr),w = δw1(d−d0),w and is independent of
the decomposition. We thus have that Sd−d0 = 0 for d− d0 ≥ 2. �

To simplify notation, we set (Ou ?Ov)d =
∑
d,|d|=d(−1)r(ev3)∗[OMd(Xu,Xv)] so that

Ou ?Ov =
∑
d≥0

qd(Ou ?Ov)d.

Proposition 2.8, the projection formula, and [BCMP13, Lemma 5.1] imply the following.

Corollary 2.9. (Ou ?Ov)d = (evd3)∗[OMd(Xu,Xv)]− (evd−1,1
3 )∗[OMd−1,1(Xu,Xv)].
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2.4. Proof outline. In this subsection, we prove Theorem 1.2 assuming some rationality prop-
erties that allow us to use the following theorem, which is a consequence of results of Kollár
[Kol86], see for example [BCMP13, Proposition 5.2]. We will prove these rationality properties
in the next sections.

Theorem 2.10. If f : A→ B is a projective morphism of varieties with cohomologically trivial
general fiber (e.g. rationally connected) and such that A and B have rational singularities, then
f∗[OA] = [OB ] in K-theory.

We will prove the following theorem in Sections 4, 5 and 6 (see Theorems 4.1, 5.1 and 6.1).
A dominant projective morphism f : A → B with A irreducible is called GRCF (Generically
Rationally Connected Fibers) if a general fiber of f is rationally connected (see Definition 3.2).

Theorem 2.11. For d ≥ 0, we have

(1) The map evd3(u, v) : Md(Xu, X
v)→ Γd(Xu, X

v) is GRCF,
(2) Assume that evd3(u, v) : Md(Xu, X

v)→ Γd(Xu, X
v) is birational, then

(a) evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is birational;

(b) Γd−1,1(Xu, X
v) ⊂ Γd(Xu, X

v) is a divisor.
(3) Assume that evd3(u, v) : Md(Xu, X

v)→ Γd(Xu, X
v) is not birational, then Γd(Xu, X

v) =
Γd−1,1(Xu, X

v) has rational singularities.

(4) If d ≥ 3, then the map evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is GRCF, and

Γd(Xu, X
v) = Γd−1,1(Xu, X

v) has rational singularities.

Corollary 2.12. We have (Ou ?Ov)d = 0 for d ≥ 3.

Proof. Corollary 2.9 and Theorems 2.10, 2.11 imply the equalities

(Ou?Ov)d = (ev3)∗[OMd(Xu,Xv)]−(ev3)∗[OMd−1,1(Xu,Xv)] = [OΓd(Xu,Xv)]− [OΓd−1,1(Xu,Xv)] = 0

for d ≥ 3. �

For d ∈ [1, 2], the map evd−1,1
3 (u, v) : Md−1,1(Xu, X

v) → Γd−1,1(Xu, X
v) may fail to be

GRCF. To deal with these cases, we need to give a more explicit description of the Schubert
varieties Xu and Xv. Choose a basis (ei)i∈[1,2n] of C2n such that ω(ei, ej) = δi,2n+1−j for
i ∈ [1, n]. Define Ep = 〈ei | i ∈ [1, p]〉 and Ep = 〈ei | 2n+ 1− i ∈ [1, p]〉. It is a classical result
(see for example [BKT09]) that WX is in bijection with pairs of integers p1 < p2 such that
p1 + p2 6= 2n+ 1. Explicitly, there exist integers p1 < p2 with p1 + p2 6= 2n+ 1 and q1 < q2 with
q1 + q2 6= 2n+ 1 such that

Xu = Xp1,p2 = {x ∈ X |Vx ∩ Ep1 6= 0 and Vx ⊂ Ep2},
Xv = Xq1,q2 = {x ∈ X |Vx ∩ Eq1 6= 0 and Vx ⊂ Eq2}.

We will also use the corresponding Schubert cells
◦
Xu = {x ∈ X |dim(Vx ∩ Ep1) = 1 and Vx ⊂ Ep2},
◦
Xv = {x ∈ X |dim(Vx ∩ Eq1) = 1 and Vx ⊂ Eq2}.

We set Op1,p2 = Ou = [OXu ] and define

δp =

{
0 if p1 + p2 < 2n+ 1
1 if p1 + p2 > 2n+ 1

and δq =

{
0 if q1 + q2 < 2n+ 1
1 if q1 + q2 > 2n+ 1.

Note that δp = 0 if and only if E⊥p1 ⊇ Ep2 , and similarly for δq. We have dimXu = p1+p2−3−δp,
and similarly for Xv.

Consider the following conditions on the pairs (p1, p2) and (q1, q2):

(C1) p1 + q1 = 2n = p2 = q2
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(C2)

{
p1 + q2 = 2n = p2 + q1,
p2 − p1 = q2 − q1 ≥ 2 and max(δp, δq) = 1.

The following is proved in Sections 5 and 6, see Theorems 5.1 and 6.1. We denote by (Cd)
the condition (C1) for d = 1 and (C2) for d = 2.

Theorem 2.13. Assume that d ∈ [1, 2].

(1) If (Cd) holds, then evd−1,1
3 (u, v) : Md−1,1(Xu, X

v) → Γd−1,1(Xu, X
v) is generically

finite of degree 2.

(2) Otherwise, the map evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is GRCF.

Using this result, we compute (Ou ?Ov)q when (Cd), for d ∈ [1, 2], does not hold.

Corollary 2.14. Assume that neither (C1) nor (C2) holds, then

(1) (Ou ?Ov)d = 0 if and only if evd3(u, v) : Md(Xu, X
v)→ Γd(Xu, X

v) is not birational.

(2) (−1)`(uvw)+
∫
d
c1(TX)κw,du,v ≥ 0.

Proof. (1) This follows from Corollary 2.9 and Theorems 2.10, 2.11 and 2.13.

(2) If the map evd3(u, v) : Md(Xu, X
v) → Γd(Xu, X

v) is birational, then evd−1,1
3 (u, v) :

Md−1,1(Xu, X
v)→ Γd−1,1(Xu, X

v) is also birational by Theorem 2.11. By a result of Brion (see
[BCMP22, Theorem 8.11]) and that Md(Xu, X

v) and Md−1,1(Xu, X
v) have rational singulari-

ties, we have that the coefficients cw and dw in the expansions

(ev3)∗[OMd(Xu,Xv)] =
∑
w

cwOw and (ev3)∗[OMd−1,1(Xu,Xv)] =
∑
w

dwOw

satisfy (−1)`(w)−ccw ≥ 0 and (−1)`(w)−ddw ≥ 0, where c and d are the codimensions of
Γd(Xu, X

v) and Γd−1,1(Xu, X
v) in X. The result follows from this, Corollary 2.9, and The-

orem 2.11.(2).(b). �

When (Cd) holds for d ∈ [1, 2], we explicitly compute the product Ou ?Ov, where Oq1,q2p1,p2 =
Ovu = [OXvu ].

Proposition 2.15 (see Proposition 7.1). The following holds in QK(X):

(1) If (C1) holds, then Ou ?Ov = Ovu − q + qO2n−2,2n.
(2) If (C2) holds, then

Op1,p2 ?Oq1,q2 = qOp2+q2−2n,2n
p1+q1,2n

− q2 + q2O2n−2,2n.

It is easy to verify that the above products satisfy Conjecture 2.3, proving Conjecture 2.3 in
the remaining cases, thus completing the proof of Theorem 1.2.

Remark 2.16. Assume that d ∈ [1, 2] and neither (C1) nor (C2) holds. Then (Ou ?Ov)d 6= 0 if
and only if evd3(u, v) : Md(Xu, X

v)→ Γd(Xu, X
v) is birational. If ev2

3(u, v) is birational, then by
Lemma 5.6, we have p1 + q1 ≤ 2n− 1, which implies that ev1

3(u, v) is birational (see Section 6).
Together with Corollary 2.12 and Proposition 2.15, this implies that the powers of q appearing
in Ou ?Ov form an interval. The same argument implies that this interval property also holds
in quantum cohomology.

3. Replacing stable maps by evaluations

For proving the GRCF results stated in Theorems 2.11 and 2.13, we need a reduction step
replacing stable maps by the images of marked points.
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3.1. Some results on general fibers. A property is true for the general fiber of f if it is true
for f−1(b) for b in a dense open subset of B. We start with the following classical result.

Lemma 3.1. Let f : A → B be a dominant morphism between irreducible varieties and let
Ω ⊂ A be open and dense. Then Ω meets any component of a general fiber of f .

Proof. Set W = A \Ω. If f(W ) is not dense in B, then for b ∈ B \ f(W ), we have f−1(b) ⊂ Ω.
Otherwise, by the Fiber Dimension Theorem let U ⊂ B be the open subset such that any
component of f−1(b) has dimension dimA − dimB and any component of f−1(b) ∩ W has
dimension dimW − dimB for b ∈ U . Then, since dimW < dimA, any component of f−1(b)
meets Ω for b ∈ U . �

For convenience, we introduce the following notations.

Definition 3.2. Let f : A→ B be a dominant morphism between irreducible varieties.

(1) f is called GIF (Generically Irreducible Fibers) if a general fiber of f is irreducible.
(2) f is called GRCF (Generically Rationally Connected Fibers) if a general fiber of f is

rationally connected.

Proposition 3.3. Consider the following commutative diagram of dominant morphisms between
irreducible varieties, with A projective and normal:

A
f

  
g

��
B

h // C.

(1) Assume that g and h are GIF, then f is GIF.
(2) Assume that g and h are GRCF, then f is GRCF.

Proof. (1) Since A is normal, the general fiber of f is normal by [Bri02, Lemma 3], so it is
enough to prove that this general fiber is connected. Let UB ⊂ B be an open dense subset
such that g−1(b) is irreducible for b ∈ UB and let UC ⊂ C be an open dense subset such that
h−1(c) is irreducible and g−1(UB) meets any irreducible component of f−1(c) for c ∈ UC (use
Lemma 3.1). Let c ∈ UC and f−1(c) = E1

∐
· · ·
∐
En be its decomposition into connected

components. Since A is projective, g(Ei) ⊂ h−1(c) is a closed subset for all i ∈ [1, n] and
h−1(c) = ∪ni=1g(Ei). Since h−1(c) is irreducible, we get that g(Ei) = h−1(c) for some i ∈ [1, n].
Up to reordering the indices, we may assume that g(E1) = h−1(c). For any i ∈ [1, n] and
any a ∈ Ei ∩ g−1(UB), we have g(a) ∈ g(E1). Therefore, in the decomposition g−1(g(a)) =
(g−1(g(a)) ∩ E1)

∐
· · ·
∐

(g−1(g(a)) ∩ En), we have (g−1(g(a)) ∩ E1) 6= ∅ 6= (g−1(g(a)) ∩ Ei).
But since g(a) ∈ UB , the fiber g−1(g(a)) is irreducible, thus Ei = E1 and f−1(c) is connected
and irreducible.

(2) From (1), we have that the general fiber of f is irreducible. We also have a map g :
f−1(c) → h−1(c) with base and general fibers rationally connected. The result follows from
[GHS03, Corollary 1.3]. �

Lemma 3.4. Let f : A → B be a dominant morphism between irreducible varieties. The
following conditions are equivalent:

(1) f is GRCF.
(2) f |Ω is GRCF for any dense open subset Ω ⊂ A.
(3) f |Ω is GRCF for some dense open subset Ω ⊂ A.

Remark 3.5. Here GRCF can be replaced by the property of having generically rational fibers.
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Proof. Assume that f is GRCF and let Ω ⊂ A be a dense open subset. Let U ⊂ B be a dense
open subset such that any component of f−1(b) meets Ω for b ∈ U . Then f−1(b) ∩ Ω is dense
in f−1(b) and therefore has to be rationally connected, proving the implication (1) ⇒ (2). The
implication (2) ⇒ (3) is clear. Assume that f |Ω is GRCF for some dense open subset Ω ⊂ A.
Let U ⊂ B be a dense open subset such that any component of f−1(b) meets Ω for b ∈ U . Then
f−1(b) ∩ Ω is dense in f−1(b), thus f−1(b) is irreducible and rationally connected, proving the
last implication. �

3.2. Rational curves passing through points. We prove some lemmas on the geometry of
curves in X useful for our reduction step proved in Section 3.3.

Lemma 3.6. Let x, y ∈ X be two points in general position and d ≥ 4, then Γd(x, y) = X =
Γd−1,1(x, y).

Proof. Fix z ∈ X general and let V = Vx ⊕ Vy. Since x and y are general, we have dimV = 4
and the symplectic form has rank 4 on V . Pick t ∈ X general such that Vt ⊂ V . Set W =
Vt + Vz. Then we have dimW = 4 and the symplectic form has rank 4 on W . We thus have
x, y, t ∈ IG(2, V ) and t, z ∈ IG(2,W ). Furthermore, IG(2, V ) and IG(2,W ) are smooth quadrics
of dimension 3, therefore there exists a conic passing through x, y and t, and a conic as well as
a chain of two lines passing through t and z, proving the claim. �

Lemma 3.7. Let x, y ∈ X be two points in general position and let z ∈ X. We have the
equivalence:

z ∈ Γ3(x, y) ⇐⇒ dim(Vx + Vy + Vz) ≤ 5 ⇐⇒ z ∈ Γ2,1(x, y).

Proof. If z ∈ Γ3(x, y), then by the Ker/Span technique (see [Buc03, BKT03]), we must have
dim(Vx+Vy+Vz) ≤ 5. Assume that this condition holds, it is enough to prove that z ∈ Γ2,1(x, y).
Let V = Vx ⊕ Vy. Since x and y are general, we have dimV = 4 and the form has rank 4 on

V . Since dim(V + Vz) ≤ 5, there exists a non-zero vector v ∈ V ∩ Vz. Pick w ∈ Vz⊥ ∩ V \ 〈v〉
and define t ∈ X via Vt = 〈v, w〉. We have Vt ⊂ V thus x, y, t ∈ IG(2, V ). Since IG(2, V ) is a
smooth quadric, there is a conic passing through x, y, t. On the other hand, we have v ∈ Vt ∩Vz
thus t and z are on a line, proving the claim. �

Lemma 3.8. Let x, y ∈ X be two points in general position and let z ∈ X. We have the
equivalence:

z ∈ Γ2(x, y) ⇐⇒ dim(Vx + Vy + Vz) ≤ 4.

Proof. If z ∈ Γ2(x, y), then by the Ker/Span technique (see [Buc03, BKT03]), we must have
dim(Vx+Vy+Vz) ≤ 4. Assume that this condition holds, we prove z ∈ Γ2(x, y). Let V = Vx⊕Vy.
Since x and y are general, we have dimV = 4 and the symplectic form has rank 4 on V . We
have Vz ⊂ V thus z ∈ Gr(2, V ) ∩ X. Since Gr(2, V ) ∩ X is a smooth quadric of dimension 3,
there is a conic passing through x, y, z. �

3.3. Forgetting maps. Recall the definition of Md and the evaluation maps evi : Md → X for
i ∈ [1, 3]. Let us start by fixing some notation on evaluation maps.

Notation 3.9 (More evaluation maps). For 1 ≤ i ≤ 3 define ev
d
(i) : Md → Xi by ev

d
(i) =∏i

j=1 evj . Set Γ
(i)
d = ev

d
(i)(Md). We have surjective morphisms:

ev
d
(i) : Md → Γ

(i)
d and π

d
3 : Γ

(3)
d → X,
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where the latter is the projection onto the last component. Set Γ
(3)
d (Xu, X

v) = ev(3)(Md(Xu, X
v)).

The maps ev
d
(3) and π

d
3 induce surjective maps

ev
d
(3)(u, v) : Md(Xu, X

v)→ Γ
(3)
d (Xu, X

v) and π
d
3(u, v) : Γ

(3)
d (Xu, X

v)→ Γd(Xu, X
v).

Proposition 3.10. The map evd(3) : Md → Γ
(3)
d is GRCF.

Proof. We will prove that evd(3) has rational general fibers and is birational if and only if d ≤ 2.

For d = 0, the map evi is an isomorphism for i ∈ [1, 3]. For d > 0, by Lemma 3.4, we can
restrict to the open subset of Md given by stable maps of the form f : P1 → X of degree d which
are birational onto their image. A degree 1 map P1 → X is an isomorphism onto its image, and

3 general points in Γ
(3)
1 determine a line. In particular, for d = 1, the map evd(3) is birational. A

birational degree 2 map P1 → X is an isomorphism onto its image. For (x, y, z) ∈ Γ
(3)
2 general,

we have dim(Vx + Vy + Vz) = 4 = Rk(ω|Vx+Vy+Vz ) by Lemma 3.8. Set E = Vx + Vy + Vz, then
x, y, z ∈ IG(2, E) which is a smooth quadric of dimension 3. Any conic passing though x, y, z is
contained in IG(2, E) and there is therefore a unique such conic. In particular, for d = 2, the
map evd(3) is birational.

Assume d ≥ 3. Let Pk ⊂ C2n[s, t] be the subspace of homogeneous polynomials of degree k
with coefficients in C2n and let (p1, p2, p3) = (0, 1,∞) ∈ (P1)3. For a = bd2c and b = dd2e, we set

x = (x1, x2, x3) ∈ X3 and

Z =

(P,Q, x) ∈ Pa ×Pb ×X3

∣∣∣∣∣∣ For [s, t] ∈ P1,

{
(P ∧Q)(s, t) 6= 0,
ω(P,Q)(s, t) = 0,

For i ∈ [1, 3], [(P ∧Q)(pi)] = xi

 .

We have a dominant map Z →Md, (P,Q, x) 7→ ([s : t] 7→ [P (s, t) ∧Q(s, t)]) with general fibers
irreducible of constant dimension 4. In particular, dimZ = d(2n − 1) + 4n − 1 and there is a
unique irreducible component Z◦ of Z of dimension dimZ. The component Z◦ dominates Md.

Let π : Z◦ → Γ
(3)
d be the projection on the last factors. By Lemma 3.1, the general fiber of π

dominates the general fiber of evd(3). We therefore only need to prove that π is GRCF.

Let Y = {(P, x) ∈ Pa × X3 | P (s, t) 6= 0 for all [s, t] ∈ P1 and P (pi) ∈ Vxi for i ∈ [1, 3]}.
Projections induce maps p : Z → Y , p◦ : Z◦ → Y and evP : Y → X3 such that π = evP ◦p◦.
Note that ev−1

P (x) is an open subset of a vector space and is therefore rational.
We first prove that Y is irreducible. Let S = {P ∈ Pa | P (s, t) 6= 0 for all [s, t] ∈ P1}. The

projection on the first factor induces a map σ : Y → S, and we have a cartesian diagram:

Y
θ //

σ

��

Fl3

pr2

��
S

τ // (P2n−1)3,

where τ : S → (P2n−1)3 is defined by τ(P ) = ([P (p1)], [P (p2)], [P (p3)]), Fl = {(x, y) ∈ X ×
P2n−1 | y ⊂ Vx} is the incidence variety between X and P2n−1, and the map θ : Y → Fl3 is
defined by θ(P, x) = (x, [P (p1)], [P (p2)], [P (p3)]). Since pr2 is locally trivial with fibers (P2n−3)3,
the same is true for σ. Since furthermore S is an open subset of Pa, we get that Y is irreducible
of dimension 2n(a+ 1) + 3(2n− 3).

We now consider the fibers of the map p : Z → Y . These fibers are given by an open subset
in the set of solutions of the linear system on Q given by

(1)

{
ω(P,Q)(s, t) = 0 for all [s, t] ∈ P1,
Q(pi) ∈ Vxi for i ∈ [1, 3].
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Note that this linear system is generically of rank

dimPb − (dimZ − dim p(Z)) ≤ d− 2 + 3(2n− 2) = dimPb − (dimZ − dimY ).

Let (ei)i∈[1,2n] be the standard basis of C2n so that the symplectic form is given by ω(ei, ej) =
δj,2n+1−i for i ∈ [1, n], let P (s, t) = sae1+tae2n and let Vx1 = 〈e1, e2〉, Vx2 = 〈e1+e2n, e2+e2n−1〉
and Vx3 = 〈e2n−1, e2n〉. Then (P, x) ∈ Y . For Q(s, t) = sbe2 + tbe2n−1, we have (P,Q, x) ∈
p−1(P, x) and an easy check proves that the fiber p−1(P, x) is given by an open subset of the
solutions of a linear system of rank d− 2 + 3(2n− 2).

Let Y◦ ⊂ Y be the open subset where the system (1) has maximal rank d − 2 + 3(2n − 2).
Then the map p : p−1(Y◦)→ Y◦ is locally trivial with fiber an open subset of a vector space of
dimension dimZ − dimY . This implies that Z◦ is the unique component of Z dominating Y
and that the map p : Z◦ ∩ p−1(Y◦)→ Y◦ is locally trivial with fiber an open subset of a vector

space of dimension dimZ − dimY . We also have dim Γ
(3)
d = dimπ(Z◦) = dim evP (Y ).

Pick x ∈ Γ
(3)
d general. Note that ev−1

P (x) is an open subset of a vector space and thus rational.
Set F = π−1(x). Any irreducible component of F meets p−1(Y◦) non-trivially by Lemma 3.1

and is of dimension dimZ − dim Γ
(3)
d . Let F ′ be any such irreducible component. We have

a map p : F ′ → ev−1
P (x) whose general fiber over the image has dimension dimZ − dimY =

dimF ′ − dim ev−1
P (x). In particular, p : F ′ → ev−1

P (x) is dominant. On the other hand, since

ev−1
P (x) meets Y◦, the map p : F → ev−1

P (x) is a locally trivial fibration with rational fibers over

a dense open subset of ev−1
P (x). Therefore, F must be rational.

By Lemma 3.7, we have Γ
(3)
3 dominates X2 with fibers of dimension at most 2n. Hence,

dim Γ
(3)
3 ≤ 2(4n− 5) + 2n = 10n− 10. By Lemma 3.6, we have dim Γ

(3)
d = 3(4n− 5) for d ≥ 4.

Therefore, dimZ − dim Γ
(3)
3 ≥ 6 and dimZ − dim Γ

(3)
d = d(2n− 1)− 8n+ 14 ≥ 10 when d ≥ 4.

This implies that when d ≥ 3, the fibers of evd(3) are of dimension at least 2. �

Recall that Md−1,1 = Md−1×XM0,2(X, 1) and consider the map ev(4) : Md−1,1 → X4 defined
by ev(4) = ev1× ev2× evs× ev3, where evs is the map induced by the fiber product structure

and is obtained by evaluation at the singular point of the curve. Define Γ
(4)
d−1,1 = ev(4)(Md−1,1).

We have a commutative diagram

(2) Md−1,1

ev(4)

))
evd−1

(3)
×id

��
Γ

(3)
d−1 ×X M0,2(X, 1)

id×ev2

// Γ(4)
d−1,1.

Lemma 3.11. The projection pr : Γ
(4)
d−1,1 → Γ

(3)
d−1,1 is GRCF.

Proof. We need to discuss cases depending on the degree d. If d > 4, then by Lemma 3.6,
pr−1(x, y, z) = Γ1(z) is a Schubert variety thus rational. If d = 1, then pr−1(x, y, z) = {x}. For

d = 2 and (x, y, z) general in Γ
(3)
1,1, then E = Vx+Vy+Vz has dimension 4 and the restriction ω|E

has rank 4. Therefore, x, y, z are points on a 3-dimensional quadric Q, given by Q = IG(2, E),
with x and y on a line (xy) and z general. It is easy to check that pr−1(x, y, z) = (xy)∩ z⊥ is a

unique point on Q. For d = 3 and (x, y, z) general in Γ
(3)
2,1, then Vx+Vy+Vz has dimension 5, the

restriction ω|Vx+Vy has rank 4 and the intersection Vz ∩ (Vx + Vy) has dimension 1 (by Lemma

3.7). It is easy to check that pr−1(x, y, z) = {t ∈ X | (Vx + Vy) ∩ Vz ⊂ Vt ⊂ Vx + Vy} ' P1.

Finally, for d = 4, we have Γ
(3)
3,1 = X3 (by Lemma 3.6). For (x, y, z) ∈ X3 general, the fiber is

given by pr−1(x, y, z) = {t ∈ X | Vt = 〈a, b〉 with a ∈ Vx + Vy, b ∈ Vz and ω(a, b) = 0}, which is
a general hyperplane section of P3 × P1 in its Segre embedding and therefore rational. �
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Corollary 3.12. The map evd−1,1
(3) : Md−1,1 → Γ

(3)
d−1,1 is GRCF.

Proof. All maps in (2) are surjective and Md−1,1 is irreducible, projective and normal. Further-
more, id× ev2 is birational and the vertical map is GRCF by Proposition 3.10. By Proposition
3.3, the map ev(4) is therefore GRCF. Finally, use Lemma 3.11. �

We conclude with the main reduction result of this section.

Proposition 3.13. We have the following implications.

(1) If πd3(u, v) is GRCF, then evd3(u, v) is GRCF;

(2) If πd−1,1
3 (u, v) is GRCF, then evd−1,1

3 (u, v) is GRCF.

Proof. We have the following diagrams of surjective maps

Md(Xu, X
v)

''��
Γ

(3)
d (Xu, X

v) // Γd(Xu, X
v)

and Md−1,1(Xu, X
v)

((��
Γ

(4)
d−1,1(Xu, X

v) // Γd−1,1(Xu, X
v).

Since the G-orbit of Xu × Xv is dense in X2 and the evaluation maps are G-equivariant, the
general fibers of the vertical maps are general fibers of the maps

evd(3) : Md → Γ
(3)
d and evd−1,1

(4) : Md−1,1 → Γ
(4)
d−1,1.

Furthermore, Md(Xu, X
v) and Md−1,1(Xu, X

v) are projective, irreducible and normal, thus the
result follows from Propositions 3.3 and 3.10, Lemma 3.11, and Corollary 3.12. �

Corollary 3.14. If Γd(x, y) = Γd−1,1(x, y) 6= ∅ for x, y ∈ X in general position, then we have

Γd(Xu, X
v) = Γd−1,1(Xu, X

v). If furthermore πd3(u, v) is GRCF, then evd−1,1
3 (u, v) is GRCF.

Proof. Since Md(Xu, X
v) and Md−1,1(Xu, X

v) are irreducible, the same is true for Γ
(3)
d (Xu, X

v)

and Γ
(3)
d−1,1(Xu, X

v). Let Ω be the open subset of X2 such that Γd(x, y) = Γd−1,1(x, y) 6= ∅ for

(x, y) ∈ Ω. Since the G-orbit of Xu × Xv is dense in X2 and the evaluation maps are G-
equivariant, we may assume Ω ∩ (Xu ×Xv) 6= ∅. Then

{(x, y, z) ∈ Xu ×Xv ×X | (x, y) ∈ Ω and z ∈ Γd(x, y)}
= {(x, y, z) ∈ Xu ×Xv ×X | (x, y) ∈ Ω and z ∈ Γd−1,1(x, y)}

is a dense open subset of both Γ
(3)
d (Xu, X

v) and Γ
(3)
d−1,1(Xu, X

u), proving that Γ
(3)
d (Xu, X

v) =

Γ
(3)
d−1,1(Xu, X

v). We deduce that Γd(Xu, X
v) = Γd−1,1(Xu, X

v) and πd3(u, v) = πd−1,1
3 (u, v).

The last assertion follows from Proposition 3.13. �

3.4. Results on curve neighborhoods. Before going on, let us prove some preliminary re-
sults on curve neighborhoods. More precisely, the next result will be useful for proving that
Γd(Xu, X

v) and Γd−1,1(Xu, X
v) have rational singularities when they are equal and d is small.

Proposition 3.15. Let Vk be any k-dimensional subspace of C2n. The subvariety {z ∈ X |
Vz ∩ Vk 6= 0} ⊂ X has rational singularities.

Proof. Let S = G(k, 2n) and for s ∈ S, denote by Vs ⊂ C2n the corresponding subspace. Define
Y = {(z, s) ∈ X × S | Vz ∩ Vs 6= 0}. The map Y → X is G-equivariant and therefore locally
trivial. Furthermore, the fiber of this map is the Schubert variety {s ∈ S | Vs ∩ Vz 6= 0} and
therefore has rational singularities. In particular Y has rational singularities. On the other
hand, the fibers of the map Y → S are of the form {z ∈ X | Vz ∩ Vs 6= 0}, and it is easy to
check that these varieties have constant dimension k + 2n − 4 (a birational model is given by
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{(a, z) ∈ P(Vs) × X | a ⊂ Vz ⊂ a⊥}, which is a locally trivial P2n−3-bundle over P(Vs)). In
particular, by Miracle Flatness, the projection Y → S is flat. Finally, the family (Ys)s∈S admits a

global resolution of singularities given by the variety Ỹ = {(l, z, s) ∈ P2n−1×X×S | l ⊂ Vz∩Vs}.
We can thus apply [Elk78, Theorem 3], and we deduce that Ys has rational singularities for any
s ∈ S. �

Out next result will apply when evd3 is birational, giving a useful relationship among curve
neighborhoods for degree (d− 1, 1) curves and degree d curves.

Lemma 3.16. Let us assume that d ≤ 2 and that evd3(u, v) and evd−1,1
3 (u, v) are birational.

Then Γd−1,1(Xu, X
v) is a divisor inside Γd(Xu, X

v).

Proof. Recall that Γd−1,1(Xu, X
v) and Γd(Xu, X

v) are irreducible. We thus only need to com-
pute the codimension of the former in the latter. By the birationality assumption, the di-
mension of Γd(Xu, X

v) and Γd−1,1(Xu, X
v) are equal to the dimension of Md(Xu, X

v) and
Md−1,1(Xu, X

v). Note that Md−1,1 is a union of boundary divisors (see [FP97]) an is therefore
a divisor in Md. Now by Kleiman-tBertini applied to ev1× ev2 : Md → X2, we get that if
Md−1,1(Xu, X

v) is non-empty it is a divisor in Md(Xu, X
v). �

4. Large degrees

The aim of this section is to prove the following result.

Theorem 4.1. For d ≥ 3, we have

(1) The map evd3(u, v) : Md(Xu, X
v)→ Γd(Xu, X

v) is GRCF and never birational;

(2) The map evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is GRCF;

(3) Γd(Xu, X
v) = Γd−1,1(Xu, X

v) has rational singularities.

Proof. The results follow from Propositions 3.10, 3.13, 4.2, 4.4 and Lemmas 3.6 and 4.3. �

In all cases of the Theorem above our strategy will be to use Proposition 3.13 (and this
strategy will be used also for degree two and degree one curves). Since the case of degree d ≥ 4
curves is much easier, let us deal with it separately.

Proposition 4.2. If d ≥ 4, then the morphisms evd3(u, v) : Md(Xu, X
v) → Γd(Xu, X

v) and

evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) are GRCF.

Proof. By assumption and Lemma 3.6, we have Γ
(3)
d (Xu, X

v) = Γ
(3)
d−1,1(Xu, X

v) = Xu×Xv×X
and Γd(Xu, X

v) = Γd−1,1(Xu, X
v) = X. The fibers of πd3(u, v) and πd−1,1

3 (u, v) are isomorphic
toXu×Xv and are thus rationally connected (even rational). The result follows from Proposition
3.13. �

Notice that when d ≥ 4, Γd(Xu, X
v) = Γd−1,1(Xu, X

v) = X is smooth. We now focus on
degree d = 3 curves. We start with a general statement describing the image of the evaluation
map for cubics. Recall that Xu and Xv as incidence varieties can be defined as Xu = {V2 ∈
X | dim(V2 ∩ Ep1) ≥ 1 and V2 ⊂ Ep2} and Xv = {V2 ∈ X | dim(V2 ∩ Eq1) ≥ 1 and V2 ⊂ Eq2}
and let

◦
Xu ⊂ Xu and

◦
Xv ⊂ Xv be the Schubert cells.

Lemma 4.3. We have Γ2,1(Xu, X
v) = Γ3(Xu, X

v) = {z ∈ X | dim(Vz ∩ (Ep2 + Eq2)) ≥ 1}
and this variety has rational singularities.

Proof. The first equality is a consequence of Lemma 3.7 and of the fact that the G orbit of
Xu × Xv is dense in X2. The fact that {z ∈ X | dim(Vz ∩ (Ep2 + Eq2)) ≥ 1} has rational
singularities is a consequence of Proposition 3.15. So let us prove the second equality. Assume
that z ∈ Γ3(Xu, X

v), then there exists x ∈ Xu, y ∈ Xv and V5 ∈ Gr(5, 2n) such that Vx + Vy +
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Vz ⊂ V5. In particular dim(Vz ∩ (Vx + Vy)) ≥ 1 and Vx + Vy ⊂ Ep2 +Eq2 , proving the inclusion
of the LHS in the RHS. Assume now that z ∈ X satisfies dim(Vz ∩ (Ep2 +Eq2)) ≥ 1 and pick a
non-zero a ∈ Vz ∩ (Ep2 + Eq2). Write a = a′ + a′′ with a′ ∈ Ep2 and a′′ ∈ Eq2 . For z general,
we may assume that a′ 6∈ Ep1 and a′′ 6∈ Eq1 .

Assume first that p1 6= 1 6= q1. Then Ep1 ∩ (a′)⊥ and Eq1 ∩ (a′′)⊥ are non-trivial, and we
may pick b′ ∈ Ep1 ∩ (a′)⊥ and b′′ ∈ Eq1 ∩ (a′′)⊥. Then set Vx = 〈a′, b′〉 and Vy = 〈a′′, b′′〉. We
have x ∈ Xu and y ∈ Xv and dim(Vx + Vy + Vz) ≤ 5 thus z ∈ Γ3(x, y) ⊂ Γ3(Xu, X

v). If p1 = 1
then p2 < 2n. We have Ep2 ⊂ E⊥p1 and Ep1 ∩ (a′)⊥ = Ep1 , so we may proceed as above. The
same works if q1 = 1. �

In order to prove Theorem 4.1, we are left to prove the following result.

Proposition 4.4. The morphisms ev3
3(u, v) : M3(Xu, X

v) → Γ3(Xu, X
v) and ev2,1

3 (u, v) :
M2,1(Xu, X

v)→ Γ2,1(Xu, X
v) are GRCF.

We want to use Proposition 3.13, but we also want to avoid dealing with “badly behav-
ing” curves. Because of Lemma 3.4, we can restrict to studying the fibers of π3

3(u, v)|U3 :

Γ
(3)
3 (Xu, X

v) → Γ3(Xu, X
v), where U3 ⊂ Γ

(3)
3 (Xu, X

v) is a well-chosen dense open subset.
We postpone the proof of Proposition 4.4 to the construction of U3 and the description of its
properties.

For (x, y, z) ∈ Γ
(3)
3 (Xu, X

v), consider the following conditions:

(1) Vx ∩ Vy = 0,
(2) dim(Vx + Vy + Vz) = 5,

(3) Vx ∈
◦
Xu and Vy ∈

◦
Xv,

(4) Vz ∩ (Vx + Vy) 6⊆ [(Vx ∩ Ep1) + Vy] ∪ [Vx + (Vy ∩ Eq1)].

Condition (1) is a non-empty open condition, and by Lemma 3.7,

{(x, y, z) ∈ Γ
(3)
3 (Xu, X

v) | (Vx, Vy, Vz) satisfies (1)} =

= {(x, y, z) ∈ Xu ×Xv ×X | Vx ∩ Vy = 0, dim(Vx + Vy + Vz) ≤ 5}.

Thus, (2) and (3) are non-empty open conditions, and

{(x, y, z) ∈ Γ
(3)
3 (Xu, X

v) | (Vx, Vy, Vz) satisfies (1)-(3)} =

= {(x, y, z) ∈
◦
Xu ×

◦
Xv ×X | Vx ∩ Vy = 0, dim(Vx + Vy + Vz) = 5}.

For (x, y, z) in the latter set, dim(Vx ∩ Ep1) = dim(Vy ∩ Eq1) = 1, and (Vx ∩ Ep1) + Vy and
Vx + (Vy ∩ Eq1) are both 3-dimensional subspaces of the 4-dimensional space Vx + Vy, so (4) is
a non-empty open condition and

U3 := {(x, y, z) ∈ Γ
(3)
3 (Xu, X

v) | (Vx, Vy, Vz) satisfies (1)-(4)}

is an open dense subset of Γ
(3)
3 (Xu, X

v).

Proposition 4.5. For z ∈ Γ3(Xu, X
v) general, (π3

3(u, v))−1(z) ∩ U3 is unirational.

Proof. Set

E◦ =

{
Ep2 \ Ep1 if Ep2 ⊆ E⊥p1
Ep2 \ (Ep1 ∪ E⊥p1) otherwise,

E◦ =

{
Eq2 \ Eq1 if Eq2 ⊆ (Eq1)⊥

Eq2 \ (Eq1 ∪ (Eq1)⊥) otherwise.

We have that E◦ and E◦ are open subsets in Ep2 and Eq2 , respectively. Consider the map
p : Ep2 × Eq2 → Ep2 + Eq2 defined by (a′, a′′) 7→ a′ + a′′. Note that, since p2 ≥ 2, q2 ≥ 2, and
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E• and E• are opposite flags, this map is surjective with fiber isomorphic to Ep2 ∩ Eq2 . The
restriction p◦ : E◦ × E◦ → Ep2 + Eq2 is therefore dominant with fibers over an element in the
image isomorphic to a non-empty open subset of Ep2 ∩ Eq2 . Fix a general z in

Γ3(Xu, X
v) = {z ∈ X | dim(Vz ∩ (Ep2 + Eq2)) ≥ 1}

(see Lemma 4.3); we have that p−1
◦ (Vz) = (E◦ ×E◦)∩ p−1(Vz) is a non-empty open subset of a

vector space.
Define

P := {((a′, a′′), b, c) ∈ p−1
◦ (Vz) × (C2n)2 | b ∈ Ep1 ∩ (a′)⊥ \ 0, c ∈ Eq1 ∩ (a′′)⊥ \ 0}

and set

P◦ = {((a′, a′′), b, c) ∈ P | dim〈a′, a′′, b, c〉 = 4, dim(Vz + 〈a′, a′′, b, c〉) = 5}.

Note that P◦ is an open subset of P. Lemma 4.6 implies that P◦ is non-empty. Then Proposition
4.5 follows from Lemma 4.6 and Lemma 4.7 below. �

Lemma 4.6. For z ∈ Γ3(Xu, X
v) general, the map P◦ → (π3

3(u, v))−1(z) ∩ U3 defined by
((a′, a′′), b, c) 7→ (x, y) with Vx = 〈a′, b〉 and Vy = 〈a′′, c〉 is surjective.

Proof. Let (x, y, z) ∈ (π3
3(u, v))−1(z) ∩ U3. Then by assumptions (1) and (2), dim(Vz ∩ (Vx +

Vy)) = 1. Let a ∈ Vz ∩ (Vx + Vy) be a non-zero element and write a = a′ + a′′ with a′ ∈ Vx and
a′′ ∈ Vy. By assumption (1), this decomposition is unique.

We claim that (a′, a′′) ∈ p−1
◦ (Vz). Clearly, we have a′ ∈ Ep2 and a′′ ∈ Eq2 . By assumption

(4), we have a′ 6∈ Ep1 and a′′ 6∈ Eq1 . Furthermore, if Ep2 6⊆ E⊥p1 , then since x ∈
◦
Xu, we have

Vx ∩ E⊥p1 = Vx ∩ Ep1 and a′ 6∈ E⊥p1 . By a symmetric argument, if Eq2 6⊆ (Eq1)⊥, we have

a′′ 6∈ (Eq1)⊥. We thus have (a′, a′′) ∈ p−1
◦ (Vz).

Let b ∈ Vx ∩ Ep1 and c ∈ Vy ∩ Eq1 be non-zero elements. By assumption (4), we have
Vx = 〈a′, b〉 and Vy = 〈a′′, c〉, thus b ∈ (a′)⊥ and c ∈ (a′′)⊥. Furthermore, by assumptions (1)
and (2), we have ((a′, a′′), b, c) ∈ P◦ mapping to (x, y), proving the result. �

Lemma 4.7. The set P is unirational.

Proof. Consider the map P → p−1
◦ (Vz), ((a′, a′′), b, c) 7→ (a′, a′′). We first prove that this map

is surjective. Note that the choice of c is independent of the choice of b, so by symmetry, we
can concentrate on the map ((a′, a′′), b) 7→ (a′, a′′). We only need to prove that Ep1 ∩ (a′)⊥ is
always non-zero. If p1 > 1 the result follows. If p1 = 1, then Ep2 ⊂ E⊥p1 thus a′ ∈ E⊥p1 and

Ep1 ∩ (a′)⊥ = Ep1 , proving the result. Now, by construction of E◦ and E◦, this map is the
composition of vector bundles (with zero section removed), proving the statement. �

Finally, we can prove Proposition 4.4.

Proof of Proposition 4.4. The result about degree d = 3 curves follows from Proposition 4.5,
Lemma 3.4 and Proposition 3.13. The result about degree (2, 1) curves follows from Proposi-
tion 4.5 and Corollary 3.14. �

We now deal with small degree (i.e. degree two and one) curves.

5. Degree 2

Recall that there exists integers p1 < p2 with p1+p2 6= 2n+1 and q1 < q2 with q1+q2 6= 2n+1
such that

Xu = {x ∈ X |Vx ∩ Ep1 6= 0 and Vx ⊂ Ep2}
Xv = {x ∈ X |Vx ∩ Eq1 6= 0 and Vx ⊂ Eq2}.
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Recall also the definition of δp and δq and condition (C2){
p1 + q2 = 2n = p2 + q1,
p2 − p1 = q2 − q1 ≥ 2 and max(δp, δq) = 1.

In this section we prove the following result.

Theorem 5.1. Assume that d = 2, we have

(1) The map evd3(u, v) : Md(Xu, X
v)→ Γd(Xu, X

v) is GRCF,
(2) If evd3(u, v) : Md(Xu, X

v) → Γd(Xu, X
v) is not birational, then we have Γd(Xu, X

v) =
Γd−1,1(Xu, X

v) has rational singularities.

(3) If (C2) does not hold, then evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is GRCF.

(4) If (C2) holds, then the map evd3(u, v) : Md(Xu, X
v) → Γd(Xu, X

v) is not birational,

and evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is generically finite of degree 2.

Proof. By Proposition 3.13, to prove part (1), it suffices to prove

π2
3(u, v) : Γ

(3)
2 (Xu, X

v)→ Γ2(Xu, X
v)

is GRCF. We are going to construct a birational morphism f : W → Γ
(3)
2 (Xu, X

v) from an
irreducible variety W, and prove that the general fiber of π = π2

3(u, v) ◦ f is unirational. More
precisely, part (1) follows from Proposition 3.13, Lemma 3.4, Lemma 5.4, Lemma 5.5, and
Proposition 5.8.

Part (2) follows from Lemmas 5.6, 5.7, and Corollary 5.12.

By Proposition 3.13, to prove (3), it suffices to prove π1,1
3 (u, v) : Γ

(3)
1,1(Xu, X

v)→ Γ1,1(Xu, X
v)

is GRCF, which is Proposition 5.11.
When (C2) holds, by Corollary 5.12, we have Γ1,1(Xu,Xv) = X. Moreover, dimM1,1(Xu, X

v) =
dimX. Part (4) follows from Lemma 5.6, Corollary 3.12, Proposition 5.11, and Lemma 3.1. �

Define the following open subsets of projective spaces:

• If δp = 0, set P(Ep1)◦ = P(Ep1) and P(Ep2)◦ = P(Ep2).
• If δp = 1, set P(Ep1)◦ = P(Ep1) \ P(E⊥p2) and P(Ep2)◦ = P(Ep2) \ P(E⊥p1).
• If δq = 0, set P(Eq1)◦ = P(Eq1) and P(Eq2)◦ = P(Eq2).

• If δq = 1, set P(Eq1)◦ = P(Eq1) \ P(Ep2⊥) and P(Eq2)◦ = P(Eq2) \ P(Eq1⊥).

For simplicity, set
Y = P(Ep1)◦ × P(Eq2)◦ × P(Eq1)◦ × P(Ep2)◦.

For any element ([a1], [a2], [b1], [b2], z) ∈ Y ×X, consider the following conditions:

(1) ω(a1, b2) = 0 = ω(a2, b1).
(2) Vz ∩ 〈a1, a2〉 6= 0 6= Vz ∩ 〈b1, b2〉.
(3) Vz ∩ 〈a1, b2〉 = 0 = Vz ∩ 〈b1, a2〉.
(4) ω(a1, b1) 6= 0 6= ω(a2, b2).
(5) dim(〈a1, a2, b1, b2〉) = Rk(ω|〈a1,a2,b1,b2〉) = 4.

Remark 5.2. Conditions (2) and (3) imply that

dim(Vz ∩ 〈a1, a2〉) = 1 = dim(Vz ∩ 〈b1, b2〉).

SetW = {([a1], [a2], [b1], [b2], z) ∈ Y ×X | (1)-(5) are satisfied}. Note thatW is locally closed
in Y ×X.

Define p : Ep2 × Eq1 → Ep2 + Eq1 and q : Ep1 × Eq2 → Ep1 + Eq2 .

Remark 5.3. Denote the second projection from W by π′ :W → X. By Remark 5.2, the fiber
π′−1(z) can be identified with {[a1, a2], [b1, b2] ∈ P(q−1(Vz))×P(p−1(Vz)) | ([a1], [a2], [b1], [b2]) ∈
Y and satisfies (1), (4), (5)}.
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Lemma 5.4. The subset W ⊂ Y ×X is irreducible and dimW = dimM2(Xu, X
v).

Proof. Note that conditions (3)-(5) are open. Define

S = {([a1], [a2], [b1], [b2]) ∈ Y | (1), (4) and (5) are satisfied}

and let p : S → P(Ep1)◦ × P(Eq2)◦ be the projection on the first two factors. The map p is
surjective with fibers of constant dimension p2 + q1 − 2 − δp − δq. Since these fibers are given
by linear conditions, we get that S is irreducible of dimension p1 + p2 + q1 + q2 − 4 − δp − δq.
We now consider the map p′ : W → S obtained by projection on the first four factors. Fix
([a1], [a2], [b1], [b2]) ∈ S we look for z in the fiber of p′. By conditions (2) and (3) the space Vz
meets 〈a1, a2〉 and 〈b1, b2〉 in dimension exactly 1. Given [a] ∈ P(〈a1, a2〉)\{[a1], [a2]}, condition
(4) implies that there is a unique z in the fiber such that a ∈ Vz. This implies that p′ is a locally
trivial C×-bundle over S and thus is irreducible of dimension p1 + p2 + q1 + q2 − 3− δp − δq =
dimM2(Xu, X

v). �

Lemma 5.5. The map f : W → Γ
(3)
2 (Xu, X

v) given by f([a1], [a2], [b1], [b2], z) = (x, y, z) with
Vx = 〈a1, b2〉 and Vy = 〈a2, b1〉 is well-defined and birational.

Proof. Since dim(〈a1, a2, b1, b2〉) = 4, we have that Vx and Vy have dimension 2 and are isotropic
by the conditions ω(a1, b2) = ω(a2, b1) = 0. This implies that x ∈ Xu and y ∈ Xv and since

Vz ⊂ Vx + Vy we have that (x, y, z) ∈ Γ
(3)
2 (Xu, X

v) by Lemma 3.8.

Conversely, for (x, y, z) general in Γ
(3)
2 (Xu, X

v), we may assume that x ∈
◦
Xu and y ∈

◦
Xv. We

thus have dim(Vx∩Ep1) = 1 so that [a1] is uniquely given by 〈a1〉 = Vx∩Ep1 . We also have that
[b1] is given by 〈b1〉 = Vy ∩ Eq1 . Furthermore, we may also assume that Vx ∩ Vz = Vy ∩ Vz = 0
thus (〈a1〉+ Vz)∩ Vy has dimension 1 and [a2] is fixed by the condition 〈a2〉 = (〈a1〉+ Vz)∩ Vy.
By the same argument [b2] is fixed by the condition 〈b2〉 = (〈b1〉+ Vz) ∩ Vx. �

Consider the restriction π :W → Γ2(Xu, X
v) of the projection π′.

Lemma 5.6. The map π is birational if and only if one of the following holds

(1) p1 + q2 < 2n and p2 + q1 < 2n,
(2) p1 + q2 = 2n, p2 + q1 < 2n and max(δp, δq) = 1,
(3) p1 + q2 < 2n, p2 + q1 = 2n and max(δp, δq) = 1.

Proof. We only prove the if part, the converse will follow from the proof of Proposition 5.8.
Note that if (p1 + q2 = 2n, p2 + q1 < 2n) or if (p1 + q2 < 2n, p2 + q1 = 2n), we also prove the
only if condition. Assume first that p1 + q2 < 2n and p2 + q1 < 2n. Then, for z ∈ Γ2(Xu, X

v)
general, by Lemma 3.8, we have dim(Vz ∩ (Ep1 + Eq2)) = 1 = dim(Vz ∩ (Ep2 + Eq1)). This
defines unique elements [a1 + a2] ∈ P(Vz ∩ (Ep1 +Eq2)) and [b2 + b1] ∈ P(Vz ∩ (Ep2 +Eq1)) with
([a1], [a2], [b1], [b2], z) ∈ W, proving part (1).

Assume that p1 + q2 < 2n and p2 + q1 = 2n (the case p1 + q2 = 2n and p2 + q1 < 2n is
similar). Then, for z general, we have dim(Vz ∩ (Ep1 + Eq2)) = 1 and this defines a unique
element [a1 + a2] ∈ P(Vz ∩ (Ep1 + Eq2)). For any [b] ∈ P(Vz), we have a unique decomposition
b = b1 + b2 with [b2] ∈ P(Ep2) and [b1] ∈ P(Eq1). If max(δp, δq) = 0 then the conditions
ω(a1, b2) = ω(a2, b1) = 0 are satisfied, and we get a fiber of dimension 1 parametrized by P(Vz).
Otherwise, at least one of these (linear) conditions is non-trivial and there is a unique [b] ∈ P(Vz)
satisfying these conditions, proving part (2) and (3). �

Lemma 5.7. When π is not birational,

Γ2(Xu, X
v) ⊆ {z ∈ X | Vz ∩ (Ep1 + (Ep2 ∩ Eq2) + Eq1) 6= 0}.
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Proof. In this case, by Lemma 5.6, either p1+q2 ≥ 2n or p2+q1 ≥ 2n. Without loss of generality,
we assume p1 + q2 ≥ 2n. Note that if z is the image of a generic (x, y, z) in Γ2(Xu, X

v), then
Vx ⊂ Ep2 , Vy ∩Eq1 6= 0 and Vz ⊂ Vx +Vy, so 0 6= Vz ∩ (Vx + (Vy ∩Eq1)) ⊂ Vz ∩ (Ep2 +Eq1). �

The reverse inclusion will follow from the proof of Proposition 5.8.

Proposition 5.8. The general fiber of π is unirational.

Proof. In the cases of Lemma 5.6, the map is birational. The remaining cases are as follows.
Note that the discussion proves the only if part of Lemma 5.6.

Case 1: p1 + q2 ≥ 2n and p2 + q1 > 2n. Consider the map ga : W → {([a1], [a2], z) ∈ P(Ep1)◦ ×
P(Eq2)◦ ×X | a1 6∈ Vz ∩ 〈a1, a2〉 6= 0 and ω(a1, a2) 6= 0} obtained by projection, and let W◦ be
the open subset in W where this map has fibers of minimal dimension. It suffices to prove that
F = W◦ ∩ π−1(z) is unirational of positive dimension for z ∈ Γ2(Xu, X

v) general. Consider
the restriction ga : F → P(q−1(Vz)). A general fiber of this map is an open subset of the
projective space {[b1, b2] ∈ P(p−1(Vz)) | ω(a1, b2) = 0 = ω(a2, b1)}. This projective space has
dimension 1 + p2 + q1 − 2n − δp − δq ≥ 0, thus the map is dominant. Furthermore, we know
that fibers of this map have constant dimension. It follows that F is unirational of dimension
p1 + p2 + q1 + q2 − 4n+ 2− δp − δq ≥ 1.

Case 2: p1 + q2 > 2n and p2 + q1 ≥ 2n. This is similar to Case 1.
Case 3: p1 + q2 = 2n = p2 + q1. In this case, min(δp, δq) = 0, and for fixed z ∈ Γ2(Xu, X

v), we
have dim p−1(Vz) = dim q−1(Vz) = 2. Therefore, π−1(z) is birational to P1×P1 if max(δp, δq) = 0
or an open subset of a hyperplane section of bidegree (1, 1) in P1 × P1 if max(δp, δq) = 1. We
are done in the former case, in the latter case, we only need to prove that the defining form
is non-degenerate. We may assume p1 ≤ q1 which implies p1 + 2 ≤ q1, and we exhibit a Vz
for which the form is non-degenerate. Set Vz = 〈eq1 + e2n+1−q1 , eq2 + e2n+1−q2〉 if p2 ≥ q1

and Vz = 〈ep2 + e2n+1−p2 , eq2 + e2n+1−q2〉 if p2 ≤ q1. Both cases are similar, so we only deal
with the latter. We have q−1(Vz) = 〈(0, ep2 + e2n+1−p2), (0, eq2 + e2n+1−q2)〉 and p−1(Vz) =
〈(ep2 , e2n+1−p2), (e2n+1−q2 , eq2)〉. The condition ω(a1, b2) = 0 is always trivial and the condition
ω(a2, b1) = 0 is induced by a matrix of the form(

±1 0
0 ±1

)
proving the result in this case.

Case 4: p1 + q2 < 2n and p2 + q1 > 2n. Note that dimW ≥ p1 + q2 + 2n − 3. By Lemma 5.7,
dim Γ2(Xu, X

v) ≤ p1 + q2 + 2n − 4. Therefore, fibers of π are positive dimensional. For
z ∈ Γ2(Xu, X

v) general, by Lemma 3.8, we have dim(Vz ∩ (Ep1 + Eq2)) = 1 and therefore a
unique element [a1 + a2] ∈ P(Vz ∩ (Ep1 + Eq2)).

For ([a1], [a2], [b1], [b2], z) ∈ π−1(z) the elements [a1] and [a2] are fixed as above. Therefore,
π−1(z) is birational to the linear space

{[b1, b2] ∈ P(p−1(Vz)) | ω(a1, b2) = ω(a2, b1) = 0}.

Case 5: p1 + q2 > 2n and p2 + q1 < 2n. This is similar to Case 4.
Case 6: p1 + q2 = 2n, p2 + q1 < 2n and max(δp, δq) = 0. This follows from the proof of Lemma
5.6 part (2).

Case 7: p1 + q2 < 2n, p2 + q1 = 2n and max(δp, δq) = 0. This is similar to Case 6. �

Corollary 5.9. When π is not birational, we have

Γ2(Xu, X
v) = {z ∈ X | Vz ∩ (Ep1 + (Ep2 ∩ Eq2) + Eq1) 6= 0}

and Γ2(Xu, X
v) has rational singularities.
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Proof. When p1 + q2 ≥ 2n, we have Ep1 + (Ep2 ∩ Eq2) + Eq1 = Ep2 + Eq1 ; when p2 + q1 ≥ 2n,
we have Ep1 + (Ep2 ∩Eq2) +Eq1 = Ep1 +Eq2 . The result follows from Lemma 5.7 and the proof
of Proposition 5.8. The rational singularities statement follows from Proposition 3.15. �

Lemma 5.10. We have

Γ1,1(Xu, X
v) ⊆ {z ∈ X | Vz ∩ (Ep1 + (Ep2 ∩ Eq2) + Eq1) 6= 0}.

Proof. Note that there is no assumption on π here. Let (x, y, z, t) ∈ Γ
(4)
1,1(Xu, X

v) be general,

then Vt ⊂ Vx + Vy, Vt ∩ Vz 6= 0 and Vx + Vy ⊆ Ep1 + (Ep2 ∩ Eq2) + Eq1 , so Vz ∩ (Ep1 + (Ep2 ∩
Eq2) + Eq1) 6= 0, proving the result. �

The reverse inclusion will follow from the proof of the following Proposition.

Proposition 5.11. (1) Γ1,1(Xu, X
v) is non-empty if and only if p2 + q2 > 2n.

(2) If (C2) does not hold, then π1,1
3 (u, v) is GRCF.

(3) If (C2) holds, then π1,1
3 (u, v) is generically finite of degree 2.

Proof. Note that if p2 + q2 ≤ 2n, then Γ1,1(Xu, X
v) = ∅. Now assume p2 + q2 > 2n.

Let z ∈ Γ1,1(Xu, X
v) be general. We look for a ∈ Vz ∩ (Ep1 + (Ep2 ∩ Eq2) + Eq1) \ 0 with

decompositions a = a[1] + a[2] + a′[1], where a[1] ∈ Ep1 \ 0, a[2] ∈ (Ep2 ∩ Eq2) \ (Ep1 ∪ Eq1),

a′[1] ∈ E
q1 \ 0, and

(3) ω(a[2], a[1]) = 0,

(4) ω(a[2], a
′
[1]) = 0.

Then for Vx = 〈a[1], a[2]〉 and Vy = 〈a′[1], a[2]〉, we have that (x, y, z) ∈ (π1,1
3 (u, v))−1(z). Without

loss of generality, we assume

p2 + q1 ≥ p1 + q2.

Let

m = max(0, p1 + q2 − 2n).

Write a = (a1, · · · , a2n) in the basis (ei)i∈[1,2n]. Then

a[1] = (a1, · · · , ap1−m, ap1−m+1 + λp1−m+1, · · · , ap1 + λp1 , 0, · · · , 0),
a′[1] = (0, · · · , 0, a2n+1−q1 + µ2n+1−q1 , · · · , ap2 + µp2 , ap2+1, · · · , a2n),

and a[2] = a− a[1] − a′[1], where the variables λi and µj satisfy equations (3) and (4).

Case 1: p2 + q1 > 2n. This condition guarantees that there is at least one variable µp2 . We first
compute the coefficients c1p2 and c2p2 of µp2 in equations (3) and (4), respectively. We get

c1p2 =

 0 if p2 < 2n+ 1− p1

−(a2n+1−p2 + λ2n+1−p2) if 2n+ 1− p1 < p2 ≤ q2

−a2n+1−p2 if 2n+ 1− p1 < p2 > q2

and

c2p2 =

 ±a2n+1−p2 if p2 < 2n+ 1− p1

−λ2n+1−p2 if 2n+ 1− p1 < p2 ≤ q2

0 if 2n+ 1− p1 < p2 > q2.

If p1 + p2 < 2n+ 1, then equation (3) is trivial, and we can solve equation (4) in µp2 as long as
a2n+1−p2 6= 0, proving the result in this case. Assume p1 + p2 > 2n + 1. If q1 + q2 < 2n + 1,
then equation (4) is trivial, and we can solve equation (3) in µp2 as long as a2n+1−p2 6= 0
or a2n+1−p2 + λ2n+1−p2 6= 0, proving the result in this case. We may therefore also assume
q1 + q2 > 2n+ 1. Since p2 + q1 ≥ p1 + q2, we get 2(p2 + q1) ≥ p1 + p2 + q1 + q2 ≥ 4n+ 4 thus
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p2 + q1 ≥ 2n + 2. In particular p2 − 1 ≥ 2n + 1 − q1. We compute the coefficients c1p2−1 and

c2p2−1 of µp2−1 in equations (3) and (4), respectively:

c1p2−1 =

{
−(a2n+2−p2 + λ2n+2−p2) if p2 − 1 ≤ q2

−a2n+2−p2 if q2 < p2 − 1

and

c2p2−1 =

{
−λ2n+2−p2 if p2 − 1 ≤ q2

0 if q2 < p2 − 1.

If p2 ≤ q2, the minor associated to the variables µp2−1 and µp2 in the equations is equal to
(a2n+2−p2 + λ2n+2−p2)λ2n+1−p2 − (a2n+1−p2 + λ2n+1−p2)λ2n+2−p2 so that we can solve the
equations in this case and the result follows. If p2 = q2 + 1, then the minor is equal to
a2n+1−p2λ2n+2−p2 and the result follows. Otherwise, q2 < p2 − 1. Notice that in this case
c1p2 = −a2n+1−p2 while c2p2 = 0. So it suffices to find a coefficient i such that c2i is different

from zero; indeed, if we do so, then the determinant of the matrix whose rows are (c1p2 , c
1
i ) and

(c2p2 , c
2
i ) is different from zero, and we can solve the equations with respect to µp2 and µi. Note

that for i = q2 we get

c2q2 =

{
−λ2n+1−q2 if p1 + q2 ≥ 2n+ 1
a2n+1−q2 if p1 + q2 ≤ 2n,

proving the result in this case.
Case 2: p2 + q1 ≤ 2n. In this case, we have Ep1 ⊕ (Ep2 ∩ Eq2) ⊕ Eq1 ⊆ C2n. For any a ∈
Vz ∩ (Ep1 + (Ep2 ∩ Eq2) + Eq1) \ 0, we can write a = a[1] + a[2] + a′[1] in a unique way.

Sub-case 2.1: p1 + q2 < 2n. Then Ep1 + (Ep2 ∩Eq2) +Eq1 ( C2n. For z ∈ Γ1,1(Xu, X
v) general,

we thus have Vz∩(Ep1 +(Ep2∩Eq2)+Eq1) = 〈a〉 with a 6= 0. For z general, we have a[1] ∈ Ep1 \0,
a[2] ∈ Ep2 ∩Eq2 \ (Ep1 ∪Eq1), and a′[1] ∈ E

q1 \ 0. This implies the equalities Vx = 〈a[1], a[2]〉 and

Vy = 〈a′[1], a[2]〉, thus the map is birational.

Sub-case 2.2: p1 + q2 = 2n = p2 + q1 and (C2) does not hold. We have C2n = Ep1⊕(Ep2∩Eq2)⊕
Eq1 . Either max(δp, δq) = 0, and the fiber over z ∈ Γ1,1(Xu, X

v) general is isomorphic to P(Vz).
Otherwise, p2 − p1 = q2 − q1 = 1. Without loss of generality, we may assume p1 ≤ q1. Then
p1 ≤ n − 2, p2 ≤ n − 1, q1 ≥ n + 1, and q2 ≤ n + 2. In particular δp = 0 and δq = 1. We
want to find a ∈ Vz such that ω(a[2], a

′
[1]) = 0. We have Ep2 ∩ Eq2 = 〈ep2〉 thus a′[1] ∈ e

⊥
p2 . Set

E := Ep1 ⊕ (Ep2 ∩ Eq2)⊕ (Eq1 ∩ e⊥p2) which is of codimension 1 in C2n and for z ∈ X general,
we have Vz ∩ E = 〈a〉 with a 6= 0. This implies that the map is birational.

Sub-case 2.3: (C2) holds. Again, we have C2n = Ep1 ⊕ (Ep2 ∩ Eq2) ⊕ Eq1 . Without loss of
generality, we may assume that p1 ≤ q1. Our assumptions imply q1 ≥ p1 + 2, q2 ≥ p2 + 2,
δp = 0 and δq = 1. Therefore, (3) is trivial. We claim that for z ∈ X general, equation (4)
is a non-degenerate bilinear condition on P(Vz). Consider Vz = 〈b, c〉, where b = b1 + b2 + b′1
and c = c1 + c2 + c′1 for some b1, c1 ∈ Ep1 , b2, c2 ∈ Ep2 ∩ Eq2 , and b′1, c

′
1 ∈ Eq1 . Then for

a = λb + µc ∈ Vz general, a[2] = λb2 + µc2, a′[1] = λb′1 + µc′1, and equation (4) is of the form

λ2ω(b2, b
′
1) + µ2ω(c2, c

′
1), proving the claim. �

Corollary 5.12. Assume that Γ1,1(Xu, X
v) is non-empty, then we have

Γ1,1(Xu, X
v) = {z ∈ X | Vz ∩ (Ep1 + (Ep2 ∩ Eq2) + Eq1) 6= 0}.

In particular, it has rational singularities.

Proof. This follows from Lemma 5.10, the proof of Proposition 5.11, and Proposition 3.15. �
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6. Degree 1

Recall Condition (C1): p1 + q1 = 2n = p2 = q2. In this section we prove the following result.

Theorem 6.1. Assume that d = 1, we have

(1) The map evd3(u, v) : Md(Xu, X
v)→ Γd(Xu, X

v) is GRCF,
(2) If the map evd3(u, v) : Md(Xu, X

v) → Γd(Xu, X
v) is not birational, then Γd(Xu, X

v) =
Γd−1,1(Xu, X

v) has rational singularities.

(3) If (C1) does not hold, then evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is GRCF,

and it is birational as soon as evd3(u, v) is.
(4) If (C1) holds, then the map evd3(u, v) : Md(Xu, X

v) → Γd(Xu, X
v) is not birational,

and evd−1,1
3 (u, v) : Md−1,1(Xu, X

v)→ Γd−1,1(Xu, X
v) is generically finite of degree 2.

In fact, we will explicitly describe when ev1
3(u, v) is birational. Consider the following condi-

tion:

(L1)

{
p1 + q1 ≤ 2n− 1 + min(δp, δq) if p2 6= 2n or q2 6= 2n
p1 + q1 ≤ 2n− 1 if p2 = q2 = 2n.

We will see that condition (L1) is the one that ensures that ev1
3(u, v) is birational.

Proof of Theorem 6.1. By the proof of Proposition 3.10 (respectively Corollary 3.12) when d =

1, the map ev1
(3)(u, v) (resp. ev0,1

(3)(u, v)) is birational.

If (L1) holds then by Lemmas 6.3, 6.4, and Lemma 3.1, π1
3(u, v) is birational. If (L1) does

not hold then by Lemmas 6.3, 6.5 and Lemma 3.1, π1
3(u, v) is GRCF with positive dimensional

fibers. Thus, by Proposition 3.13 the map ev1
3(u, v) is GRCF; moreover, it is birational if (L1)

holds, and it has positive dimensional fibers otherwise. This shows part (1). We deduce part
(2) from Lemmas 6.2 and 6.9.

If (L1) holds then by Lemmas 6.6, 6.7, and Lemma 3.1, π0,1
3 (u, v) is birational. If neither

(L1) nor (C1) hold then by Lemmas 6.6, 6.8 and Lemma 3.1, π0,1
3 (u, v) is GRCF with positive

dimensional fibers. Thus, if (C1) does not hold, by Proposition 3.13 the map ev0,1
3 (u, v) is

GRCF; moreover it is birational if (L1) holds, and it has positive dimensional fibers otherwise.
This shows part (3). Finally, item (4) is a consequence of Lemma 6.9. �

We start with a preliminary result about line neighborhoods. Throughout this section on
degree 1 curves, we will use the following addition map

p : Ep1 × Eq1 → Ep1 + Eq1 ⊂ C2n.

Lemma 6.2. If neither (L1) nor (C1) hold then

Γ1(Xu, X
v) = Γ0,1(Xu, X

v) = {z ∈ X | dim(Vz ∩ Ep2 ∩ Eq2) ≥ 1}
has rational singularities.

Proof. The statement about rational singularities is a consequence of Proposition 3.15. Recall
also the inclusion Γ0,1(Xu, X

v) ⊆ Γ1(Xu, X
v). Denote the RHS of the above formula by A.

Consider x ∈ Xu, y ∈ Xv such that there exists a line passing through x, y. This means that
dim(Vx∩Vy) ≥ 1. A point z belongs to this line if and only if Vz∩(Vx∩Vy) 6= 0 (and Vz ⊂ Vx+Vy
whenever x 6= y). This proves the inclusion Γ1(Xu, X

v) ⊆ A.
Conversely, we prove that A is contained in Γ0,1(Xu, X

v). Since Γ0,1(Xu, X
v) is closed, it is

sufficient to show that a general point z ∈ A belongs to Γ0,1(Xu, X
v).

If p2 = q2 = 2n and p1 + q1 ≥ 2n + 1, then A = X. Since z is general, we may assume that
Vz is not contained in Ep1 nor in Eq1 , and thus contains a one-dimensional subspace V1 ⊂ Vz
such that V1 ∩Ep1 = V1 ∩Eq1 = 0. Consider any point (a, b) ∈ p−1(V1 \ 0)∩ ((V ⊥1 ∩Ep1)×Eq1)
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(such (a, b) always exists since dim(p−1(V1)) ≥ 2, dimEp1 ≥ 2 and V ⊥1 is a hyperplane in Ep1).
Then a∧ b 6= 0, a ⊥ V1 and b ⊥ V1 (since a+ b ∈ V1), and the point x ∈ X such that Vx = 〈a, b〉
belongs to Xu ∩ Xv and is on a line passing through z (since 0 6= V1 ⊂ Vx ∩ Vz). This shows
that z ∈ Γ0,1(Xu, X

v).
We now assume that p2 6= 2n or q2 6= 2n and fix z ∈ A general. Consider V1 ⊂ Vz∩Ep2 ∩Eq2 .

Since z is general in A, we can assume that V1 ∩ Ep1 = V1 ∩ Eq1 = 0. If p1 + q1 ≥ 2n + 1
then construct a, b with a ∧ b 6= 0 as above so that z is on a line passing through x ∈ Xu ∩Xv

with Vx = 〈a, b〉. We have z ∈ Γ0,1(Xu, X
v). If p1 + q1 = 2n then, since (L1) does not

hold, we can assume that δp = 0. Since V1 ⊂ Ep2 we deduce that V ⊥1 ∩ Ep1 = Ep1 and one
can still find (a, b) ∈ p−1(V1) with a ∧ b 6= 0 and a ⊥ V1; again, one deduces as above that
z ∈ Γ0,1(Xu, X

v). �

6.1. The case of ev1
3(u, v). In this subsection, we prove all the results necessary to obtain part

(1) of Theorem 6.1. Define E◦ := Ep2 ∩ Eq2 . Recall that
◦
Xu is the affine cell in Xu. Define

ε1 := max(1, p1 + q1 − 2n+ 2), ε2 := max(1, p2 + q2 − 4n+ 2), and

U1 = {(x, y, z) ∈ Γ
(3)
1 (Xu, X

v) | x, y, z distinct, x ∈
◦
Xu, y ∈

◦
Xv, ω|Vx+Vy 6= 0,

Vx ∩ Vy ⊆ E◦ \ (Ep1 ∪ Eq1),dim(Vz ∩ E◦) ≤ ε2,dim(Vz ∩ (Ep1 + Eq1)) ≤ ε1}.

Note that U1 is a dense open subset of Γ
(3)
1 (Xu, X

v). The condition dim(Vz ∩ (Ep1 +Eq1)) ≤ ε1
is essentially saying that as soon as Ep1 +Eq1 6= C2n, dim(Vz ∩ (Ep1 +Eq1)) ≤ 1. Similarly, the
condition dim(Vz ∩E◦) ≤ ε2 implies that as soon as p2 6= 2n or q2 6= 2n then dim(Vz ∩E◦) ≤ 1.

Recall the definition of π1
3(u, v) : Γ

(3)
1 (Xu, X

v)→ Γ1(Xu, X
v) from Definition 3.9.

Lemma 6.3. Assume that q2 6= 2n and let z ∈ Γ1(Xu, X
v) be a general point.

(1) If (L1) holds then U1 ∩ π1
3(u, v)−1(z) is a single point.

(2) If (L1) does not hold, then U1 ∩ π1
3(u, v)−1(z) is rationally connected and positive di-

mensional.

Proof. Since a triple of distinct points (x, y, z) in U1 ∩π1
3(u, v)−1(z) belong to the same line, we

have dim(Vx ∩ Vy ∩ Vz) = 1 and dim(Vx + Vy + Vz) = 3. But then Vx ∩ Vy is also contained
in Vz. Set W = Vx ∩ Vy ∩ Vz. For z general we may assume that dim(Vz ∩ E◦) = 1, thus W
is uniquely defined as the intersection Vz ∩ E◦. Denote by a, b two vectors generating Vx ∩ Ep1
and Vy ∩ Eq1 , respectively (here we are using the condition x ∈

◦
Xu, y ∈

◦
Xv in the definition

of U1). Since Vx ∩ Vy ⊂ E◦ \ (Ep1 ∪ Eq1) we deduce that W ∩ Ep1 = 0 and W ∩ Eq1 = 0 and
that a and b do not belong to W . However, since dim(Vx + Vy + Vz) = 3, 〈a, b〉 ∩ Vz 6= 0. Thus,
there exist (α, β) 6= (0, 0) such that αa + βb ∈ Vz. The line generated by αa + βb is contained
in W ′ := Vz ∩ (Ep1 + Eq1).

If p1 + q1 ≤ 2n − 1, W ′ is a line, and it uniquely determines 〈a〉 ⊂ Vx and 〈b〉 ⊂ Vy. We
obtain that Vx = W + 〈a〉 and Vy = W + 〈b〉, i.e., π1

3(u, v)−1(z) ∩ U1 = {(x, y, z)}.
Assume that p1 +q1 ≥ 2n, which implies that W ′ = Vz. Let us also suppose that δp ≤ δq (the

other case can be treated similarly). Recall the definition of the map p : Ep1×Eq1 → Ep1 +Eq1 ,
and define the set

W := {(c, d) ∈ p−1(Vz) | c ∈W⊥,dim(W + 〈c〉) = dim(W + 〈d〉) = 2, c+ d 6= 0}.

This is an open subset of a linear subspace of p−1(Vz). Notice that since Vz ⊂ W⊥, we also
have d ∈ W⊥. The space W has dimension at least 2 as soon as (L1) does not hold, and it
has dimension 1 if p1 + q1 = 2n and 1 = δp = δq. For each point (c, d) ∈ W, Vx = W + 〈c〉,
and Vy = W + 〈d〉, we have (x, y, z) ∈ π1

3(u, v)−1(z) ∩ U1. Via this map W dominates the fiber
π1

3(u, v)−1(z) ∩ U1, which is therefore always unirational, and birational if (L1) holds. �
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Lemma 6.4. Assume that q2 = p2 = 2n and let z ∈ Γ1(Xu, X
v) be general. If (L1) holds then

U1 ∩ π1
3(u, v)−1(z) is a single point.

Proof. Notice that in this case Vz ∩ E◦ = Vz is not a line. However, the first steps of the proof
of Lemma 6.3 still hold if one takes Vx ∩Vy ∩Vz as the definition of W ; then define a, b, α, β,W ′

as in the proof of Lemma 6.3.
Since p1 + q1 ≤ 2n − 1, W ′ is a line, and it uniquely determines 〈a〉 ⊂ Vx and 〈b〉 ⊂ Vy.

Moreover, we have that W is uniquely defined by W = Ker(ω|〈a〉+Vz=〈b〉+Vz ) (here we use
that ω|Vx+Vy 6= 0). We obtain that Vx = W + 〈a〉 and Vy = W + 〈b〉, i.e., {(x, y, z)} =

π1
3(u, v)−1(z) ∩ U1. �

Lemma 6.5. Assume that q2 = p2 = 2n and let z ∈ Γ1(Xu, X
v) be general. If (L1) does not

hold, then U1 ∩ π1
3(u, v)−1(z) is rationally connected and positive dimensional.

Proof. If p1 = 2n − 1 then Xu = X and if q1 = 2n − 1 then Xv = X; in both cases the result
presents no difficulties, so we assume p1, q1 ≤ 2n−2. Let (x, y, z) be a point in U1∩π1

3(u, v)−1(z).
Then W := Vx ∩Vy ∩Vz is a line in Vz. Notice that X = Γ1(Xu, X

v). This follows from Lemma
6.2 if (C1) does not hold, otherwise it follows from Lemma 6.9 below. For z in X general, we
have Vz ∩ (Ep1 ∪ Eq1) = 0. With our assumption, p : Ep1 × Eq1 → C2n is surjective. Thus
there exist (a, b) ∈ p−1(Vz) such that ω(a, b) 6= 0, Vx = 〈a〉 + W and Vy = 〈b〉 + W . Consider
all points (a, b) ∈ p−1(Vz) such that ω(a, b) 6= 0, b ⊥ W and dim(〈a,W 〉) = dim(〈b,W 〉) = 2.
Then since a+ b ∈ Vz, W ⊂ Vz and Vz is isotropic, the condition b ⊥W implies a ⊥W . Setting
Vx = 〈a〉+W and Vy = 〈b〉+W , we get that (x, y, z) ∈ U1. Thus the fiber over z of π1

3(u, v)|U1
is dominated by an open subset of A := {(a, b, w) ∈ p−1(Vz)× Vz | b ⊥ w}.

Let pr2 be the second projection from Ep1 × Eq1 . There exists V ′ ⊂ Eq1 a (general) 2-
dimensional subspace such that pr2(p−1(Vz)) = (Ep1 ∩Eq1) +V ′. Consider the condition b ⊥ w
on ((Ep1 ∩ Eq1) + V ′) × Vz. Since q1 ≤ 2n − 2, we have V ′ ∩ Vz = 0. By genericity of z, the
symplectic form defines a general bilinear form on V ′ × Vz, and the same genericity holds when
the form is restricted to ((Ep1 ∩Eq1) + V ′)× Vz; the zero locus of this form is thus unirational.

This shows that A is unirational since it is a locally trivial fibration over such a zero locus
with rational fiber over (b, w) equal to {a ∈ Ep1 | a + b ∈ Vz}. There exists a birational map
P(A) := {([a, b], [w]) ∈ P(p−1(Vz)) × P(Vz) | ω(b, w) = 0} → U1 ∩ π1

3(u, v)−1(z), ([a, b], [w]) 7→
([〈a,w〉], [〈b, w〉], z) which is dominant; by composing with the projection A→ P(A) we deduce
that U1 ∩ π1

3(u, v)−1(z) is unirational. Since (Ep1 ∩ Eq1) + V ′ is at least two-dimensional, the
general fiber of P(A) → P(Vz) is non-empty, and thus P(A) - as well as U1 ∩ π1

3(u, v)−1(z) - is
positive dimensional. �

6.2. The case of ev0,1
3 (u, v). In this subsection we prove all the necessary results to obtain

part (3) of Theorem 6.1. We will use the same definition of E◦ as in the previous subsection.
Define

U0,1 := {(x, x, z) ∈ Γ
(3)
0,1(Xu, X

v) | x 6= z, x ∈
◦
Xu ∩

◦
Xv,

Vx ∩ Ep1 ∩ Eq1 = Vz ∩ Vx ∩ Ep1 = Vz ∩ Vx ∩ Eq1 = 0}.

This is a non-empty open hence dense subset of Γ
(3)
0,1(Xu, X

v) that we will use in the following
lemmas.

Lemma 6.6. Assume that q2 6= 2n and let z ∈ Γ0,1(Xu, X
v) be general.

(1) If (L1) holds, then U0,1 ∩ π0,1
3 (u, v)−1(z) is a single point.

(2) If (L1) does not hold, then U0,1 ∩ π0,1
3 (u, v)−1(z) is rationally connected.
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Proof. Set W := Vx ∩ Vz for (x, x, z) ∈ U0,1. We have W ∈ P(A) with A = E◦ ∩ (Ep1 + Eq1).
Moreover, for z ∈ Γ0,1(Xu, X

v) general, the line W is uniquely determined by the intersection
Vz ∩A. Consider the addition map

p′ : (E◦ ∩ Ep1)× (E◦ ∩ Eq1)→ E◦ ∩ (Ep1 + Eq1)

and B := p′−1(W ) ∩ pr−1
1 (W⊥), where pr1 is the first projection from (E◦ ∩Ep1)× (E◦ ∩Eq1).

Then B is a vector space. Moreover, via pr1, B can be realized as a locally trivial fibration over
pr1(B), so the projectivization P of this fibration inside P(E◦ ∩Ep1)× P(E◦ ∩Eq1) is rational.
Notice that since W /∈ P(Ep1)∪P(Eq1) by the definition of U0,1 and since we are intersecting with

pr−1
1 (W⊥), it follows that if (a, b) ∈ B then automatically 0 6= a ∈W⊥ and 0 6= b ∈W⊥. Let us

denote by P◦ the open subset in P dominated by points (a, b) such that a 6∈ Eq1 , b 6∈ Ep1 . Then

U0,1 ∩ π0,1
3 (u, v)−1(z) is dominated by points (x, x, z) such that Vx = 〈a, b〉 with [(a, b)] ∈ P◦.

This means that P◦ dominates U0,1 ∩ π−1
0,1(z), which is therefore unirational. Notice finally that

if (L1) holds then the set P has dimension equal to zero (the line W uniquely defines the lines
〈a〉 and 〈b〉). �

Lemma 6.7. Assume that q2 = p2 = 2n and let z ∈ Γ0,1(Xu, X
v) be general. If (L1) holds

then U0,1 ∩ π0,1
3 (u, v)−1(z) is a single point.

Proof. Set W := Vx ∩ Vz for (x, x, z) ∈ U0,1 and A := Ep1 + Eq1 . We have W ∈ P(Ep1 + Eq1).
Moreover, for general z ∈ Γ0,1(Xu, X

v) the line W is uniquely determined by the intersection
Vz ∩ A. Notice that in this case p′ = p, where p′ was defined in the proof of Lemma 6.6. The
space B := p−1(W ) is one-dimensional since p1 + q1 ≤ 2n − 1. Let (a, b) ∈ B with a 6= 0 and

b 6= 0. Then U0,1 ∩π0,1
3 (u, v)−1(z) is given by the single point (x, x, z) such that Vx = 〈a, b〉. �

Lemma 6.8. Assume that q2 = p2 = 2n and let z ∈ Γ0,1(Xu, X
v) be general. If neither (L1)

nor (C1) hold, then U0,1 ∩ π0,1
3 (u, v)−1(z) is rationally connected and positive dimensional.

Proof. As for irreducible lines, the case when Xu or Xv are equal to X is trivial, so we assume
q1, p1 ≤ 2n − 2. Let (x, x, z) be a point in U0,1 ∩ π0,1

3 (u, v)−1(z). Then W := Vx ∩ Vz is a
one-dimensional subspace in Vz. Notice that X = Γ0,1(Xu, X

v) by Lemma 6.2 and for z in X
general, Vz ∩ (Ep1 ∪Eq1) = 0. With our assumption, the map p : Ep1 ×Eq1 → C2n is surjective
and not injective. In particular, there exist (a, b) ∈ p−1(W ) such that Vx = 〈a, b〉 = 〈a〉+W .

Conversely, consider all points (a, b) ∈ p−1(W ) such that b ⊥ W and dim(〈a〉 + W ) =
dim(〈b〉 + W ) = 2, and a 6∈ Eq1 , b 6∈ Ep1 . Then since a + b ∈ Vz, b ⊥ W and Vz is isotropic,
we have that a ⊥W . Setting Vx = 〈a, b〉 we get that (x, x, z) ∈ U0,1. This proves that the fiber

over z of π0,1
3 (u, v)|U0,1 is dominated by an open subset of B := {(a, b, w) ∈ p−1(Vz) × Vz | b ⊥

w, a+ b ∈ 〈w〉}.
Let pr2 : Ep1 × Eq1 → Eq1 be the second projection. Since p1 + q1 > 2n, the intersection

Ep1 ∩ Eq1 is positive dimensional and contained in pr2p
−1(〈w〉) for any w ∈ Vz. We claim that

there is no 0 6= w ∈ Vz such that pr2p
−1(〈w〉) ⊂ w⊥. Indeed, this would imply the inclusion

Ep1 ∩Eq1 ⊂ w⊥ and therefore the inclusion w ⊂ Vz ∩ (Ep1 ∩Eq1)⊥. This space is trivial except
for p1 + q1 = 2n + 1 for which 〈w〉 would be uniquely determined. However, by genericity of
z, this w will in general not satisfy the hyperplane condition pr2p

−1(〈w〉) ⊂ w⊥, proving the
claim.

From the claim we deduce that every non-zero w ∈ Vz defines a (p1 + q1 − 2n)-dimensional
affine space w⊥ ∩ pr2p

−1(〈w〉). This implies that B is a locally trivial fibration over Vz with
fiber isomorphic to w⊥ ∩ pr2p

−1(〈w〉), thus it is rational. There exists a birational map

P(B) := {([a, b], [w]) ∈ P(p−1(Vz))× P(Vz) | ω(b, w) = 0, a+ b ∈ 〈w〉} → U0,1 ∩ π0,1
3 (u, v)−1(z),

([a, b], [w]) 7→ ([〈a,w〉], [〈b, w〉], z) which is dominant; by composing with the projection B →
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P(B) we deduce that U0,1 ∩ π0,1
3 (u, v)−1(z) is unirational. Since (Ep1 ∩ Eq1) is at least one-

dimensional, the general fiber of P(B) → P(Vz) is non-empty, and thus P(B) - as well as

U0,1 ∩ π0,1
3 (u, v)−1(z) - is positive dimensional. �

6.3. The case of condition (C1). For lines, condition (C1) holds exactly when ev0,1
3 (u, v) is

generically finite but not birational. More precisely, the following result holds.

Lemma 6.9. If (C1) holds, then Γ1(Xu, X
v) = Γ0,1(Xu, X

v) = X and ev0,1
3 (u, v) is generically

finite of degree 2.

Proof. By the proof of Corollary 3.12 when d = 1, the map ev0,1
(3)(u, v) is birational. Thus, it

is sufficient to prove that π0,1
3 (u, v) is generically finite of degree 2, and by Lemma 3.1 we are

reduced to prove that, for z ∈ X general, U0,1 ∩ π0,1
3 (u, v)−1(z) consists of two points. Then,

the first part of the proof goes as in the proof of Lemma 6.8: in this case the fiber over z of
π0,1

3 (u, v)|U0,1 is {([a, b], w) ∈ P(p−1(Vz))× P(Vz) | b ⊥ w and a ∧ b 6= 0, a+ b ∈ 〈w〉}. We again

need to look at elements 0 6= w ∈ Vz such that pr2p
−1(〈w〉) ⊂ w⊥. This condition is not empty

anymore. In fact, it is a generic degree two hyperplane condition on Vz. Thus, there exist
exactly two lines 〈w〉 and 〈w′〉 that satisfy it. Each of these two lines defines, modulo scalars,
a unique couple (a, b) and (a′, b′), and therefore Vx = 〈a, b〉 and Vx′ = 〈a′, b′〉. We deduce that

U0,1 ∩ π0,1
3 (u, v)−1(z) = {(x, x, z), (x′, x′, z)}.

The fact that Γ1(Xu, X
v) = Γ0,1(Xu, X

v) = X is a consequence of the fact that throughout

the proof, the point z was assumed to be general in X, and we have proved that π0,1
3 (u, v)−1(z) 6=

∅. �

This was the last result needed to prove Theorem 6.1. Now we study the generically finite
degree 2 map above, as well as the similar one appearing for curves of degree two, from the
point of view of quantum K-theory.

7. Non rationally connected cases

In this section we prove positivity in QK(X) when the map evd−1,1
3 is not GRCF (which is,

in cases (C1) and (C2)). The reason why we need to single out these cases is the fact that we

would like to use Corollary 2.9, but we cannot apply Theorem 2.10 since evd−1,1
3 (u, v) is not

GRCF. We prove the following result.

Proposition 7.1 (see Proposition 2.15). The following holds in QK(X):

(1) If (C1) holds, then Ou ?Ov = Ovu − q + qO2n−2,2n.
(2) If (C2) holds, then we have

Op1,p2 ?Oq1,q2 = qOp2+q2−2n,2n
p1+q1,2n

− q2 + q2O2n−2,2n.

Remark 7.2. When (Cd) holds, by Theorems 5.1 and 6.1, fibers of evd3(u, v) is positive di-
mensional. By the projection formula, this implies that the coefficient of qd in [Xu] ? [Xv] is
0 in quantum cohomology. Proposition 7.1 shows that in this case, the maximum power of
q appearing in Ou ? Ov, which is qd, is greater than the maximum power of q appearing in
[Xu] ? [Xv].

To compute the quantum product when (C1) or (C2) holds, we will use Proposition 2.8. Our
strategy is to prove that the computation of the quantum product Ou ? Ov can be essentially
reduced to the computation of the class of OΓd−1(Xu,Xv). So we start with results express-
ing the class of OΓd−1(Xu,Xv) in terms of Schubert classes. For instance, for d = 1, we have
Γd−1(Xu, X

v) = Xv
u, and the following result expresses OXvu in terms of Schubert classes when

(C1) holds.
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Proposition 7.3. Let p ∈ [1, n], Xu = {z ∈ X | Vz ∩Ep 6= 0} and Xv = {z ∈ X | Vz ∩E2n−p 6=
0}.

(1) If p < n, then

Ovu = Op,2n−p + 2

p−1∑
k=1

Ok,2n−k − 2Op−1,2n−p − 3

p−2∑
k=1

Ok,2n−1−k +

p−2∑
k=1

Ok,2n−2−k.

(2) If p = n, then

Ovu = 2

n−1∑
k=1

Ok,2n−k −On−1,n − 3

n−2∑
k=1

Ok,2n−1−k +

n−2∑
k=1

Ok,2n−2−k.

Proof. Let Xw = Xr1,r2 , we compute χY ∩gXw(OY ∩gXw) for Y = Xv
u and use Theorem 2.1. We

claim that the following holds:

χY ∩gXw(OY ∩gXw) =


0 if r1 + r2 < 2n+ 1,
0 if r1 + r2 > 2n+ 1 and r2 ≤ 2n− p,
2 if r1 + r2 = 2n+ 2 and r2 > 2n+ 1− p ,
1 if r1 + r2 = 2n+ 2 and r2 = 2n+ 1− p,
1 if r1 + r2 > 2n+ 2 and r2 > 2n− p.

The result then follows from Corollary 2.2.
We are left to prove the claim. Set Z = Y ∩ gXw. We have

Z = {z ∈ X | Vz ∩ Ep 6= 0 6= Vz ∩ E2n−p, Vz ∩ g.Er1 6= 0 and Vz ⊂ g.Er2}.

First note that if z ∈ Z, then Ep ∩ g.Er2 6= 0, thus we must have r2 + p > 2n. If this condition
is satisfied, we have Vz ⊂ (Ep ∩ g.Er2)⊕ (E2n−p ∩ g.Er2), thus g.Er1 ∩ ((Ep ∩ g.Er2)⊕ (E2n−p ∩
g.Er2)) 6= 0. These subspaces are of dimension r1 and p+ r2− 2n+ 2n− p+ r2− 2n = 2r2− 2n
are in general position in g.Er2 , thus we also have r1 + 2r2− 2n > r2, i.e. r1 + r2 > 2n, proving
the first two cases.

Assume that r1 + r2 ≥ 2n+ 2. Set E = Ep ∩ g.Er2 , F = E2n−p ∩ g.Er2 and L = g.Er1 . Let
z ∈ Z, then Vz = 〈a, b〉 for some a ∈ E \ 0 and b ∈ F \ 0. Furthermore, there exists scalars
λ, µ ∈ C such that λa+µb ∈ L. For z in a dense open subset of Z, we have λ 6= 0 6= µ (otherwise
a or b lies in L). Conversely, if c ∈ L ∩ (E ⊕ F ) has a decomposition c = a + b with a ∈ E \ 0
and b ∈ F \ 0, then Vz = 〈a, b〉 defines a point z ∈ Z as soon as ω(a, b) = 0. This proves that Z
is birational to the following variety

Z ′ = {[c] ∈ P(L ∩ (E ⊕ F )) | c = a+ b, a ∈ E \ 0, b ∈ F \ 0 and ω(a, b) = 0}.

Assume that r1 + r2 ≥ 2n+ 2 and r2 = 2n+ 1− p, then dimE = 1 and E = 〈a〉. We then have
Z ′ = {[c] ∈ P(L∩ (E⊕F )) | ω(c, a) = 0} = P(L∩ (E⊕F )∩E⊥) proving the result in this case.

Finally, assume that r1 + r2 ≥ 2n + 2 and r2 > 2n + 1 − p, then dimE > 1. The condition
c = a+ b with ω(a, b) = 0 defines a quadratic form on P(L∩ (E⊕F )), proving the result in this
case as well. Note that for r1 + r2 = 2n+ 2, we have P(L ∩ (E ⊕ F )) ' P1 so that the quadric
is the union of two points. �

We consider the case d = 2 and assume that (C2) holds, i.e., we have p1 + q2 = 2n = p2 + q1,
p2 − p1 = q2 − q1 ≥ 2, and max(δp, δq) = 1. We may assume p1 + p2 ≤ q1 + q2, the other case
being symmetric. In this case, we have p1 + p2 ≤ 2n− 2, δp = 0, q1 + q2 ≥ 2n+ 2, and δq = 1.
Note that condition (C2) implies the decomposition C2n = Ep1 ⊕ (Ep2 ∩ Eq2)⊕ Eq1 .

Lemma 7.4. If (C2) holds, then

Γ1(Xu, X
v) = {z ∈ X | Vz ∩ (Ep2 ∩ Eq2) 6= 0 6= Vz ∩ (Ep1 + Eq1)}.
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Proof. Let z ∈ Γ1(Xu, X
v). Then there exists x ∈ Xu and y ∈ Xv with Vx ∩ Vy 6= 0 and

Vx ∩ Vy ⊂ Vz ⊂ Vx + Vy. In particular this proves the inclusion from left to right. Conversely,
let z in the right-hand side of the equality. Let a ∈ Vz ∩ (Ep2 ∩ Eq2) and b ∈ Vz ∩ (Ep1 + Eq1)
with a 6= 0 6= b. Since Ep2 ∩ Eq2 ∩ (Ep1 + Eq1) = 0, we have Vz = 〈a, b〉. Write b = bp + bq
with bp ∈ Ep1 and bq ∈ Eq1 . If bp 6= 0 6= bq, then since ω(a, b) = 0 and δp = 0, we have
ω(a, bp) = 0 = ω(a, bq) and setting Vx = 〈a, bp〉 and Vy = 〈a, bq〉, we have x ∈ Xu, y ∈ Xv, and
z lies on the line joining x and y. If bq = 0, then z ∈ Xu and since q1 ≥ p1 + 2, we may choose
c ∈ Eq1 ∩ a⊥ \ 0 so that setting Vy = 〈a, c〉, we have y ∈ Xv, proving the result. Finally, if
bp = 0, then z ∈ Xv. Choose any c ∈ Ep1 \ 0; since δp = 0, setting Vx = 〈a, c〉, we have x ∈ Xu,
proving the result. �

Set A = Ep1 + Eq1 , B = Ep2 ∩ Eq2 , p = dimA, and q = dimB. When (C2) holds,
we have p = p1 + q1, q = p2 + q2 − 2n = 2n − p, and C2n = A ⊕ B = Ep ⊕ Eq. Define
Xλ = {z ∈ X | Vz ∩ Ep 6= 0}, Xµ = {z ∈ X | Vz ∩ Eq 6= 0}, and Xµ

λ = Xλ ∩Xµ.

Lemma 7.5. If (C2) holds, then OΓ1(Xu,Xv) = OXµλ .

Proof. Define Z1 = {([a], [b]) ∈ P(Ep) × P(Eq) | ω(a, b) = 0} and Z0 = {([a], [b]) ∈ P(A) ×
P(B) | ω(a, b) = 0}. We have isomorphisms Z1 → Xµ

λ and Z0 → Γ1(Xu, X
v) given by ([a], [b]) 7→

〈a, b〉.
Define the linear isomorphism ψ : C2n → C2n via

ψ(ek) =

 ek for k ∈ [1, p1]
ek+p2−p1 for k ∈ [p1 + 1, p1 + q1]
ek−q1 for k ∈ [p1 + q1 + 1, 2n].

For t ∈ C define ϕt = t IdC2n + (1 − t)ψ. We have ϕ0(Ep) = A and ϕ0(Eq) = B, while
ϕ1(Ep) = Ep and ϕ1(Eq) = Eq. Define

Z = {([a], [b], t) ∈ P(Ep)× P(Eq)× C | ω(ϕt(a), ϕt(b)) = 0}.

The form ωt(a, b) = ω(ϕt(a), ϕt(b)) induces a bilinear form Ωt : Ep × Eq → C. This form
has maximal rank for t = 1 and rank 2n − (p1 + p2) ≥ 2 for t = 0. Let U ⊂ C be the
open subset defined by U = {t ∈ C | det(ϕt) 6= 0 and Rk(Ωt) ≥ 2}. Note that 0, 1 ∈ U .
Let π : Z → C be the third projection. We have π−1(0) = Z0 and π−1(1) = Z1. We have
a morphism e : Z → X, ([a], [b], t) 7→ 〈ϕt(a), ϕt(b)〉 which restricts to an isomorphism onto its
image on Zt := π−1(t). We therefore only need to prove that the map π−1(U)→ U is flat. Since
Z is defined by a unique non-trivial equation, any irreducible component of Z has dimension
p + q − 2. By Miracle Flatness, we only need to prove that the fibers of π have dimension at
most p+ q − 3 which follows from the fact that Rk(Ωt) ≥ 2. �

Lemma 7.6. We have Γ1(Xv) = {W2 ∈ X | dim(W2 ∩ Eq2) ≥ 1}.

Proof. If W2 ∈ Γ1(Xv), then there exists V2 ∈ Xv such that dim(W2 ∩V2) ≥ 1. Since V2 ⊂ Eq2 ,
we must have dim(W2 ∩ Eq2) ≥ 1. Therefore, Γ1(Xv) ⊆ {W2 ∈ X | dim(W2 ∩ Eq2) ≥ 1}.

For the reverse containment, let W2 ∈ X \Xv such that dim(W2 ∩ Eq2) ≥ 1. Let u ∈ (W2 ∩
Eq2)\0. If W2∩Eq1 = 0, let v ∈ (Eq1 \0)∩〈u〉⊥; otherwise, dim(W2∩Eq1) = dim(W2∩Eq2) = 1
and let v ∈ (Eq2 \W2) ∩ 〈u〉⊥. By construction, dim〈u, v〉 = 2 and 〈u, v〉 ∈ Xv. Moreover,
L = {V2 | dimV2 = 2 and 〈u〉 ⊂ V2 ⊂W2 + 〈v〉} is a line in X connecting W2 and Xv. �

Proof of Proposition 7.1. From Corollary 2.6 and Proposition 2.8 we deduce that

κw,du,v = 〈Ou,Ov,O∨w〉d −
∑
κ

〈Ou,Ov,O∨κ 〉d−1〈Oκ,O∨w〉1.
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Note that 〈Oκ,O∨w〉1 = 0 except for Γ1(Xκ) = Xw. So fixing κ with this property, we get

κw,du,v = 〈Ou,Ov,O∨w〉d −
∑

κ,Γ1(Xκ)=Xw

〈Ou,Ov,O∨κ 〉d−1.

By Corollary 2.12, it suffices to compute κw,du,v for 0 ≤ d ≤ 2. Furthermore, by Theorems 2.10
and 2.11, for any degree r, we have

OΓr(Xu,Xv) =
∑
η

〈Ou,Ov,O∨η 〉rOη.

If (C1) holds, then Γ1(Xu, X
v) = X by Lemma 6.9; if (C2) holds, then Γ2(Xu, X

v) = X by
Corollary 5.9, and OΓ1(Xu,Xv) = OXµλ by Lemma 7.5. The result then follows from Proposi-
tion 7.3 and Lemma 7.6. �

8. Seidel representation

For X smooth and projective, Seidel introduced in [Sei97] a representation of π1(Aut(X))
into the group of invertibles of QH(X)loc where the quantum parameters are inverted. This
representation was computed explicitly in [CMP09] (see also [CP23]). Recently these results
were extended in the quantum K-theory of cominuscule spaces in [BCP23]. We prove that these
results extend to X = IG(2, 2n) for the quantum K-theory QK(X).

Note that π1(Aut(X)) = Z/2Z. This group can be realized as a subgroup of the Weyl group
as follows. Fix G = Sp2n and T ⊂ B ⊂ G a maximal torus and a Borel subgroup. Let W be the
Weyl group associated to (G,T ) and w0 be the longest element for the length induced by B. For
Y projective and homogeneous under G = Sp2n, let PY be the parabolic subgroup containing a
fixed Borel subgroup B such that Y ' G/PY . For any such Y , let wY be the minimal length
representative of w0 in W/WPY . We call Y = G/PY cominuscule if the unipotent radical of PY
is abelian. We have

π1(Aut(X)) 'W comin = {1} ∪ {wY ∈W | Y cominuscule} = {1, wLG(n,2n)}.
We first prove the following geometric result. For u,w ∈W , let dmin(u,w) be the smallest power
of q appearing in the quantum product [Xu] ? [Xw]. By [CMP09], we have [Xw0w] ? [Xu] =
qdmin(u,w)[Xwu].

Theorem 8.1. Let u ∈W , w ∈W comin, then Γdmin(u,w)(Xw0w, X
u) = w−1.Xwu.

This result is a special case of a conjecture stated in [BCP23] (for more recent results on this
topic we refer to [Tar23]). The statement is easily true for w = 1 so let w ∈ W comin \ {1}. We
have Xw = {x ∈ X | Vx ⊂ En} and Xw0w = {x ∈ X | Vx ⊂ En}. We prove the following explicit
result which implies Theorem 8.1. Let Xu = Xp1,p2 := {x ∈ X | Vx ∩ Ep1 6= 0 and Vx ⊂ Ep2}
with p1 < p2 and p1 + p2 6= 2n+ 1.

Proposition 8.2. Let w ∈W comin \ {1} and set d = dmin(u,w), we have:

(1) If p2 ≤ n, then d = 2 and Γd(Xw0w, X
u) = w−1.Xp1+n,p2+n.

(2) If p1 ≤ n < p2, then d = 1 and Γd(Xw0w, X
u) = w−1.Xp2−n,p1+n.

(3) If p1 > n, then d = 0 and Γd(Xw0w, X
u) = w−1.Xp1−n,p2−n.

Proof. Note that we have w−1 = w and that w acts as follows on (ei)i∈[1,2n]:

w(ei) =

{
ei+n for i ≤ n
ei−n for i > n.

Note also that d = dmin(u,w) = min{d | Γd(Xw0w, X
u) 6= ∅}.

(1) Assume p2 ≤ n, note that this implies δp = 0. For e ≤ 1 and for any z ∈ Γe(Xw0w, X
u),

we have Vz ∩ En ∩ Ep2 6= 0. But the condition p2 ≤ n implies the vanishing En ∩ Ep2 = 0
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proving the equality Γe(Xw0w, X
u) = ∅. For z ∈ Γ2(Xw0w, X

u) general, there exists x ∈ Xw0w

and y ∈ Xu such that Vz ⊂ Vx + Vy by Lemma 3.8. In particular Vz ⊂ En ⊕ Ep2 and
Vz ∩ (En ⊕ Ep1) 6= 0. Since w−1.En+p1 = En ⊕ Ep1 and w−1.En+p2 = En ⊕ Ep2 , we get the
inclusion Γ2(Xw0w, X

u) ⊂ w−1.Xwu. Conversely, for z ∈ w−1.Xwu general, then Vz ⊂ En⊕Ep2
and Vz ∩ (En ⊕ Ep1) 6= 0. Pick a basis (a, b) of Vz such that a ∈ Vz ∩ (En ⊕ Ep1). Write
a = a1 +a2 and b = b1 + b2 with a1, b1 ∈ En, a2 ∈ Ep1 and b2 ∈ Ep2 . Then setting Vx = 〈a1, b1〉
and Vy = 〈a2, b2〉, we have x ∈ Xw0w, y ∈ Xu and Vz ⊂ Vx + Vy, proving the result.

(2) Assume p1 ≤ n < p2. If z ∈ Xw0w ∩Xu, then Vz ∩En ∩Ep1 6= 0, but since En ∩Ep1 = 0,
we get Γ0(Xw0w, X

u) = ∅. For z ∈ Γ1(Xw0w, X
u) general, there exists x ∈ Xw0w and y ∈ Xu

such that dim(Vx + Vy) = 3 and Vx ∩ Vy ⊂ Vz ⊂ Vx + Vy. In particular Vz ⊂ En ⊕ Ep1 and
0 6= Vz ∩ Vx ∩ Vy ⊂ Vz ∩ (En ∩Ep2). Since w−1.En+p1 = En ⊕Ep1 and w−1.Ep2−n = En ∩Ep2 ,
we get the inclusion Γ1(Xw0w, X

u) ⊂ w−1.Xwu.
Conversely, for z ∈ w−1.Xwu general, we have Vz ⊂ En⊕Ep1 and Vz ∩ (En ∩Ep2) 6= 0. Pick

a basis (a, b) of Vz such that a ∈ Vz ∩ (En ∩Ep2). Write b = b1 + b2 with b1 ∈ En and b2 ∈ Ep1 .
We have ω(a, b2) = ω(a, b) − ω(a, b1) and since a, b ∈ Vz and a, b1 ∈ En, both terms vanish.
Setting Vx = 〈a, b1〉 and Vy = 〈a, b2〉, we have x ∈ Xw0w, y ∈ Xu, and Vx ∩ Vy ⊂ Vz ⊂ Vx + Vy,
proving the result.

(3) We have Γ0(Xw0w, X
u) = Xu

w0w. An element z ∈ X lies in Xu
w0w if and only if we have

Vz ⊂ En ∩ Ep2 and Vz ∩ (En ∩ Ep1) 6= 0. The result follows since w−1.Ep1−n = En ∩ Ep1 and
w−1.Ep2−n = En ∩ Ep2 . �

Theorem 8.3. Let u ∈W , w ∈W comin, then Ou ?Ow = qdmin(u,w)Owu.

Proof. Note that Ow0w = Ow and that the maps evd3(w0w, u) : Md(Xw0w, X
u)→ Γd(Xw0w, X

u)

and evd−1,1
3 (w0w, u) : Md−1,1(Xw0w, X

u)→ Γd−1,1(Xw0w, X
u) have general fibers which are ei-

ther empty or rationally connected. Moreover, whenever the former map is not birational,
we have Γd(Xw0w, X

u) = Γd−1,1(Xw0w, X
u) and that they have rational singularities (Theo-

rem 2.11). These and Corollary 2.9 imply that the powers of q appearing in Ou?Ow are the same
as those appearing in [Xw0w]? [Xu]. That is to say, Ou ?Ow = qd(Ou ?Ow)d for d = dmin(u,w).
The result then follows from Theorem 8.1 and the fact that Γdmin(u,w)−1,1(Xw0w, X

u) = ∅ since
Γdmin(u,w)−1(Xw0w, X

u) = ∅ by Proposition 8.2. �

9. Chevalley formula

In this section we obtain a quantum Chevalley formula for QK(X) (see Theorem 9.5). We
begin by recalling the classical Chevalley formula.

9.1. Classical Chevalley formula. Proposition 9.1 below is a specialization of [LP07], where
we extend the notation Oa,b by setting

Oa,b =

{
[OXa,b ] 1 ≤ a < b ≤ 2n and a+ b 6= 2n+ 1

0 otherwise.

Proposition 9.1 (Classical Chevalley formula). The product O2n−2,2n ·Oq1,q2 in K(X) is equal
to:

(1) Oq1−1,q2 if q1 = q2 − 1;
(2) Oq1−1,q2 +Oq1,q2−1 −Oq1−1,q2−1 if q1 < q2 − 1 and q1 + q2 6= 2n+ 2, 2n+ 3;
(3) Oq1−1,q2 +Oq1,q2−1−Oq1−1,q2−2−Oq1−2,q2−1 +Oq1−2,q2−2 if q1 < q2− 1 and q1 + q2 =

2n+ 3;
(4) 2 · Oq1−1,q2−1 +Oq1−2,q2 +Oq1,q2−2 − 2 · Oq1−2,q2−1 − 2 · Oq1−1,q2−2 +Oq1−2,q2−2 when

q1 + q2 = 2n+ 2 and q1 6= n;
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(5) 2 · Oq1−1,q2−1 + Oq1−2,q2 − 2 · Oq1−2,q2−1 − Oq1−1,q2−2 + Oq1−2,q2−2 when q1 = n and
q2 = n+ 2.

Proof. We sketch a geometric proof different from the proof in [LP07]. Let Xu = X2n−2,2n and
Xv = Xq1,q2 . Since Ou · Ov=Ovu, we apply Theorem 2.1 to Y := Xv

u. Let g ∈ G be general,
Xw = Xr1,r2 , and Z = Y ∩gXw = Xu∩Xv∩gXw. Assume Z is non-empty, then the dimension
of Xv ∩ gXw must be at least one, which implies

(5) either

{
q1 + r2 ≥ 2n+ 2

q2 + r1 ≥ 2n+ 1
or

{
q1 + r2 ≥ 2n+ 1

q2 + r1 ≥ 2n+ 2
.

Let F1 = Eq1 ∩ gEr2 and F2 = Eq2 ∩ gEr1 . For x ∈ Z general, we have

dim (Vx ∩ (F1 + F2) ∩ E2n−2) = 1 and Vx ∩ F1 ∩ F2 = Vx ∩ F1 ∩ E2n−2 = Vx ∩ F2 ∩ E2n−2 = 0.

Therefore, the vector space Vx is spanned by nonzero vectors v1 ∈ F1 and v2 ∈ F2 such that
v1 + v2 ∈ V := E2n−2 ∩ (F1 + F2) \ (F1 ∪ F2) and ω(v1, v2) = 0. Consider the map given by
addition

p : F1 × F2 → F1 + F2.

Then Z is dominated by

W := {(v1, v2) ∈ p−1(V ) | ω(v1, v2) = 0}.

Note that if dimF1 ≥ 3, then for any v2 ∈ F2 \ F1, we have dim(v2
⊥ ∩ F1) ≥ 2 and(

〈v2〉+ (v2
⊥ ∩ F1)

)
∩ E2n−2 6= 0. This implies that W is a locally trivial fibration over F2 \ F1

with the fiber being an open subset of the set of solutions to a system of linear equations. Hence,
Z is unirational. Similarly, Z is unirational if dimF2 ≥ 3.

Now assume dimFi ≤ 2 for i = 1, 2, which implies q1 + r1 ≤ 2n+ 1. The remaining cases are
as follows.

If q1+r1 = 2n+1, then q2+r2 = 2n+3. This implies q2−q1 = r2−r1 = 1 and min{δq, δr} = 0.
Hence, the condition ω(v1, v2) = 0 is trivial and W is a locally trivial fibration over F2 \F1 with
the fiber being an open subset of the set of solutions to a system of linear equations. Hence, Z
is unirational.

If q1 + r1 ≤ 2n and min{δq, δr} = 0, then F1 ∩ F2 = ∅, which implies that p(W) ∼= W; then
Z is birational to P (E2n−2 ∩ (F1 + F2)) \ (P(F1) ∪ P(F2)).

Otherwise, q1 + q2 = r1 + r2 = q1 + r2 = q2 + r1 = 2n + 2. In this case, the condition
ω(v1, v2) = 0 is non-trivial and Z is birational to the vanishing set of a quadric on P1 ∼=
P (E2n−2 ∩ (F1 + F2)).

In summary, χZ(OZ) = 0 if (5) does not hold; assuming (5), we have

χZ(OZ) =

{
2 if q1 + q2 = r1 + r2 = q1 + r2 = q2 + r1 = 2n+ 2

1 otherwise.

The rest follows from Corollary 2.2. �

9.2. Geometric properties of stable curves meeting a Schubert divisor. Let Γd(X
v) =

ev3(ev−1
2 (Xv)), where ev1, ev2, ev3 : Md → X are the evaluation maps. From now on Xu =

X2n−2,2n will be a Schubert divisor and Xv = Xq1,q2 .

Proposition 9.2. Let Xu be a Schubert divisor. We have

(1) Γd(Xu, X
v) = Γd(X

v) for all d > 0.
(2) Γ0,1(Xu, X

v) = Γ1(Xv
u).

(3) Γd−1,1(Xu, X
v) = Γd(Xu, X

v) = X for all d > 1.
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(4) The general fibers of the maps evd3(u, v) : Md(Xu, X
v)→ Γd(Xu, X

v) and evd−1,1
3 (u, v) :

Md−1,1(Xu, X
v) → Γd−1,1(Xu, X

v) are rationally connected for all d ≥ 0 except for

ev0,1
3 (u, v) when q1 = 2 and q2 = 2n, whose general fibers consist of two points.

Proof. Part (1) follows from the fact that when d > 0, a degree d curve must meet the divisor Xu.
For part (2), note that for a degree 0 curve meeting Xu and Xv is a point in Xu ∩Xv = Xv

u.
For Part (3), note that when d > 1, Γd−1,1(Xu, X

v) ⊇ Γ1,1(Xu, X
v) ⊇ Γ1,1(Xv), where the

last containment follows from the fact that a degree 1 curve must meet Xu; by (1), we have
Γd(Xu, X

v) = Γd(X
v) ⊇ Γ2(Xv). Finally, Γ1,1(Xv) = Γ2(Xv) = X by Lemma 2.5. Notice

that since Xu = X2n,2n−2, (C2) is never satisfied and (C1) is satisfied exactly when q1 = 2 and
q2 = 2n; then part (4) follows from Theorem 2.11. �

Note that dimM1(Xu, X
v) = dimX + 2n − 1 − 1 − codimXv = dimX + 2n − 1 − 1 −

(4n − 2 − q1 − q2 + δq) = dimX − 2n + q1 + q2 − δq, and dim Γ1(Xu, X
v) = dim Γ1(Xv) =

dimX−(4n−2−q2−2n+1) = dimX−2n+1+q2 if q2 ≤ 2n−1, and dim Γ1(Xu, X
v) = dimX

if q2 = 2n. Therefore, as expected, dimM1(Xu, X
v) = dim Γ1(Xu, X

v) if and only if (L1) holds,
i.e. if and only if

(6) q1 = 1, q2 ≤ 2n− 1

Lemma 9.3. Γ1(Xv
u) = Γ1(Xv) unless q1 = 1, in which case Γ1(Xv

u) = {W2 ∈ X | dim(W2 ∩
Eq2 ∩ (E2n−2 ⊕ E1)) ≥ 1}.

Proof. The fact that Γ1(Xv
u) = Γ1(Xv) is a consequence of Lemma 6.2 when q2 6= 2n and q1 > 1

or q2 = 2n and q1 > 2, and of Lemma 6.9 when q2 = 2n and q1 = 2. Therefore, let us assume
that q1 = 1 and q2 ≤ 2n− 1. Note that

Xv
u = {V2 ∈ X | dim(V2 ∩ E2n−2) ≥ 1, E1 ⊂ V2 ⊆ Eq2}.

Set A = {W2 ∈ X | dim(W2 ∩ (E2n−2 ⊕ E1) ∩ Eq2) ≥ 1}. To see that Γ1(Xv
u) ⊆ A, let

W2 ∈ Γ1(Xv
u); then dim(W2 ∩ V2) ≥ 1 for some V2 ∈ Xv

u. Note that V2 = E1 ⊕ (V2 ∩ E2n−2 ∩
Eq2) ⊆ (E2n−2 ⊕ E1) ∩ Eq2 and it follows that Γ1(Xv

u) ⊆ A.
For Γ1(Xv

u) ⊇ A, let W2 ∈ A \Xv
u and w ∈W2 ∩ (E2n−2 ⊕E1)∩Eq2 \ 0. If w ∈ E1, then let

z ∈ E2n−2 ∩Eq2 \ 0, and L = {V2 | 〈w〉 ⊂ V2 ⊂W2 ⊕ 〈z〉} is a line in X containing W2 and the
point 〈w, z〉 is in Xv

u. If w 6∈ E1, we can write w = w1+w2, where w1 ∈ E1 and w2 ∈ E2n−2∩Eq2 .
Since q1 = 1 and q2 ≤ 2n − 1, w1 ⊥ w2. Therefore, L = {V2 | 〈w〉 ⊂ V2 ⊂ W2 + 〈w1, w2〉} is a
line in X containing W2 and the point 〈w1, w2〉 is in Xv

u. �

Remark 9.4. The above lemma implies that [OΓ1(Xvu)] = [Oq2−1,2n] when q1 = 1.

9.3. Quantum Chevalley formula. By Corollary 2.9, Theorem 2.10 and Proposition 9.2,

(Ou ?Ov)d =

{
0 d ≥ 2

Ovu d = 0

We thus only need to compute (Ou ?Ov)d when d = 1. When (C1) holds, i.e. when q1 = 2 and
q2 = 2n, we can use Propositions 7.1 and 9.1 to deduce:

O2n−2,2n ?O2,2n = 2 · O1,2n−1 +O2,2n−2 − 2 · O1,2n−2 − qO2n−1,2n + qO2n−2,2n.

If (L1) holds, i.e. if q1 = 1, q2 ≤ 2n − 1, because of Propositions 9.1, 9.2 and Lemmas 7.6,
9.3, we have

O2n−2,2n ?O1,q2 = O1,q2−1 + qOq2,2n − qOq2−1,2n.

In all other cases, (Ou ?Ov)1 = 0.
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Let us denote by

Oa,b =


[OXa,b ] 1 ≤ a < b ≤ 2n and a < b,

q[OXb,2n ] a = 0, b < 2n,

0 otherwise.

Theorem 9.5 (Quantum Chevalley formula). In QK(X), the product O2n−2,2n ?Oq1,q2 equals:

(1) Oq1−1,q2 if q1 = q2 − 1;
(2) Oq1−1,q2 +Oq1,q2−1 −Oq1−1,q2−1 if q1 < q2 − 1 and q1 + q2 6= 2n+ 2, 2n+ 3;
(3) Oq1−1,q2 +Oq1,q2−1−Oq1−1,q2−2−Oq1−2,q2−1 +Oq1−2,q2−2 if q1 < q2− 1 and q1 + q2 =

2n+ 3;
(4) 2 · Oq1−1,q2−1 +Oq1−2,q2 +Oq1,q2−2 − 2 · Oq1−2,q2−1 − 2 · Oq1−1,q2−2 +Oq1−2,q2−2 when

q1 + q2 = 2n+ 2 and q1 6= 2, n;
(4.1) 2 ·Oq1−1,q2−1 +Oq1,q2−2−2 ·Oq1−1,q2−2−Oq1−2,q2−1 +Oq1−2,q2−2 when q1 = 2, q2 = 2n;

(5) 2·Oq1−1,q2−1+Oq1−2,q2−2·Oq1−2,q2−1−Oq1−1,q2−2+Oq1−2,q2−2 when q1 = n, q2 = n+2.
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