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Improved numerical methods are needed to understand the effect of surfactants in interfacial fluid
mechanics, with various applications including thin films, inkjet printing and ocean-atmosphere in-
teractions. We provide a three-dimensional coupled Volume of Fluid (VoF) and Phase-Field based
numerical framework to simulate the effects of insoluble surfactant-laden flows. The framework is
validated against analytical cases for surfactant transport and Marangoni stresses. We then sys-
tematically investigate a single surfactant-laden rising bubble. The characteristics of a clean bubble
rising in a quiescent liquid are governed by non-dimensional numbers, i.e., the Galileo number Ga,
which compares inertial and viscous effects, and the Bond number Bo, which compares gravitational
and surface tension stresses. The effect of insoluble surfactants introduces an additional indepen-
dent parameter, the Marangoni number Ma, comparing the change in surface tension forces due
to gradients in surfactants concentration with viscous forces. We apply our numerical methods to
investigate the influence of surfactants (through the Marangoni number) on rising bubbles in oth-
erwise quiescent fluids. We observe that an increase in the Marangoni number first decreases the
rise velocity before reaching a limiting value at high Ma. The value of Ma necessary to observe a
significant slowdown increases with Ga. We discuss the associated surfactant accumulation and the
vortical dynamics when a steady state is reached. Finally, we perform three-dimensional simulations
and demonstrate that Marangoni effects can induce a change in the rise trajectory from spiraling to
zigzagging for set values of Bo and Ga, consistent with experimental results.

I. INTRODUCTION

A. General context

Surfactants – a contraction of the term surface-active agents – are found in a broad range of applications owing
to their ability to lower surface tension and facilitate interactions between different phases. Surfactants are found in
everyday products, as they are essential components in detergents and cleaning agents, enabling emulsification and
removal of oils and dirt from surfaces. For example, surfactants are widely used in personal care items and cosmetics
as they contribute to foaming and emulsification properties, while in pharmaceuticals they aid in drug delivery and
solubilization. Also, surfactants play key roles in agriculture as adjuvants in pesticide formulations, and in the oil
and gas industry they are used for enhanced oil recovery. They find application in paints, coatings, textiles, and even
firefighting foams. Additionally, surfactants are integral to biomedical applications and environmental remediation,
which further illustrates their versatile and indispensable use across diverse sectors [1, 2].

Air-liquid interfaces are ubiquitous in both nature and industry [3–5]. Their manifestations range from rising air
bubbles in water, rain droplets, sloshing in tanks, and breaking waves in the ocean to fuel injection and sprays.
Precise characterization of surfactant effects on interfacial processes is an active area of research. Examples of recent
studies include effects such as delayed coalescence of droplets with differing surface tensions [6] and how surfactants
hinder the breakup of droplets during inkjet printing, thus averting the formation of satellite droplets [7]. Separately,
bubbles forming on a liquid surface coalesce more at low surfactant concentrations and less at high concentrations
[8], while also affecting mass transfer at the ocean-atmosphere interface [9]. Spray generation from bursting bubbles
shows non-monotonic behavior as the surfactant concentration is increased [10], which affects the generation of jet
drops [11] as well as film drops [12]. While surfactants effects are known to be important at the scale of the capillary
length (typically mm to cm), the dynamics induced by Marangoni stresses due to surfactant gradients can affect large-
scale phenomena such as waves, as demonstrated by laboratory experiments on spilling breakers [13–15] and plunging
breakers [16]. A historical exposition by Lohse [17] delves into the impact of surfactants on waves, tracing a timeline
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from the seminal observation by Franklin et al. [18] of smooth wakes from ships that release oil to Pockels’ experiments
[19] designed to measure surface tension. The wide range of applications and complexity of processes motivate the
development of versatile numerical methods to accurately quantify the influence of surfactants on interfacial fluid
dynamics.

B. Surfactants effect on bubbles

Manikantan and Squires [20] discuss how surfactants can introduce hidden variables that control fluid flows and
have effects that are still not well understood, and review classic problems such as bubbles rising in quiescent liquids.
Interfaces with high surface tension like air/water, liquid metals/air, and aqueous liquids/non-polar liquids are espe-
cially susceptible to significant interfacial effects even for trace amounts of surface-active contaminants (contaminants
hereafter). In the context of bubbles and drops, the theoretical analyses started by Frumkin [21] and Levich [22] to
investigate contaminant effects assume low-Reynolds-number flow and soluble surfactants. Experiments by Savic [23]
on insoluble surfactant-laden rising bubbles observed an increased drag with contamination.

The increased drag can be explained through a stagnant cap model: surfactants are collected at the back of the
bubble, causing a surface tension gradient localized at the cap boundary where the contaminated part meets the
clean parts of the interface. Hence, the Marangoni stress is tangentially directed towards the top of the bubble.
This stress opposes the motion of the fluid and creates a zone where the tangential velocity vanishes and an immobile
interface is formed, i.e., a stagnant cap. The initial studies provided analytical descriptions [23–25]. For a foundational
understanding of the motion of surface-active bubbles and drops, Harper [26] offers an early comprehensive literature
survey and theoretical analysis.

Complementary to the experimental and theoretical investigations, there have been a wide range of numerical
studies, with different methods, as summarized in Table 1; these papers include discussion of various physical effects
of surfactants on bubble dynamics. There is a rich literature of axisymmetric and three-dimensional simulations of
various limiting cases [27, 28] as well as direct numerical simulations (DNS, solving the Navier-Stokes equations), for
both insoluble and soluble surfactants effects on rising bubbles [29–31], bubble lifetime [32], bursting bubbles [33],
among others. However, a numerical investigation quantifying the effect of insoluble surfactants on a rising unconfined
bubble, including three-dimensional configurations with large bubble deformations and unstable paths, has not been
systematically performed.

C. The need for a versatile numerical framework

The experimental studies provide a picture of coupled interfacial phenomena with Marangoni effects. Interfacial fluid
mechanics problems with surfactants are also dependent on initial conditions (such as deposition) that are sometimes
difficult to control in experiments. The surfactant concentration on interfaces is difficult to measure and generally
experimental data is provided in terms of the bulk concentration of surfactants. Tracking how much surfactant is
adsorbed at the interface is challenging.

Numerical simulations can provide a comprehensive picture of surfactant transport and distribution, and its effect
on hydrodynamics, as a result of the ability to control initial conditions and determine all flow field data. Also,
numerical simulations provide the opportunity to switch on and off some effects, such as adsorption-desorption, to
change from a soluble to an insoluble surfactant or include a thermal gradient.

There are many numerical studies and methods considering Marangoni effects due to thermal gradients, e.g., [34–
37]. However, in the presence of surfactants, the Marangoni effects need to be coupled with surfactant transport on
the interface. Transporting surfactants on a moving interface has been challenging in Eulerian numerical frameworks
and is the focus of the present work.

Recent efforts have investigated how to simulate surfactant-laden flows using different approaches, which we sum-
marize in Table I. The different representations of interfaces provide access to different kinds of physical problems
that can be investigated, such as drop breakup in linear flows, rising bubbles, capillary waves, etc., which have been
approached with boundary integral representations [38–40], Front-Tracking approaches [31, 41–45], Level-Set meth-
ods [29, 46–49], free energy and diffuse interface methods [50–54], Arbitrary Lagrangian-Eulerian (ALE) [55, 56] and
algebraic Volume of Fluid (VoF) interface tracking methods [30, 57] for soluble surfactant-laden situations, as well as
hybrid approaches coupling Level-Set and Front-Tracking [58, 59] and algebraic VoF coupled with a phase field [60].

The Volume of Fluid (VoF) method for interface tracking provides a mass-conserving approach for the numerical
solution of two-phase Navier-Stokes equations. Such a numerical framework has been extended using the continuum
surface stress method to include surfactants effects with a linear equation of state, i.e., the relationship between
surface tension and surfactant concentration [62]. The surfactant transport is achieved by advecting a scalar between
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Interface
Tracking

Dimensions Mesh Citations Statement of Open-
Source

2D Structured uniform mesh Stone and Leal [38]
Boundary
Element

3D Structured uniform mesh Li and Pozrikidis
[39], Feigl et al. [61]

3D Unstructured mesh Yon and Pozrikidis
[40]

2D Structured uniform mesh for veloc-
ity/pressure, Unstructured for in-
terface tracking

Muradoglu and Tryg-
gvason [42]

Front-Tracking 3D Structured uniform mesh for veloc-
ity/pressure, Unstructured for in-
terface tracking

Muradoglu and Tryg-
gvason [31]

3D Structured Adaptive Mesh Refine-
ment (AMR) for velocity/pressure,
Unstructured for interface tracking

De Jesus et al. [43]

Level-Set and
Front-Tracking

3D Structured uniform for veloc-
ity/pressure, Unstructured for
interface tracking

Shin et al. [59]

3D Structured uniform mesh Xu et al. [47]
2D Structured uniform Lakshmanan and

Ehrhard [48]
Level-Set 2D Structured uniform mesh Piedfert et al. [49]

2D Structured uniform mesh Atasi et al. [29]
Arbitrary
Lagrangian-
Eulerian (ALE)

3D Unstructured Adaptive Mesh
Refinement

Dieter-Kissling et al.
[55], Meijer et al. [56]

Phase-Field 2D & 3D Structure Adaptive Mesh
Refinement

Teigen et al. [52, 53],
Soligo et al. [54]

Algebraic VoF 2D & 3D Unstructured Adaptive Mesh
Refinement

Pesci et al.
[30], Antritter et al.
[57]

Algebraic VoF
Phase-Field

3D Structured uniform mesh Cannon et al. [60]

2D & 3D Structured uniform mesh Renardy et al. [62]
Geometric VoF 2D Unstructured Adaptive Mesh

Refinement(AMR)
James and Lowen-
grub [63]

Geometric VoF
Phase-Field

2D & 3D Structured Adaptive Mesh Re-
finement (AMR)

Present-Study Open Source
(GPL)

TABLE I. Summary of representative studies of numerical methods for surfactant-laden flows in interfacial fluid dynamics. All
of these methods solve the surfactants transport equations coupled with Marangoni stresses and the two-phase Navier–Stokes
equations, with different interface tracking and mesh structures. The present work proposes an open-source geometric VoF
method coupled with a Phase-Field representation.

two layers of VoF-tracked interfaces. A VoF-based surfactant-induced Marangoni flow for an axisymmetric geometry,
supporting an arbitrary equation of state for surface tension, was then proposed [63], however, the extension to
three-dimensional, adaptive meshes, with efficient parallelization is complex.

In this context, there is a need for a geometric VoF-based method for three-dimensional two-phase flows, accounting
for surfactant transport and Marangoni stresses. Such a method is well suited for free-surface flows where distinct
phases are separated by a sharp interface [64] and would allow investigating problems involving interface reconnection,
such as jet break-up and breaking waves [65–67]. Moreover, the use of adaptive mesh refinement is essential for
resolving multiscale problems in multiphase flows [67, 68]. Making these methods available within an open-source
framework is also desirable for the community.

In the present study, we address this need, by adapting a method developed by Jain [69] for an interface-confined
scalar represented by a Phase-Field and incorporate it within the geometric VoF framework Basilisk [64, 68]. The
present numerical approach uses volume fractions to represent the interface and solve the momentum equations. The
Phase-Field is only used to transport the surfactants and is computed using a signed distance from the interface
[70]. As a signed distance calculation based on volume fractions adds significant computational cost, we transport the
Phase-Field as described by [71] and recompute the signed distance at a suitable frequency. The Marangoni force is
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implemented based on continuum surface force modeling proposed by Seric et al. [35] and improved by Tripathi and
Sahu [36]. The framework is implemented in Basilisk (Popinet and collaborators [72]), which is an open-source code,
with well-documented test cases, supports adaptive mesh refinement (AMR), is highly scalable, and can be applied
to a wide range of interfacial fluid mechanics problems. Here, we illustrate our methods on the classic problem of
the rising bubble in an otherwise quiescent fluid and investigate the role of surfactants and Marangoni stresses. We
demonstrate the effect of insoluble surfactants on an axisymmetric and 3D bubble rising in a quiescent liquid and
provide quantitative measurements and qualitative features for this complex problem.

D. Outline

Section II presents the numerical framework, the set of equations to be considered, the implementation of surfactant
transport, Marangoni stresses, and several validation cases. Section III illustrates the use of the numerical framework
on the problem of a rising bubble in a quiescent fluid in the presence of surfactants. We present an extensive parameter
sweep for the axisymmetric configuration, demonstrating the slow down of the bubble due to Marangoni effects, and
illustrate the 3D capabilities of the numerical approach by showing how Marangoni effects can induce a transition in
the bubble dynamics from ellipsoidal to zigzag motion. Section IV presents conclusions and prospects.

II. NUMERICAL FRAMEWORK

A. The Navier-Stokes and surfactants transport equations

We solve the three-dimensional, incompressible, two-phase Navier-Stokes equations using the open-source solver
Basilisk [68, 72, 73],

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (µ(∇u+∇uT )) + γκnδs + δm∇sγ (1)

∇ · u = 0, (2)

∂T
∂t

+ u · ∇T = 0, (3)

where u, p, µ, ρ, γ, κ, n and T are, respectively, the velocity, pressure, viscosity, density, surface tension, twice the
mean curvature, unit normal to the interface, n = ∇T /|∇T |, and volume fraction fields. The delta functions used to
locate the interface are computed as δs = |∇T |, δm = Ai/Vc where Ai and Vc are the area of the interface and volume
of the cell respectively [36, 68]. As written, (1) directly incorporates interfacial effects, including Marangoni stresses
from the gradient in surface tension.

The Basilisk solver has been validated extensively for complex interfacial flows, without Marangoni forces, including
drop and bubble break-up, waves, and bursting bubbles [65, 67, 74–79]. It uses the projection method to compute
the velocity and pressure and the geometric VoF method for the evolution of the interface between two immiscible
fluids [80]. The Piecewise Linear Interface Calculation (PLIC) geometric interface and flux reconstruction ensures
a sharp representation of the interface [81]. The surface tension force is modeled by the Continuum Surface Force
(CSF) model [82], and uses generalized height functions for curvature [68]. The surface gradient of interfacial tension
in the last term in Eq. (1) is modeled as proposed by Seric et al. [35].
The time-dependent advective-diffusion equation for insoluble surfactants with surface concentration Γ(x, t) along

a deforming interface is given by (Scriven [83], Stone [84]),

∂Γ

∂t
+∇s · (Γus) + Γ(∇s · n)(u · n) = Ds∇2

sΓ, (4)

where ∇s = (I− nn) · ∇ is the surface gradient operator and Ds is the surfactant diffusivity along the interface.
Multiphase flows can be characterized by a set of non-dimensional numbers. In the case of significant viscous and

capillary effects, we can use the Ohnesorge number, Oh ≡ µ/
√
ρσL, with L a characteristic length (for example the

bubble/drop size or the film thickness) together with viscosity and density ratios between the two phases.
The introduction of surfactant transport and induced stresses leads to additional non-dimensional numbers. The

interfacial surfactant transport on the interface can be characterized by the Péclet number Pes ≡ UL/Ds, with U a
characteristic velocity. The surface tension is altered by surfactants and is generally described by an equation of state
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or isotherm [20]. A linear isotherm relates surface tension as a linear function of surfactant concentration,

γ(x, t) = γ0

(
1− β

Γ(x, t)

Γ0

)
, (5)

where Γ0 is the initial surface concentration and β is a non-dimensional number characterizing the strength of the
surface tension variation with a change in surfactant concentration. Other isotherms can be used within the present
numerical framework, and have been proposed to describe experimental results on surfactants tested in the laboratory,
as summarised by Manikantan and Squires [20]. The effect of variable surface tension introduces another parameter,
often called the Marangoni number. The Marangoni number compares the Marangoni stress (∆γ/L) and viscous
stress (µU/L). Different definitions of the Marangoni numbers have been used, depending on the regimes of interest
[20]. In the present study, we consider moderate to high inertial effects (or Reynolds number), equivalent to low
Oh number regimes, where surfactant transport is dominated by advection, i.e., Pes ≫ 1. We define the Marangoni
number through a characteristic velocity U as Ma = βγ0/(Uµ).

B. Numerical implementation of surfactant transport and Marangoni stresses

We use an approach developed by Jain [69] for interface-confined scalars for diffuse interface/Phase-Field methods,
which was not coupled to a flow solver. For the transport of insoluble surfactants having volumetric concentration c,
an advection-diffusion equation is solved,

∂c

∂t
+∇ · (uc) = ∇ ·

[
Ds

{
∇c− 2(0.5− ϕ)nc

ϵ

}]
, (6)

where c = Γξ and ξ = ϕ(1−ϕ)/ϵ. The second term in the parenthesis on the right-hand side is an anti-diffusion term
that keeps the scalar c concentrated at the interface. The Phase-Field ϕ is computed from the signed distance χ,

ϕ =
1

2

(
1− tanh

{ χ
2ϵ

})
, (7)

where ϵ defines the thickness of the Phase-Field ϕ and is kept at 0.75∆xmin in the present study, where ∆xmin

is the smallest grid size. The signed distance χ is calculated from the volume fractions T by iterating over the
Hamilton-Jacobi equation,

∂χ

∂τ
+ sign(χ0)(|∇χ| − 1) = 0, (8)

χ0 = χ(x, 0), (9)

where τ is a fictitious time and χ0 the initial Level-Set field. The redistancing procedure is adapted from Limare et al.
[70]; see also the method proposed by [85–87]. The volume fraction, signed distance, Phase-Field, and concentration
are illustrated in Fig. 1(a,b,c).

Maintaining the positivity of the scalar concentration c is a requirement that should be consistently met throughout
the simulation. Jain and Mani [88] derived a criterion sufficient to maintain the positivity of the scalar concentration
c at all times. The discretized Eq. (6) is constrained by the positivity criterion ∆x ≤ 2Ds/(|u|max+Ds/ϵ), where ∆x
and |u|max are the grid size and maximum interfacial velocity, respectively. This criterion is, however, prohibitive even
at moderate Péclet numbers Pes = |u|maxL/Ds, where L is the characteristic length. In the present study, we verify
that the magnitude of negative values remains at most four orders less than the maximum surfactant concentration
for the grid-converged solutions. Moreover, the explicit time discretization of the surface diffusion equation constrains
the timestep size as ∆t ≤ (∆x)2/2NdDs, where Nd is the number of dimensions.

As an illustration, the computed fields f(x) in one dimension x, where the interface is at x = 0 between fluid 1 and
fluid 2, are shown in Fig. 1. The volume fraction field in an interfacial cell has a value 0 < T < 1 (shown as a black
dot), with 0 and 1 assigned to the bulk phases. The field χ is the signed distance from the interface f(x) = x line,
shown in blue in Fig. 1, while the Phase-Field ϕ varies according to tanh(χ/(2ϵ))) and the concentration field c varies
as the hyperbolic secant squared, sech2(χ/(2ϵ))) [69]. Computing the signed distance from VoF is an expensive step
[70], especially at high resolutions and for three-dimensional flows. To reduce the computational cost we evaluate Eq.
(7) at a suitable frequency and for intermediate steps we use an accurate conservative Phase-Field/diffuse interface
model (ACDI) proposed by [71],

∂ϕ

∂t
+∇ · (uϕ) = ∇ ·

{
ζ

{
ϵ∇ϕ− 1

4

[
1− tanh2

(
ψ

2ϵ

)]
∇ψ
|∇ψ|

}}
, (10)
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FIG. 1. Schematic representation of the VoF field T , the signed-distance field χ, the Phase-Field ϕ, and the volumetric surfactant
concentration c. The momentum equations use the volume fraction T to compute the fluid properties. The transport of the
surfactant concentration c is achieved by solving for the transport of the Phase-Field ϕ (see Eq. (6)). The signed-distance field
χ is used to reinitialize the Phase-Field ϕ (see Eq. (7)).

where ζ is a velocity scale parameter. For the Phase-Field ϕ to be bounded between 0 and 1, ζ ≥ |u|max [71]. In the
present study we have used, ζ = 1.1|u|max, ψ is an auxiliary signed-distance-like variable ψ = ϵ log[(ϕ+ε)/(1−ϕ+ε)]
where ε = 10−6 defines the thickness of the phase-field ϕ and is kept at 0.75∆xmin. The use of the Phase Field
simplifies the surfactant transport, which involves the calculation of the surface gradient ∇sΓ (see Eq. 4) [69]. The
non-dimensional thickness of the surfactant layer is constant for a given resolution. It is related to the phase-field
representation and remains small compared to the flow scale of interest. Typically for a drop or bubble of size db, the
thickness N = ϵ/db is between 0.03 and 0.0075, and convergence with respect to this thickness is verified when grid
convergence tests are performed.

We note that the dense packing of surfactants molecules may alter the interface viscosity, the interface becoming
“rigid” at high surfactants concentrations. Interface rheology is a major area of research in colloid and surface physics
[1, 89]. In the present work, we have not modeled the rheological effects due to surfactants, so that all processes
related to surfactants are linked to surfactants redistribution and Marangoni stresses.

C. Validation of surfactants transport and Marangoni stresses

Here we report the validation of the numerical framework for the transport of the surfactants at the interface
coupled with Marangoni stresses (Eqs. 1 - 4). First, surfactant transport, Eq. (4), is tested for interface expansion,
advection, and diffusion. Surfactant transport is restricted to the interface and quantitatively agrees with the analytical
solutions. Second, the Marangoni stress calculation is tested against a widely used analytical solution [90]. Also, a
test for topological changes is provided. Each validation case is reproducible using the corresponding documented
source code on the Basilisk website [91].

1. Expansion test

A circle (2D) of diameter db is initialized at the center of the computational square domain of side L. Similarly,
for the verification of the 3D configuration, a sphere is initialized at the center of a cubic computational domain.
The third term on the left-hand side in Eq. (4), Γ(∇s · n)(u · n) accounts for the transport of surfactants due to the

expansion of the interface [84]. For a given velocity field u(r, θ, ϕ) = Krêr, Γ̃ = Γ/Γ0, ũ = u/(Kdb), t̃ = Kt, and
Pes = Kd2b/Ds, Eq. (4) reduces to

∂Γ̃

∂t̃
+ Γ̃(∇̃s · n)(ũ · n) = 1

Pes
∇̃2Γ̃. (11)
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FIG. 2. Normalized surfactant concentration Γ̃ on an expanding circle (2D) and sphere (3D) (sliced to show the cross-section)
having initial diameter db/L = 0.4 (a,d) at times t̃ = 0, (b,e) t̃ = 0.35, and (c,f) t̃ = 0.7. (g) Concentration time evolution in 2D

and 3D, with a comparison of the numerics (symbols) and theory (solid and dashed). (h) Relative error Ẽ = |m(t)−(m(0))|/m(0)
of surfactant mass conservation remains below 10−6, where m(t) =

∫
V
c(t) dv, (i) Relative error on Γ. These results can be

reproduced using the code in [92].

For a uniform surfactant concentration ∇̃sΓ̃ = 0 and Pes > 0, Eq. (11) reduces to

∂Γ̃

∂t̃
+ Γ̃(∇̃s · n)(ũ · n) = 0, (12)

where (∇̃s · n) and (ũ · n) are, respectively, twice the mean curvature and the normal velocity at the interface.

Integrating Eq. (12) gives the analytical expression Γ̃(t̃) = e−t̃ and Γ̃(t̃) = e−2t̃ for a circle (2D) and a sphere (3D)
respectively.

We perform the numerical test for an initial diameter db/L = 0.4, initial uniform concentration Γ̃(0) = 1, Pes = 16
and for three uniform resolutions, i.e., ∆x = db/12.8, db/25.6, db/51.2. Figures 2(a,d), (b,e), (c,f) show the initial
(t̃ = 0), intermediate (t̃ = 0.35), and final (t̃ = 0.7) surfactant concentrations on the expanding circle and sphere for
the highest resolution. Fig. 2(g) shows the time evolution of surfactant concentration for three different resolutions.
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FIG. 3. Surfactant advection test for a rotating circle. Normalized surfactant concentration Γ̃ having initial diameter db/L = 0.4
at (a) tω/(2π) = 0 and (b) tω/(2π) = 1.6 (c) tω/(2π) = 3.2. (d) Concentration time evolution at the zenith of the circle

(θ = π/2) compared to the analytical solution. (e) The relative error on the total mass of surfactants Ẽ = |m(t)−(m(0))|/m(0),
where m(t) =

∫
V
c(t) dv, remains below 2·10−3 for 12 grid points per diameter and decreases to 2·10−6 when the grid resolution

is increased and about 50 grid points per diameter are considered. (f) Relative error on Γ. These results can be reproduced
using the code in [93].

With more than twenty grid points per diameter good agreement with the analytical solution (red curve) is obtained.

Fig. 2(h) shows the evolution with time of the relative error on surfactant mass: Ẽ = |m(t)−m(0)|/m(0) < 10−6. The
total mass is computed by integrating the concentration c over the computational domain volume V ,m(t) =

∫
V
c(t) dv.

Second-order accuracy can be seen in Fig. 2(i) for the error computed relative to the analytical solution with respect
to the number of grid cells per unit diameter db/∆x.

2. Advection-Diffusion test

The positivity criterion, ∆x ≤ 2Ds/(|u|max + Ds/ϵ), or Pec = |u|max∆x/Ds ≤ 1, puts a limit on testing the
advection term in Eq. (4) [69]. Therefore, both advection and diffusion are validated in the subsequent single test.

We consider a circle of size db/L = 0.4, initial surfactant concentration as Γ̃(θ, 0) = 2 + sin θ with the flow field
representing solid body rotation u(r, θ) = dbω/2 eθ. The analytical solution is

Γ̃(θ, t̃) = 2 + sin (t̃+ θ)e−4t̃/Pes (13)

where t̃ = ωt and Pes = d2bω/Ds The test is performed for a Peclet number of Pes = 160, and three uniform resolutions,
i.e., ∆x = db/12.8, db/25.6, db/51.2. Figure 3(a), (b), and (c) show the initial, intermediate, and final (tω/2π = 0.4,
1.6 and 3.2) surfactant concentrations on the rotating circle for the highest resolution. Figure 3(d) shows the time
evolution of surfactant concentration for three different resolutions. Simulations with more than twenty grid points
per circle diameter demonstrate good agreement with the analytical solution (red curve). Figure 3(e) shows the time

evolution of the relative error on surfactant mass, which remains negligible, as Ẽ = |m(t) −m(0)|/m(0) < 10−2 for
the lowest resolution and < 10−5 for the highest resolution. Between first- and second-order convergence can be seen
in Fig. 3(f) for the maximum error on surfactant concentration computed relative to the analytical solution with
respect to the number of grid cells per unit diameter db/∆x.
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FIG. 4. Migration of a droplet in a thermal gradient (no buoyancy) for Re = 0.132, Ca = 0.066, ∆x = db/68. (a) Axisymmetric
droplet interface shown by the white curve, velocity vectors show the direction of migration towards the temperature gradient
shown in color. (b) 3D droplet (sliced in half) showing the velocity vectors, with magnitude color-coded. (c) Migration velocity
as a function of time. The squares show the velocities of axisymmetric and 3D droplets, respectively, converging towards the
theoretical prediction [90] when resolution is increased. These results can be reproduced using the code in [94].

3. Droplet migration in a thermal gradient

We test the Marangoni force calculation by considering a droplet (density and viscosity ratio being unity) migrating
due to a thermal gradient. The test has been used extensively in earlier studies to validate the Marangoni force
calculation [34–36, 95], but does not consider surfactant transport at the interface. The temperature gradient causes
a surface tension variation at the interface of the drop and induces thermo-capillary motion. The surface tension is
considered a function of temperature, T ,

γ = γ0 + γT (T − T0), (14)

where T0 is a reference temperature.
The solution for the migration velocity of a spherical droplet in a constant thermal gradient for small Re ≡ ρlUdb/µl

and Ca = µlU/γ0 is [90]

Udrop = − γT db∇T
µl(6 + 9µb/µl)

. (15)

The numerical test is performed for a droplet of diameter db, domain L = 7.5db, Re = 0.132, Ca = 0.066, and
unity viscosity and density ratios. Fig. 4(a) and (b) show, respectively, axisymmetric, two-dimensional and three-
dimensional droplets migrating in a thermal gradient. The droplet migrates towards warmer regions due to the
non-equilibrium force created by variable surface tension. The vectors show the direction of the local velocity. Fig.
4(c) shows the time evolution of the velocity of the center of mass of the droplet. At the lowest grid resolution of 16
cells per diameter, the migration velocity oscillates around the value predicted by Eq. (15). When the resolution is
increased above 34 cells per droplet diameter, the migration velocity becomes independent of the grid resolution with
converged results between 34 and 68 grid points per diameter and in good agreement with the analytical prediction,
for both the axisymmetric and 3D configurations.

4. Surfactant transport with topological changes due to the Plateau–Rayleigh instability

An important phenomenon in interfacial flows is topological change such as breakup and coalescence. We test the
present framework for mass conservation during topological changes by considering the classical Plateau–Rayleigh
instability occurring in cylindrical jets and threads. We initialize an axisymmetric cylindrical thread having diameter
db, density ρb, and viscosity µb perturbed axially with wavenumber k in a fluid having density ρl and viscosity µl.
The fluid properties are set to ρb/ρl = 1, µb/µl = 100, Oh = µb/

√
ρbγdb = 0.01 and Pes =

√
γ/(kρb)/Ds = 10, where

γ and Ds are, respectively, the surface tension between the fluids and surfactant diffusivity. Such a configuration is
prone to the Plateau–Rayleigh instability.

Figure 5 shows the surfactant concentration and the interface at different times during the Plateau–Rayleigh process.
Figure 5(a) shows the thread initially perturbed 2r(z)/db = 1− 2ap/db cos(kz) with kdb = 0.2π, and ap/db = 0.2. A
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FIG. 5. Time stills showing surfactant concentration (blue-red) and interface (Shown by the thin black line inside the concen-
tration field) of an axisymmetric thread undergoing a Plateau–Rayleigh instability. (a) tωc = 0: the initial condition of the
perturbed thread; (b) tωc = 0.94: thinning of the thread before breakup; (c) tωc = 1.1: surfactants remain at the interface
after the breakup; (d) tω = 1.57: subsequent breakup and satellite droplet formation; (e) tω = 1.6: coalescence of satellite
droplets; (f) tωc = 1.73: oscillations before equilibrium state. (g) surfactant mass budget. During break-up and coalescence,
the surfactants remain on the interface and their total mass is conserved. These results can be reproduced using the code in
[96].

non-uniform surfactant distribution is initialized as Γ̃ = Γ/Γ0 = 1 + Γp/Γ0 cos(kz) with Γp/Γ0 = 0.5. The surface
tension is kept constant throughout as we test only the surfactant transport in a configuration involving topological
changes. The cylindrical fluid thread predictably undergoes the Plateau–Rayleigh instability as kdb/2 < 1. Figures

5(a-f) show the interface and surfactant concentration at different times non-dimensionalized by ωc =
√
γk3/ρb. In

Figure 5(b), tωc = 0.94, a thinning of the thread occurs before the breakup where the surfactants are moved away
from the central part of the thread. The breakup is a topological change where the thread interface is broken into
three parts and shown in Figure 5(c) at tωc = 1.1. The surfactant concentration remains restricted to the interface
without any singular values, and mass is conserved. The mass of the surfactants is calculated on the interfaces of the
initial thread and the individual droplets m̃ =

∫
c(t) dv/

∫
c(0) dv are shown in Figure 5(g), where we observe that the

mass from the thread (red squares) is distributed during the breakup among the top (red circles) and bottom (black
circles) drops as well as in a satellite drop (blue diamonds). In Figure 5(d), tωc = 1.57, the subsequent retraction of
the central droplet further breaks into three droplets (black triangles in Figure 5(g)) before coalescing in Figure 5(e)
at tωc = 1.6, with the redistribution of surfactants being well captured in both cases. Figure 5(f), tωc = 1.73, shows
the oscillations of droplets before reaching equilibrium. The net sum of distributed mass among all the droplets is
shown as a black dashed line in Figure 5(g), demonstrating satisfactory mass conservation.
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(a)

(b)

FIG. 6. (a) Schematic of a rising bubble at the terminal state in the presence of surfactants. The stagnant cap angle θ0 is
measured from the apex of the bubble. Figure adapted from [97]. (b) Still image from the present study, illustrating the bubble
interface (solid black line), the surfactant concentration (blue colors, with dark blue indicating higher concentration), and the
formation of the stagnant cap at the rear of the bubble. The adaptive mesh refinement (AMR) around the bubble is shown
for L11, ∆x = L/211, with the number of cells of ≈ 1.4 × 104 yielding a significantly smaller number of grid points than a
simulation with a uniform grid for which the number of cells would be (211)2 ≈ 4.2× 106.

5. Advantages and limitations of the numerical framework for surfactant transport

Our numerical framework is thus validated for the transport of surfactants, the Marangoni force calculation, and
topological changes. The method is close to second-order accurate and a simple implementation avoids the calculation
of surface derivatives on a moving fluid-fluid interface for surfactant transport. Therefore, it is adaptable to various
other numerical frameworks and efficient in investigating two- and three-dimensional two-phase flow problems. The
anti-diffusion term is added to the surfactant transport equation to maintain a sharp distribution of surfactant
concentration near the interface. The numerical scheme hence requires an increase in resolution with the increase in
Péclet number, which makes it prohibitive for high Péclet regimes. In the next section, we investigate the rise of a
bubble laden with insoluble surfactants as an illustration of the framework capabilities.

III. EFFECT OF SURFACTANTS ON RISING BUBBLES

A. Problem statement

Experimental data summarized by Clift et al. [98] from Grace [99] provide an empirical prediction of a bubble’s
terminal velocity and terminal shape given a set of two independent parameters, Ga = ρldb

√
gdb/µl and Bo = ρlgd

2
b/γ0,

where db is the diameter of the undeformed bubble, which compares viscosity, gravity, and surface tension effects,
respectively. The bubble’s terminal velocity can then be expressed as a non-dimensional number, usually either
expressed as a Reynolds number or a drag coefficient, which is a function of the other two non-dimensional numbers
Bo and Ga.

For small Bo and Ga, slow-moving spherical bubbles (creeping flow), Hadamard [100] and Rybczynski [101] in-
dependently found the solution for the terminal velocity. However, the Hadamard-Rybczynski theory of internal
circulation and terminal velocity is not commonly observed. The explanation provided by Frumkin [21] and Levich
[22] for the absence of internal circulation is due to surfactants, which tend to accumulate at the interface resulting in
a surface-tension gradient that causes tangential stresses that oppose surface motion. Direct Numerical Simulations
(DNS) of a weakly soluble surfactant-laden axisymmetric bubble were carried out by Cuenot et al. [28] confirming
the stagnant cap model and drag reduction, and consistent with the dependence on stagnant cap angle proposed
by Sadhal and Johnson [25]. Later, the effect of adsorption/desorption of soluble surfactants was investigated by
Lakshmanan and Ehrhard [48] for axisymmetric bubbles.

Apart from the terminal velocity and shape, a phenomenon that has been an active area of research is the transition
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Geometry Ga Bo Ma Resolution (db/∆x)

2D Axisymmetric

5 0.5 0− 20 25, 50, 100
10 0.5 0− 20 25, 50, 100
25 0.5 0− 20 25, 50, 100
50 0.5 0− 20 25, 50, 100
100 0.5 0− 20 25, 50, 100

3D 100.25 10 0, 1 25, 50

TABLE II. List of simulations for various Ga, Bo, and Ma.

from a straight to non-straight (either helicoidal or zigzag) path of a rising bubble observed for a certain range of
parameters (e.g., Krishna and Baten [102], Ohl et al. [103], Prosperetti [104]). Mougin and Magnaudet [105] and
Tchoufag et al. [106] consider freely-moving oblate spheroidal bubbles and show that frozen-shaped bubbles with
sufficient oblateness are unstable in certain parameter ranges (then leading to helicoidal or zigzag paths). The DNS
from Mougin and Magnaudet [105] are mostly performed far from the threshold for path instability. These studies
show that the path instability may arise in ranges of parameters where the wake alone is still stable (for parameters
far from threshold values, the wake is indeed also unstable). Further direct numerical simulations and analysis by
Cano-Lozano et al. [107], Bonnefis [108] and Bonnefis et al. [109] have characterized the region of parameters with
stable and unstable paths in terms of the Bond and Galileo numbers, discussing thresholds for instability in the path,
as well as frequency of oscillations for both deformable and frozen interfaces. Subsequently, Herrada and Eggers [110]
performed global linear stability analyses of freely deformable bubbles in regimes relevant to air bubbles in water.

In the present study, we explore the effect of surfactants on a rising bubble in both axisymmetric and three-
dimensional configurations. Figure 6(a) sketches the qualitative features of a rising bubble laden with insoluble
surfactants. The surface-restricted transport concentrates the surfactants at the rear of the bubble and creates a
gradient of surface tension resulting in Marangoni forces in the direction of this gradient ∇sγ, slowing down the
bubble.

The effect of surfactants transported along the interface therefore introduces a non-dimensional parameter, the
Marangoni number, comparing surface tension gradient effects and surfactant advection. Here we consider the char-
acteristic velocity

√
gdb and define Ma = βγ0/

√
gdbµl, where β is the Gibbs elasticity. The Gibbs elasticity is related

to the surfactant isotherm provided in Eq. (5). Next, using our numerical framework we explore the role of Ma on
the bubble rise velocity and demonstrate that several classical results can be retrieved and quantified.

B. Approach: Direct Numerical Simulations

We perform 3D and axisymmetric DNS of a single buoyant bubble (subscript b) of undeformed diameter db in a
denser quiescent liquid (subscript l). The domain uses periodic boundary conditions and is of size L = 20db. The
computational domain is resolved using adaptive mesh refinement (as illustrated in Figure 6(b)) by having 25-100
grid cells per diameter of the bubble, with the high-resolution grid being focused on the bubble interface and the
boundary layer around it. The chosen adaptivity criterion allows us to properly resolve the influence of the bubble’s
wake on its dynamics while making sure that given the periodic boundary conditions, the bubble is not influenced by
the previous wake.

Three different resolutions are considered, with the smallest grid size ∆x being L9 with ∆x ≡ L/29 ≡ db/25, L10
with ∆x ≡ L/210 ≡ db/50, and L11 with ∆x ≡ L/211 ≡ db/100. Figure 6(b) shows a snapshot from one simulation,
where the bubble interface is shown by the solid black curve, and illustrates the adaptive grid and the formation of
the stagnant cap, where the surfactants (in color, with red regions corresponding to high surfactant concentration
and blue regions to low concentration) are concentrated at the bottom of the bubble. The adaptive mesh refinement
(AMR) around the bubble shown for L11 ∆x = L/211 keeps computational cost low, as our simulations at L11 involve
≈ 1.4 × 104 grid points in 2D (axisymmetric) and ≈ 4 × 106 in 3D. Comparing such resolution on the bubble to a
uniformly-refined domain, the number of cells would be (211)2 ≈ 4.2×106 and (211)3 ≈ 8.6×109 for 2D (axisymmetric)
and 3D, respectively, demonstrating the interest of AMR for such flows. Grid convergence is achieved as demonstrated
in Appendix A.

We consider the case where surfactant transport is convection-dominated, so that the Péclet number is large; here
Pes ≡ db

√
gdb/Ds = 100 (using

√
gdb as the characteristic advection velocity). We consider large density and viscosity

ratios ρl/ρb = 1000 and µl/µb = 100. We limit the axisymmetric simulations in Table II to the region where the rising
bubble (without surfactants) remains spheroidal and the path is rectilinear, as observed by Cano-Lozano et al. [107].
Three-dimensional simulations consider cases showing helicoidal and zigzag trajectories as discussed in the numerical
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(a) (b)

(c) (d)

FIG. 7. Bubble shape, dynamics, and surfactant concentration at steady (terminal velocity) state for Ga = 100 and Bo = 0.5,
for a clean bubble (a) Ma = 0, and increasing contamination so that (b) Ma = 0.2, (c) Ma = 2, and (d) Ma = 20. The thick
red curve shows the bubble’s (sharp) interface (obtained through geometric VoF reconstruction). Flow around the bubble is
visualized through the streamlines (blue-red) in the reference frame of the bubble, shown with lines and arrows; vorticity is
colored black-green-white. Surfactant concentration is colored black-white (and localized at the interface). The addition of
surfactants shows the immobilization of the interface with increasing Ma number. The streamlines show the structure of the
bubble’s wake. Examining the magnitude of the velocity inside the bubble confirms the reduction of the internal circulation.

work from Cano-Lozano et al. [107] as well as in the experiments from Tagawa et al. [111].

As discussed above, we consider a linear isotherm, Eq. (5). Experimental observations have shown that the
maximum reduction in surface tension achieved is surfactant-specific [112], with the maximum packing concentration
of surfactants limiting a further decrease in the surface tension to γ∞/γ0 ≈ 0.2−0.6 [16, 113]. In the present study, the
transport of surfactants is restricted to the interface and no desorption and adsorption are considered. A minimum
threshold value of surface tension has been used in independent numerical studies by [32, 114] to avoid reaching
negative values. In the present study, we found that a sharp threshold value produces a surface tension gradient that
is always grid dependent. Therefore, we consider a smooth isotherm γ(x, t) = γ0(1− tanh[βΓ(x, t)/Γ0]) that behaves
as Eq. (5) for βΓ(x, t)/Γ0 → 0 and approaches zero as βΓ(x, t)/Γ0 → ∞. We have verified that this isotherm behaves
as Eq. (5), remains grid independent, and does not affect the bubble rise terminal velocity and trajectory.
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FIG. 8. Interfacial velocity in the reference frame of the bubble for Ga = 100 and Bo = 0.5 at steady (terminal) state

t
√

g/db = 5 as a function of the polar angle θ measured from the apex of the bubble. (a) Ma = 0 (b) Ma = 0.2 (c) Ma
= 2 (d) Ma = 20. The tangential component us/ub (black) and normal un/ub (blue) of the bubble are shown. The normal

component is zero as there is no flow across the bubble. The normalized surfactant concentration Γ̃ = Γ/Γ0 is shown in red,
with the corresponding axis on the right. The tangential velocity vanishes at the stagnant cap angle θ0. The stagnant cap
angle corresponds to the vanishing tangential velocity and is θ0 = π for a clean bubble. The stagnant cap angle decreases as
the Marangoni number is increased, and also corresponds to the maximum surfactant concentration. The presence of a small
concentration of Γ below the stagnant cap angle θ < θ0 is caused by the non-zero surface diffusivity of surfactants Ds > 0.

C. Effect of the Marangoni number on the terminal axisymmetric rise velocity

We now present a systematic study of axisymmetric bubbles rising in clean and contaminated conditions, i.e.,
surfactants are present at the interface, for a wide range of non-dimensional parameters, as summarized in Table 2,
varying Ga from 5 to 100 and keeping Bo= 0.5 while Ma varies from 0 (clean) to 20. Figure 7 shows the terminal
state from the axisymmetric simulations of a rising bubble at various Ma for Ga = 100 and Bo = 0.5 and illustrates
the effect of surfactants and Marangoni stresses on rising bubbles. The streamlines and vorticity field are plotted
from the reference frame of the rising bubble and illustrate the flow structure, while the surfactant concentration is
also shown. The effect of increasing the Ma number is remarkable in several aspects.

The clean bubble corresponding to Ma = 0 is shown in Figure 7(a). We observe that the high vorticity region is
inside the bubble due to the internal circulation of lower-viscosity gas driven by the liquid outside and streamlines
show that the flow is qualitatively similar to a potential flow outside the bubble.

The other snapshots (Figure 7b,c,d) show, for increasing Marangoni numbers, the flow features when the terminal
velocity is reached once surfactants have been introduced. Figure 7(b) shows Ma = 0.2, with surfactants concentrated
at the rear of the bubble and a stagnant cap formed at the rear of the bubble due to the surface immobilization, itself
a consequence of the Marangoni force acting in the direction opposite to the surfactants flow. The effect of surfactants
is therefore similar to a no-slip condition, which arises at the stagnant cap and a flow separation can be seen from
the ends of the stagnant cap. The streamlines show that a standing eddy starts to form behind the bubble. As the
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FIG. 9. (a,b) Evolution of the bubble rise velocity as a function of time for Bo = 0.5 and (a) Ga = 5, (b) Ga = 100 for a
grid resolution ∆x = db/50. The Ma number increases from 0 (clean bubble) to 2 from blue to red. The terminal velocity
of the bubble decreases with an increase in Ma, while the reduction of the rise speed saturates at high Ma. (c) Effect of the
Marangoni number on the terminal velocity, normalized by the terminal velocity in the clean case ub(∞)/uc

b(∞). Marangoni
effects start to be important for smaller values of Ma for smaller Ga. All curves saturate for Ma > 10. (d) Normalized drag
coefficient (CD −Crigid)/(Crigid −Cclean) as a function of the stagnant cap angle, which decreases with Ma. The clean bubble
has θ0 = π and large surfactant effects (high Ma) lead to θ0 = 0, which corresponds to the rigid sphere case. Numerical data
are compared to the theoretical curve from Sadhal and Johnson [25] (black line). Inset shows the variation of the stagnant cap
angle with an increase of the Marangoni number. The reduction of rise velocity plateaus as θ0 → 0.

Marangoni number increases from 0.2 to 2 (Figure 7(c,d)), the stagnant cap and standing eddy expand, and there is
a change in the bubble shape, which gets more spherical. In the figure panels, the streamlines are colored with the
magnitude of velocity, which confirms the reduction in internal circulation as the surface is entirely immobilized due
to the Marangoni force.

Figure 8 shows the interfacial velocity in the reference frame of the bubble, for the same cases as in Figure 7, as a
function of the polar angle θ measured from the apex of the bubble (Figure 6(a)). The velocity is decomposed into
a normal component and a tangential component (the normal component being 0 in the frame of reference of the
bubble). In the case without surfactants (Figure 8a, Ma=0), the interfacial velocity’s tangential component increases
and reaches a maximum around a polar angle θ = π/2 and then decreases to zero at the bottom point of the bubble,
which is the stagnation point for a clean bubble. These features are qualitatively consistent with the potential flow
solution. The stagnant cap angle for this case is thus θ0 = π.

As Ma increases, e.g., Ma= 0.2 in Figure 8(b), the tangential component of the bubble velocity goes to zero before
the bottom point of the bubble, so that the stagnant cap angle is 3π/4 < θ0 < π, and reaches π/2 < θ0 < 3π/4 for
Ma = 2 (Figure 7(c) and Figure 8(c)) and θ0 ≈ 0 for Ma = 20 (Figure 7(d) and Figure 8(d)) where the stagnant
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cap covers a larger surface area of the bubble and, correspondingly, the surface is immobilized. These effects produce
stronger standing eddies in the wake of the bubble and increase the drag and hence further decrease the rise velocity.
Also, the shape of the bubble is changed from oblate to spherical as Ma is increased. The stagnant cap angle θ0
corresponds to the location where the tangential velocity us reaches zero. For θ > θ0 the surfactants accumulate, as
indicated by the red dashed line in Figure 8(b-d), which shows the surfactant concentration as a function of θ. The
presence of surfactants for θ < θ0 is due to the competition between the diffusive transport and advective transport,
i.e., Ds |∇Γ| > usΓ or Pes = usdb/Ds < db |∇Γ| /Γ. As Pes → ∞, the surfactant concentration at the stagnant cap
angle Γ(θ0) tends to zero.

The clean bubble case Ma = 0 reaches a terminal velocity ucb(∞), which is reduced when surfactants are introduced
and as the strength of the Marangoni stresses is increased (increasing Ma). Figure 9 shows the time evolution of the
rise velocity normalized by the terminal velocity of the clean bubble, ub(t)/(u

c
b(∞)), for (a) Ga = 5 and (b) Ga = 100

with Bo = 0.5 and increasing Marangoni numbers. Similar trends are observed for all Ga and Bo tested, and results
are grid converged as demonstrated in Appendix A. Increasing Ma leads to a decrease in the rise velocity at all times,
and the transient regime is longer when the Marangoni number Ma is increased. The transient regime is affected by
the transport of the surfactants on the interface of the bubble, and in contaminated cases, the terminal velocity is
only achieved once the surfactant concentration along the bubble has reached a steady state (e.g., see Figure 7). The
terminal rise velocity for both values of Ga decreases as Ma is increased, as seen in Figures 9a and 9b. A larger Ma is
required for Ga = 100 to reach a similar reduction in velocity, as a higher Marangoni force is required to counteract
the force of buoyancy. At sufficiently high Ma, the reduction saturates, with a similar reduction in velocity for Ma=10
and 20 for all Ga.

The change in the terminal velocity, normalized by the terminal velocity of a clean bubble ub(∞)/ucb(∞), with
increasing Ma for a range of Ga = 5−100 (and Bo = 0.5) is reported in Figure 9(c). The sensitivity to the Marangoni
number on the terminal velocity decreases as the Galileo number is increased, in the sense that a higher Ma is necessary
to start observing a decrease in rise velocity. For example, we observe a reduction of 20% in rise velocity at Ma=0.1
for Ga=5, while Ma=1 is necessary at Ga=50. However, in all cases, a decrease in rise velocity is observed for Ma > 1,
and the reduction in rise velocity plateaus for Ma > 5. The rise velocity reduction for Ma ≫ 1 increases slightly from
about 50% to 60% when increasing Ga. The transition from a clean to completely contaminated terminal rise velocity
occurs over a very sharp gradient in Ma number at high Ga while a smooth transition is observed at low Ga.

The behavior described in Figure 9c when increasing the Marangoni number is in good agreement with the obser-
vations reported in experiments by Bel Fdhila and Duineveld [27], where a plot similar to ours is presented with the
concentration of surfactants used for the x-axis instead of the Ma number. A quantitative comparison of the effect of
surfactants on the rise velocity with experimental data is challenging because we would need to be able to link the
bulk concentration reported experimentally to the bubble surface concentration (which is difficult to measure), while
also requiring experimental data on the specific isotherm from the experiment (the isotherm being surfactant-specific;
see the discussion in Manikantan and Squires [20]). Indeed, the details of the curve shown in figure 9c are expected
to be sensitive to the details of the surface isotherm, which vary with the type of surfactants. However, the general
behavior of retardation of rise velocity is consistent.

Next, a normalized drag coefficient is defined as C̃D = (CD − Crigid)/(Crigid − Cclean), where Crigid and Cclean

are the drag coefficients for the bubble having stagnant cap angle θ0 = 0 and θ0 = π/2 respectively (clean and
completely contaminated cases) and the standard drag coefficient is calculated from the terminal rise velocity as
CD = 4gdb/(3(ub(∞))2). The corresponding results for Ga = 5 and Ga = 100 are shown in Figure 9(d). For high Ma,
the stagnant cap angle is close to zero, the bubble has a completely immobilized interface, and the drag coefficient
corresponds to that of a rigid sphere. Similarly, for low Ma, the interface is mobile and the drag coefficient corresponds
to the one from a clean bubble. The inset in Figure 9(d) shows the variation of the stagnant cap angle θ0 as the
Marangoni number increases from Ga = 5 to 100. This provides an effective way to translate the Marangoni number
into the stagnant cap angle (for different Ga numbers) and finally to the drag coefficient C̃D.

Even though the equivalent Reynolds number is not necessarily low, the dependence of the drag coefficient as a
function of the stagnant cap angle follows a trend predicted for creeping flows by Sadhal and Johnson [25]. Other
independent numerical studies by Cuenot et al. [28] and Kentheswaran et al. [97] have found similar trends for drag
coefficient as a function of stagnant cap angle θ0. This suggests that a simple parameterization for the drag coefficient
(or reduction in rise speed) could be proposed as a function of the Marangoni number Ma.

D. Three-dimensional motion of bubbles: spiral and zigzag trajectories

Three-dimensional simulations of surfactant-laden bubbles are necessary to explore the transitions from rectilinear
(straight path) to complex paths (helicoidal or zigzag motion), with implications for applications involving large
bubbles in contaminated water (at the ocean–atmosphere interface or in bubble column reactors for example).
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FIG. 10. Bubble trajectory and associated snapshots showing the bubble shape and surrounding flow for Ga = 100.25 and
Bo = 10; in the clean configuration Ma = 0. (a) Trajectory evolution, for t

√
g/db = 0 − 83. The streamlines calculated from

the reference frame of the bubble are shown around the bubble in (b-g) at different time instants. The clean bubble follows a
spiraling trajectory.

Investigations using numerical simulations complement experimental studies [111], allowing to change the surfactant
isotherm, surfactant concentration, and systematically vary the different controlling parameters. Such systematic
studies could help better understand the various transitions between straight, zigzag, and helical paths, as well as
the mechanisms behind each dynamical regime. We demonstrate here the capabilities of our numerical framework in
performing such three-dimensional simulations of surfactant-laden bubbles rising in a quiescent fluid.

We consider three-dimensional simulations for a set of parameters from Cano-Lozano et al. [107] where path in-
stability of a rising bubble is observed in clean conditions: Ga = 100.25, Bo = 10, and the bubble follows a spiral
trajectory under clean conditions. We use adaptive mesh refinement with a number of grid points per diameter of 50
(level of refinement 10), so that the main properties of the trajectory (type of path, frequency of oscillation, terminal
rise velocity) is expected to be grid converged (see discussion in Cano-Lozano et al. [107] and axisymmetric results
for the terminal velocity in the appendix). The trajectories, oscillation frequency, and the rise velocity in the clean
case are comparable to those reported in Cano-Lozano et al. [107].

Figure 10(a) shows the bubble trajectory for the clean case (i.e., Ma = 0). Figure 10(b-g) show the bubble interface

and streamlines for one circular cycle 70 ≤ t
√
g/db ≤ 80. The bubble starts rising and attains an oblate shape (b)

with a recirculating wake at the rear of the bubble. The recirculating wake is observed until the start of the spiraling
motion i.e., 0 < t

√
g/db ⪅ 40 (b), with a change in the structure of the streamlines once the spiraling motion is in

progress (see c d, e, f, g) for times after t
√
g/db ⪆ 60. Throughout these times, the bubble oscillates as it rises on a

helicoidal path. The wake presents mostly open streamlines during the helicoidal oscillations. Fig. 10(b-g) show the
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FIG. 11. Bubble trajectory and associated snapshots showing the bubble shape and surrounding flow for Ga = 100.25, Bo = 10;
in the contaminated configuration Ma = 1. (a) Trajectory evolution, for t

√
g/db = 0 − 90. The streamlines calculated from

the reference frame of the bubble are shown around the bubble in (b-g) at different time instants. The contaminated bubble
follows a zig-zaging trajectory.

bubble interface and streamlines for one circular cycle 70 ≤ t
√
g/db ≤ 80.

Figure 11(a) shows the bubble trajectory for the contaminated case, here increasing the Marangoni number to
Ma = 1. Figures 11(b-g) show the streamlines and the bubble interface along the trajectory. When surfactant
effects are introduced, we observe a transition in the trajectory from spiral to zigzag, together with a modification
of the oscillation frequency. Similarly to the clean case, the bubble attains an oblate shape (b) with a recirculating
wake forming behind the bubble before the oscillation start. As oscillations start, the wake structure evolves with a
recirculating cell appearing regularly (d, e, g) and a wake that appears stronger than in the clean case (longer lived
streamlines). The path is now characterized by zig-zag oscillations. During the zigzag oscillations the relative bubble
deformation is weaker as compared to the clean case.

We note that a similar transition from spiral to zigzag path has also been observed by Tagawa et al. [111] for
experiments performed in water, with a higher Ga number (their experiment was conducted at Ga = 280 and
Bo = 0.5) when they increased the surfactant concentration in the experiments. These comparisons suggest that
surfactant effects at relatively high Ga and various Bo introduce a change in the path, from spiral to zigzag trajectories.
That behavior might be relatively generic since it was observed using a linear isotherm in our numerical configuration
while the surfactants used in Tagawa et al. [111] are 1-Pentenol and Triton X-100.

The results call for a systematic three-dimensional study of the role of the Marangoni number on bubble trajectories
for various range of Ga and Bo numbers, as well as a discussion on the role of the specific surfactant isotherm.
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IV. CONCLUSION

The present study provides a numerical framework to simulate insoluble surfactant-laden 2D and 3D interfacial
flows. We provide a hybrid method in which the momentum and surfactant transport equations, respectively, use
the VoF and Phase-Field representation of the interface. The surfactant transport and Marangoni force calculation
are tested against standard cases. The method conserves the mass of the surfactants and can be used with arbi-
trary interfacial isotherms or equations of state for the variation of surface tension. We also demonstrate that the
method can handle surfactant transport with topological changes produced by the Plateau–Rayleigh instability. The
implementation supports parallel computing and adaptive mesh refinement, is entirely open-source, and scripts are
provided to reproduce the test cases and results. The surfactant transport equation in the present framework requires
high resolution as the surface Péclet number increases and cannot be applied to strictly advective transport. Despite
these limitations, the method can be applied to study various interfacial flows, such as drop and bubble dynamics,
waves, or thin film motions.

In the present work, we apply the numerical framework for the case of surfactant-laden rising bubbles, considering
an idealized linear isotherm. The strength of the surfactant effects is then determined by the Marangoni number,
and the behavior when increasing the Marangoni number is akin to increasing the concentration of surfactants in
experiments. We retrieve the qualitative and quantitative features of the effect of surfactants previously described
in the literature, theoretically and experimentally. In the axisymmetric simulations, as the Marangoni number is
increased, we observe the formation of a stagnant cap and immobilization of the interface, as well as the change of
the bubble geometry to a more spherical shape at high Marangoni number. As a result, we observe and characterize
the decrease of the terminal velocity as a function of Marangoni number. The slowing down of the rise velocity can
be summarized in terms of the variation of the drag coefficient as a function of the stagnant cap angle and good
agreement is observed when compared to the theoretical expression derived by Sadhal and Johnson [25] for creeping
flow, even though our simulations are performed at relatively high Reynolds or Galileo numbers. This suggests that
by parameterizing the dependence of the stagnant cap angle on the Marangoni number, a prediction for the drag
coefficient of the bubble in the presence of surfactants for a wide range of conditions should be possible.

We also perform three-dimensional simulations of rising bubbles in the presence of surfactants. We consider con-
ditions studied by Cano-Lozano et al. [107] of a bubble, with a clean interface, which follows a helicoidal trajectory.
In the presence of surfactants, i.e., for a finite Marangoni number, we obtain a change in the bubble trajectory from
helicoidal to zigzag. Such observations are in agreement with the experimental study by Tagawa et al. [111] for a
similar range of parameters. Further analysis of surfactants affecting the path instability is of great interest [110]
and we believe the present open-source numerical framework will be beneficial to the community. Finally, the present
computational framework could be used to explore the role of various surfactant isotherms and compare in detail
against experimental work with measurements of specific surfactant isotherms, to quantitatively link the Marangoni
number and the experimental conditions, as discussed and suggested in Erinin et al. [16] and Lohse [17].
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Appendix A: Independence of the terminal rise velocity from the grid size

We verify the accuracy of the rise velocity of the axisymmetric bubble with respect to the grid size. Simulations at
increasing levels of resolution, corresponding to an increasing number of grid points per bubble diameter are performed.
Figure 12(a,b) shows the normalized rise velocities of the bubble for Ga = 5, 100, Bo = 0.5. Three different maximum
level of refinement resolutions are used with adaptive mesh refinement, L9≡ db/∆x = 25, L10≡ db/∆x = 50,
L11≡ db/∆x = 100. The velocity is grid converged for Ga = 5 between the resolution L9 and L10. As the Ga
number is increased the resolution requirement increases (as the boundary layer is thinner). Fig. 12(b) shows the
grid convergence for the highest Ga = 100, between L10 and L11. The maximum level of refinement L10 is therefore
a resolution where all the simulations terminal rise velocity show convergence. Such grid converged resolution is used
for the analysis in the present study.
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FIG. 12. Grid convergence for the rise velocity ub, normalized by the terminal rise velocity of a clean bubble uc
b(∞), for two

sets of Ga, Bo numbers, and increasing Ma number. (a) Ga = 5, Bo = 0.5 (b) Ga = 100, Bo = 0.5. In each case circles indicate
the lower resolution (in a, L9≡ db/∆x = 25; while in b L10≡ db/∆x = 50) and solid line indicates the higher resolution (a
L10≡ db/∆x = 50, b L11≡ db/∆x = 100). The terminal rise velocity is grid independent in both cases. Similar conclusions are
met with the other sets of parameters considered in the paper so that terminal rise velocity is grid converged at L10.


