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ABSTRACT The importance of stored streaming video for current Internet traffic is undeniable, even in
the context of satellite communications (SATCOM). Therefore, Internet service providers aim to deliver
the highest quality of experience to their end users, although they are not able to assess it directly. Some
machine learning techniques proposed in the literature have demonstrated their ability to predict the quality
of experience based on traffic data analysis. However, these models cannot be directly applied in a SATCOM
context without considering the specific characteristics of satellite links. Furthermore, some of them may
not be suitable for real-time use.
In this study, we monitored over 2,400 YouTube video sessions over an emulated satellite network to develop
models capable of predicting the initial delay, played resolution, and stalling events. The collected dataset
is available as an open source to the research community. The primary objective of this research is to
provide a functional model for real-time applications. To achieve this, we reduced the required feature set to
minimize computation time and resources, enabling a practical real-time implementation of the model while
assessing its feasibility. We show that we successfully achieved a substantial reduction in the number of
features while also observing a relative improvement in prediction. Our results yield prediction performance
comparable to that of other studies on terrestrial networks. Using the reduced feature set, we present a real-
time implementation and confirm the real-time viability of our work.

INDEX TERMS Deep Learning, HTTPAdaptiveVideo Streaming,Machine Learning, NetworkMonitoring,
QoE, SATCOM.

I. INTRODUCTION

The Sandvine report of 2020 [1] revealed that video streaming
plays an important role in today’s internet, by representing
more than 57% of global traffic share. This report looked
specifically at satellite traffic as well and reported that video
streaming also represents a major part of it. Specifically,
YouTube represents more than 16% of the satellite traffic
share and Netflix more than 9%. Therefore, the Quality of
Experience (QoE) of video streaming application is important
for network operators and, consequently, is widely studied in
the literature [2].

One of the main challenges for Internet Service Providers
(ISPs) is to provide the best QoE to end users. Nevertheless,
QoE evaluation is restricted to end user applications and is
not visible to ISPs, which can access only to Quality of
Service (QoS) metrics. Additionally, the encryption of most
today’s traffic prevents the IPSs from using Deep-Packet-

Inspection (DPI). Several previous studies have provided
methods and approaches to predict QoE of streaming video
in real time, based on QoS information. Nevertheless, to the
best of our knowledge, no studies have been conducted on
GeoSynchronous Orbit (GSO) satellite links.

GSO satellite links are an essential part of today’s global
connectivity, providing connections to isolated areas that lack
communication infrastructure. Satellite networks also pro-
vide a vital solution for emergency communications, disaster-
stricken areas, such as those affected by natural disasters or
war, and earth and global warming observations [3]. Because
of the altitude of the satellite, connections over GSO satellites
suffer from a high latency, with a round-trip time (RTT)
over the satellite network of about 600ms. Therefore, it is
impossible to directly apply existing QoE predictive models
to satellite networks. This disparity stems from the absence
of terrestrial equivalents for the entire physical and access
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layers within the SATCOM context. Consequently, estab-
lished standards, such as instance the ITU standard for VoIP
QoE assessment (ITU-T G1011), introduce specific biases
when applied to SATCOM, as highlighted by the observed
increase in "advantage factor" ranging from 20 to 40 [4], [5].
Therefore, the unique characteristics of SATCOM necessitate
a comprehensive reevaluation and adaptation of current QoE
evaluation methodologies.

The main objective of this work is to provide a practi-
cal solution for predicting end user QoE to ISPs and offer
an open dataset. To build the dataset, we monitored 2,400
video sessions over emulated GSO satellite networks under
various scenarios, collecting QoE metrics from YouTube and
QoS metrics from traffic data. Our second objective is to
select the best Machine Learning (ML) algorithms, between
Long Short-TermMemory (LSTM) and Random Forest (RF),
which both have been considered in previous studies. The
emulated testbed is presented in Section III-A.

The selection of both RF and LSTM algorithms for QoE
evaluation results from the state-of-the-art presented in Sec-
tion II-C and summarized in Table 1. While much recent
research has employed RF, Loh et al. (2021) [6] demonstrated
promising results using LSTMs. This interest likely stems
from the popularity of LSTMs in handling time-series data.
LSTMs excel at capturing and learning temporal dependen-
cies, with a key advantage being their ability to process se-
quential data points and retain information over extended pe-
riods, making them well-suited for modeling time-dependent
patterns. Notably, RFs also demonstrate efficiency in time-
series regression [7], but with significantly lower computa-
tional cost than LSTMs. Considering our objective of devel-
oping a real-time solution (existing studies typically disregard
the transition from theory to practice) and benchmarking
against the state-of-the-art, we opted for this dual-algorithm
approach.

Next, we focus on the most effective machine learning
algorithm, specifically LSTM in our scenario, with the ob-
jective of reducing computation time and resources without
significantly affecting performance. To achieve this, we em-
ploy various techniques to decrease the number of features
and subsequently conduct a comparative analysis. In the end,
the models using the smaller feature set achieve the best
performance, comparable to the state-of-the-art results on
other networks. Finally, we implement the best approach in
a real-time solution and confirm the real-time application of
our work.

The remaining part of the paper proceeds as follows: Sec-
tion II defines background details of stored video stream-
ing and summarizes related work. Section III describes the
methodology used to collect and process the data and analyze
the collected dataset. Section IV presents both compared ML
algorithms, RF and LSTM, their first performance results, and
concludes with a comparison of these results. In Section V,
we decrease the number of features to reduce computation
time and resources, and compare the performance results of
LSTM trained on various feature set sizes. This section also

compares the performance results with those of previous stud-
ies. Section VI offers a practical real-time implementation
of our work and assesses its feasibility and viability. Finally,
Section VIII concludes this study.

II. BACKGROUND
This section provides an overview of background knowledge
related to stored video streaming. In addition, this section
provides a review of previous studies on predicting video
streaming QoE.

A. STORED VIDEO STREAMING QOE
In stored video streaming, the audio and video content are
downloaded while being played to the user. Therefore, the
available downlink throughput must be sufficient to match
the video encoding rate. A video buffer is implemented to
prevent user experience issues in the event of short mis-
matches between the download speed and the video encoding
rate. As long as the buffer remains non-depleted, the video
continues to play. Otherwise, a stalling event occurs and the
video pauses while the buffer refills.
Videos are divided into segments and chunks. Segments

are regular time-slices of a few seconds, whereas chunks are
slices of data of regular-size. Chunks and segments are not
directly related because a single chunk may contain multiple
segments or fewer than one. At the network level, only one
chunk is requested and downloaded at a time. Nevertheless,
the video and audio chunks can be downloaded in parallel. At
the application level, the player updates the buffer with com-
plete segments, even from a chunk partially downloaded. The
video buffer stores multiple video segments. Depending on
the buffer state, the resolution of the next requested segments
can change. Indeed, if the buffer is not filled as quickly as it
is emptied, one solution to reduce the required data rate is to
reduce the requested resolution.

B. QUALITY OF EXPERIENCE
The quality of experience is the user’s subjective perception
and expectations toward a given service and is defined by
Qualinet White Paper [8] as ‘‘the degree of delight or annoy-
ance of the user of an application or service. It results from
the fulfillment of his or her expectations with respect to the
utility and / or enjoyment of the application or service in the
light of the user’s personality and current state.’’.
Previous studies [8], [9] proposed four categories of In-

fluencing Factors (IFs) that impact QoE: Human-related,
System-related, Context-related, and Content-related IFs.
From an ISP’s point of view, network related IFs, which are
system-related IFs, are the main Key Performance Indicators
(KPIs), i.e., packet loss, delay, latency, jitter, and throughput.
For stored video streaming, the main Key Quality Indicators
(KQIs) are stalling events, initial delay, and resolution [10]:

• "Initial delay" refers to the time between the first re-
quest and the start of the video. In this study, both page
load time and video initial delay are considered. There-
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fore, we use the first request to the YouTube servers as
the original timestamp.

• "Resolution" describes the quality of the application. It
is usually determined by the number of vertical pixels
that indicate the resolution in the image (144p, 240p,
360p, 480p, 720p, and 1080p). As previouslymentioned,
the resolution may vary during video playback. Such
variation also impacts QoE for the user. A previous
study [10] showed that users prefer a constant lower
resolution to several resolution changes.

• "Stalling" defines the interruption of video playback.
During this time, the application attempts to refill the
buffer with segments. These events have the strongest
negative impact on QoE. Previous study [11] showed
that increasing the initial delay can help reduce or pre-
vent stalling, which improves the QoE. Therefore, ap-
plications such as YouTube or Netflix aim to minimize
and prevent stalling events from occurring, by reducing
the resolution or forcing a longer initial delay, which
provides more time to fill the buffer before the video
starts.

C. RELATED WORK
This section covers the different ML approaches and method-
ologies used in prior studies to predict QoE for end users
based on QoS. Table 1 summarizes relevant previous related
studies that predict QoE KQIs. The table presents the algo-
rithm and platforms used, along with the predicted KQIs.
In addition, the table presents the number of video sessions
collected and the real-time compatibility of these previous
studies. As presented in Table 1, most of the predicting QoE
studies have targeted YouTube, either on desktop or mobile
devices.

Mazhar’s work [12] exploited features based on TCP
flags, and for QUIC flows they used network layer infor-
mation to create features. Gutterman’s study [13] used a
chunk detection system to process chunk-based features.
These chunk-based features predict the resolution, buffer
filling phase, and buffer warning, which is triggered when
the buffer is below a threshold of 20 seconds. In the same
vein, Bronzio & Schmitt’s study [14] also exploited seg-
ment detection to add application-based features, for Netflix,
YouTube, Amazon, and Twitch videos. They showed that
the use of these features improves prediction accuracy for
the initial delay and the resolution compared with the use
of only network layer and transport layer related features.
Orsolic’s and Wassermann’s studies [15], [16] are using net-
work related features processed over different time windows
to predict resolution and bit rate. Additionally, Wassermann’s
work also predicts the initial delay and stalling. For the four
KQIs, Wassermann’s study obtained high performance with
RF using 5-fold cross validation. Shen’s work [17] is the only
work cited here that also focused on the Bilibili application,
and the only one that used a Convolutional Neural Network
(CNN). Loh’s work [6] revealed that the use of only uplink-
related features gives predictions that are reasonably as good

FIGURE 1. Topology of the test bench. The user is connected to the
Internet through an emulated satellite link.

as using both uplink and downlink features, for the prediction
of resolution, initial delay, buffer filling phase, and stalling
events.

III. METHODOLOGY
This section details the testbed and the scenarios used to
collect data. It also describes the processing of QoE and QoS
data, and provides an analysis of the collected dataset. This
dataset is available on github1.

A. EXPERIMENTAL SETUP
Our testbed relies on an emulated satellite link that con-
nects the user to the Internet. To emulate the satellite link,
we use OpenSAND [18], [19], an open-source end-to-end
satellite communication system emulator. OpenSAND emu-
lates SATCOM systems with a fair representation [20]. Three
components compose the satellite link: a satellite gateway, a
satellite terminal, and a GSO satellite. The satellite gateway
is connected to the Internet. The user is connected to the
satellite terminal through a router and has Internet access
through the satellite emulated link. We choose not to set up
any Performance Enhancing Proxies (PEP) over the satellite
link, as the QUIC protocol, used byYouTube servers, does not
benefit from PEP optimization. Figure 1 depicts the testbed
topology.
The router enables us to add packet loss for specific scenar-

ios, for example, to emulate a Wi-Fi. In addition, for specific
scenarios, additional clients and servers are added behind
the satellite terminal and the satellite gateway to generate
congestion.
We orchestrate and launch the tests, including Open-

SAND, Firefox, packet capture, and congestion flows, using
OpenBACH [21], an open-source network metrology test
bench. An OpenBACH script collects YouTube metrics from
the SATboost plugin [22], which obtains information from
YouTube interface2. We use only the YouTube collection
feature of SATboost, not the optimization features. The user
computer has an Intel(R) Core(TM) i3-3220 CPU with 4

1https://github.com/viveris/satcom-qoe-dataset
2Data are collected from the "Stats for Nerds" interface
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TABLE 1. Overview of previous work relative to QoE prediction.

Reference Platform Algorithms KQIs Prediction Real-Time Video sessions

Mazhar et al.
2018 [12]

YouTube desktop DT Initial Delay, Stalling,
Resolution

Yes 10,863

Gutterman et al.
2019 [13]

YouTube mobile and
desktop

RF Buffer Warning,
Buffer Filling Phase,

Resolution

Yes 600

Bronzino & Schmitt
et al. 2019 [14]

Netflix, YouTube,
Amazon & Twitch

desktop

RF, DT & others Initial Delay,
Resolution

No 13,765

Orsolic et al.
2020 [15]

YouTube Mobile DT, RF Resolution, Bit Rate Yes 992

Shen et al. 2020 [17] Bilibili, YouTube
desktop

CNN Initial Delay, Stalling,
Resolution

Yes 10,000+

Wassermann et al.
2020 [16]

YouTube mobile &
desktop

mainly RF Initial Delay, Stalling,
Resolution, Bit Rate

Yes 15,000+

Loh et al. 2021 [6] YouTube mobile RF, LSTM Resolution, Initial
Delay, Buffer Filling

Phase, Stalling

Yes 13,759

Our work YouTube desktop over
SATCOM

RF, LSTM Resolution, Initial
Delay, Stalling

Yes 2,400

core of 3.30GHz and a Intel HD integrated GPU. Tests are
performed with Ubuntu 20.04, Firefox version 97.0.1,and
Geckodriver 0.30.0 [23], the latter allows us to remotely
control Firefox. The uBlock Origin ad blocker plugin [24],
has been enabled in Firefox to prevent the collection of adver-
tising data. Traffic data are captured on the satellite terminal,
whereas YouTube data are collected on the user.

For the tests, we selected 40 unique videos with durations
ranging from 30 s to 17min 32 s to include a diverse represen-
tation of the content available to users. Each video is available
in the same set of resolutions: 144p, 240p, 360p, 480p, 720p,
and 1080p, and has between 24 and 30 frames per second. To
ensure a fair representation of available video content on the
YouTube platform, we choose videos from various YouTube
channels and of diverse styles.

With a total of 2, 400 monitored video sessions, our dataset
comprises a smaller number of sessions compared to recent
studies, as shown in Table 1. Nonetheless, to align with users’
engagement patterns on YouTube, we deliberately opt for
longer videos. For example, the Wasserman et al. dataset,
which includes over 15, 000 videos, consists of 4, 600, 000
time slots of one second, averaging approximately 5 min-
utes per video. In contrast, our dataset monitors 1,214,536
time slots of video playback, extending to 1, 306, 761 time
slots when accounting for initial delays. Although our dataset
contains 6.25 times fewer videos, the total time slots are 3.8
times smaller. This deliberate choice allows us tomatch users’
typical engagement on YouTube, selecting video durations
based on trending content to mirror user use patterns

B. SCENARIOS
We perform the tests using two bandwidths on the satellite
forward link: 1Mb/s and 12Mb/s. These bandwidths were
chosen on the basis of their representation of realistic public
satellite Internet access and in alignment with previous stud-
ies [25], [26]. In both cases, the emulated satellite link has a
one-way delay of 250ms.
To diversify our dataset, we include other scenarios in

addition to these two baseline scenarios. Two of them are
without any degradation from loss on the link or congestion.
We add a scenario that adds pressure on the YouTube ap-
plication to induce some stallings. In this scenario, a regular
prioritized UDP flow is added, which uses 90% of the avail-
able bandwidth for 1 minute every 2 minutes. The prioritized
UDP flow is generated using Iperf3 (v3.10.1) [27]. Two con-
gestion scenarios are included, where one or two additional
clients use YouTube simultaneously with the main user. A
final scenario is added with losses over the satellite link. To
simulate a realistic satellite use case, we select a Gilbert-Elliot
model based on data collected from a railway train, whichwas
previously used in a study [28]. This Gilbert-Elliot model,
with parameters p = 0.016 and q = 0.938, is applied to the
emulated satellite link.

C. FEATURES
The previous section describes the scenarios used to collect
data. In this section, we provide an overview of the computa-
tion of features for ML algorithms, based on the data obtained
from these scenarios. Features tuning is an essential aspect of
machine learning, as identifying the most important features
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FIGURE 2. CDF of the initial delay

can improve performance and reduce computational costs.
This section provides details about the features used in the
ML algorithms.

We use ViCrypt paper [16] methodology to compute fea-
tures from packet capture, where we collect the size, times-
tamp, and IP source/destination of packets. Their method con-
siders what has occurred over three different time windows:
the last second, the last 3 s, and the entire session. Never-
theless, we made some modifications to their method. For
example, we completely removed the TCP and UDP related
features because they do not improve the accuracy of our
results. This approach produces a total of 199 features, which
include 66 features for each time window and an additional
feature equal to the number of the current time slot.

D. DATA ANALYSIS
We test 40 unique videos under six different scenarios, with
each test performed ten times. Hence, the dataset contains
2, 400 video sessions, for a total of 1, 306, 761 time slots of
one second that represents more than 15 days. This section
provides an analysis of the KQIs in the dataset.

1) Initial Delay
It is noteworthy that we use the timestamp of the first request
to YouTube servers as the starting point of the initial delay,
and the beginning of the video as the end time. Figure 2
represents a Cumulative Distribution Function (CDF) of the
collected initial delays. Consistent with the time slot length
used, the granularity for the initial delay is 1 s. As shown
in the figure, the shortest initial delays monitored are 10 s.
Over half of the videos monitored start within 27 s, which
mainly consist of videos sessions with 12Mb/s bandwidth.
The average initial delay is 38.43 s, primarily influenced by
the longest 90th percentile of initial delays exceeding 100
seconds. These initial delays are notably lengthy compared
with studies on terrestrial networks, which generally have
initial delays of approximately 2 − 3 s [6], [16].

FIGURE 3. Resolution proportions for each time slot.

2) Resolution

The resolution played is information directly provided by the
YouTube interface. Nevertheless, when a resolution change
occurs, it is not possible to know the resolution played during
the last second because data from the YouTube interface are
collected every second. Therefore, and as done in previous
study [6], we remove the resolution label for time slots with
resolution changes. Finally, resolution labels are also ignored
when a stall occurs.

Figure 3 provides the ratio of resolutions for each time slot
of the video sessions. In Figure 3, as the number of time slots
increases, the number of monitored time slots decreases be-
cause of variations in the length of the video sessions. What is
striking about this figure is the variation in the resolution dis-
tributions over time. Within the 100th first time slots, 1080p
resolution represents a significant portion of the resolutions
played. 360p and 720p resolutions are under-represented in
the first 250th time slots, and gain in importance later on.

Table 2 summarizes the distribution of resolutions in the
dataset. We monitor video sessions with the "auto" mode
enabled, which means that the application determines itself
the downloaded and displayed resolution.

The table highlights an imbalance in the resolution dataset,
with more than 40% of time slots in 1080p. This value can
be explained by the data shown in Figure 3, where 1080p
resolution accounts for more than 40% of the collected data
after the first 100 s, due to 12Mb/s scenarios. As the video
duration increases, the distribution of the collected resolu-
tions becomes more skewed. For instance, in a video lasting
17 minutes and 30 seconds (1050 seconds), with only 100
seconds not at 1080p, approximately 90% of the video uses
1080p. Even in a 10-minute video, where 500 seconds out
of the 600 (83.33%) are at 1080p. Given that half of our
collected videos use 12Mb/s, it is logical to observe that
1080p resolution constitutes 40% of the collected resolutions.
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TABLE 2. Overview of resolutions in the dataset

Resolution Number of
Time Slots

Percentage

144p 111,611 9.39%
240p 177,710 14.95%
360p 104,710 8.81%
480p 170,296 14.33%
720p 140,080 11.78%
1080p 484,320 40.74%

E. STALLING EVENTS
Unlike the resolution, the information on the stalling events is
not directly accessible from the YouTube interface. Neverthe-
less, we monitor the number of frames read and the frame rate
of the videos. We label a time slot as a stalling event when the
difference between two consecutive seconds of the number of
frames read is less than 90% of the video frame rate, and there
are fewer than 20 seconds in the buffer.

Asmentioned earlier, stalling events have themost negative
impact on KQIs on the QoE of end users. Over the 1, 214, 536
time slots of video playback monitored, only 17, 022 (1.40%)
are stalling time slots. Figure 4(a) represents the number of
stalling event distributions in the dataset. From this figure, we
observe that there is no stalling among 65% of video sessions.
About 20% of video sessions have only one stalling event, and
95% of video sessions in the dataset have fewer than 3 stalling
events. Figure 4(b) provides the duration of the stalling event
distribution in the dataset. 25% of the stalling events last one
second, and half of them last less than 9 seconds.

IV. SELECTION OF MACHINE LEARNING ALGORITHMS
This section provides a detailed description of the various
machine learning algorithms used and compared in this study.
Next, we discuss the first results obtained. Finally, we de-
scribe our proposals to reduce the computation time, which
are used for the rest of the paper.

A. COMPARISON OF THE MACHINE LEARNING
ALGORITHMS
To ensure the independence of the test dataset from the train-
ing dataset, we select 8 unique videos from the 40 monitored
videos and keep them aside as the test group. The duration
of these test videos is spread evenly over the duration of the
monitored videos. Therefore, we train the machine learning
models using a set of 32 distinct videos, and subsequently
evaluate their performance on a completely separate set of 8
videos.

1) Random Forest
As mentioned in Section II-C, most of the previous stud-
ies [6], [13]–[15] used RF to predict KQIs. More specifically,
Wassermann’s [16] with ViCrypt also used RF. Since we

use their approach for calculating features, we also decide
to use RF, with the scikit-learn RF classifier [29], [30]. Ta-
ble 3 summarized RF hyperparameters set for each KQI. The
chosen hyperparameters are selected following a search by 5-
fold cross-validation on the training dataset, using the mean
F1 score as the target metric. Usually, shuffling and random
division of the training dataset are used. Nevertheless, as the
video session data are time-related, we choose not to split the
training dataset directly, but to split it by video sessions to
perform the 5-fold cross-validation.

2) Long Short-Term Memory

As data and prediction are time-dependent, LSTM algorithms
can be a potential solution, as performed in previous work [6].
In this study, we use the LSTM from Pytorch implemen-
tation [31]. Nevertheless, it is important to remember that
LSTM algorithms require a longer training time than RFs. In
this study, each LSTM model is trained to predict the three
KQIs (initial delay, resolution, and stalling). Thus, during
the training process, the prediction errors are aggregated by
adding them together, leading to de facto competition among
the different predictions for these KQIs. As is conventionally
performed for the LSTM algorithm, the features are standard-
ized for the LSTM algorithms.

B. COMPARISON OF THE RESULTS

Table 4 presents an overview of the average F1 score for
stalling events and resolution prediction, as well as the Mean
Absolute Error (MAE) for initial delay, comparing the per-
formance of the LSTM and RF models. In the table, LSTM
demonstrates significantly superior performance compared to
RF across all predictions. When predicting the initial delay,
LSTM achieves a slightly lower MAE than RF, indicating an
improvement in accuracy of around 9%. Regarding the reso-
lution prediction, LSTM achieves an F1-score approximately
5% higher than RF, while for stalling prediction, LSTM’s F1-
score outperforms RF by around 6%. These metrics clearly
illustrate the efficiency of LSTM over RF.
Considering the significant performance gap between

LSTM and RF, it is evident that RF falls behind, whereas
LSTM demonstrates superior predictive performance in our
scenarios. Consequently, for the remainder of this paper, we
focus on using LSTM. Nevertheless, LSTMmodels generally
require more time and computational resources than RFmod-
els. Therefore, to mitigate these burdens, we intend to reduce
the feature set used in the LSTM models.

V. OPTIMIZATION RESULTS
This section describes the various approaches used to reduce
the number of features, and presents the performance results
of the LSTMmodels trained on these feature sets. We provide
details of the prediction results for the initial delay, resolution,
and stalling events in that order.
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(a) Distribution of the number of stalling events during video sessions. (b) Distribution of stalling event length in second.

FIGURE 4. Distributions regarding stalling events.

TABLE 3. Random Forest Hyperparameters.

KQIs Criterion Bootstrap n_estimators max_depth max_features

Initial Delay entropy False 1000 None sqrt
Resolution entropy True 3000 None sqrt
Stalling log_loss False 1000 None sqrt

TABLE 4. Performances of LSTM and RF models for each KQI.

LSTM RF

MAE of Initial Delay 2.138 s 2.354 s
Average F1-score for Resolution 66.36% 61.08%

Average F1-score for Stalling Events 83.51% 76.88%

A. OPTIMIZATION OF LSTM FEATURES
We seek to reduce the computation cost to make our approach
more practical for a potential real-world implementation.
Hence, we attempt to identify features that we estimate as less
useful and remove them.

We choose four approaches:

• Fsyall : this approach contains the entire feature set;
• Fsy1: for this version, we exclude features related to ra-

tios (i.e., download/upload packets and bytes ratios) and
those related to variance when a corresponding feature
of standard deviation exists, as they are mathematically
related through a quadratic relationship;

• Fsy2: for this feature set, we take Fs
y
1 set and discard the

features related to the size of the downloaded packets.
We decide to discard these data because the downloaded
packet should have low variance in their length; and

• Fsy3: finally, for this approach, we dismissed the same
features as Fsy2 set and the one related covariance be-

tween packet size and arrival time; i.e., the Temporal
Variance,Covariance Time-Size,MeanCumulative Size,
Mean Time, Slope, and Intercept, for both download and
upload packets, which are jointly calculated. Therefore,
by removing them, our objective is to reduce the number
of features by 12, hopefully without significantly affect-
ing the results.

In the Appendix , the Table 8 presents a comprehensive list of
the features included in our distinct approach.
Lastly, as LSTM has a feedback connection from previous

predictions, we want to reduce the number of features by re-
moving the different time windows. Therefore, we introduce
three more approaches:

• Fs3x : This approach has features from the three time
windows, i.e., the last second, the last 3 seconds and the
whole session; and

• Fs2x : This approach has features from two time win-
dows: the last second and the entire session. With this
approach, we expect to maximize the use of LSTM and
its short-term memory by removing the feature related
to the last 3 seconds; and

• Fs1x : This approach has features only from the last sec-
ond. With this final approach, we aim to rely solely on
the LSTM memory and, in so doing, drastically reduce
the number of features.

By combining the reductions in the number of features,
based on the time windows and their types, we arrive at 12
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TABLE 5. Number of features in each feature set. In brackets, the relative percentage compared with the initial feature set (Fs3
all ). This ratio allows

weighing the decrease in the number of features.

Feature set Second (Fs1x ) Second + Session (Fs2x ) Second + Trend + Session (Fs3x )
Fsyall 67 (33.67%) 133 (66.83%) 199 (100.00%)
Fsy1 47 (23.62%) 93 (46.73%) 139 (69.85%)
Fsy2 40 (20.10%) 79 (39.70%) 118 (59.30%)
Fsy3 28 (14.07%) 55 (27.64%) 82 (41.21%)

feature sets. The Table 5 presents an overview of the number
of features in each approach.

B. COMPARATIVE ANALYSIS OF THE PERFORMANCE OF
FEATURE REDUCTION APPROACHES IN LSTM
This section presents the performance results of the LSTM
models trained on various feature sets.

As described in Section IV-A2, each LSTM model is
trained to predict the three previously defined KQIs: initial
delay, resolution, and stalling events. During the training
process, we calculate the prediction errors of each KQI and
sum them. As a result, all of these KQIs are aggregated into
a unique value without weighting one of them. This leads to
a compromise, as the model focuses on reducing the overall
error rate, which may lead to varying performance levels for
each specific KQI. Therefore, it is important to consider this
when comparing KQI-by-KQI performance.

To ensure a fair and unbiased comparison, we conducted 11
training iterations for each feature set. This approach allowed
us to consistently evaluate the performance of each model
and account for any variations or randomness in the training
process.

1) Initial Delay
Figure 5 displays the whisker boxes representing the com-
pleted MAE for each feature set. Notably, the poor perfor-
mance of the Fs1x models is evident, and they occasionally
yield a MAE greater than 3 seconds. Conversely, the model
trained using Fs2x demonstrates superior overall performance,
particularly for Fs2all and Fs

2
1.

To further investigate our performance, Figure 6 summa-
rizes the initial delay prediction results of themodel achieving
the median average F1-score, by showing the percentage
distribution of the absolute values of the prediction error.
Most of the models can accurately predict the start of videos
without any error in over 30% of the cases. Almost all models
can predict the start of the video in 90% of cases, with an
error of up to 5 seconds. Since about 10% of the cases have
an absolute error greater than 5 seconds may appear signif-
icant; however, the longest 90% of the initial delays exceed
100 seconds.

2) Resolution
Figure 7 illustrates the whisker boxes presenting the average
F1-score achieved for each feature set. In contrast to the initial

FIGURE 5. Box-and-Whisker Plot of the Mean Absolute Error in Initial
Delay Prediction. As a reminder, the boxes represent the lower and
upper quartiles (25th and 75th percentiles). The red line within the box
represents the median value (50th percentile). The whiskers (the two
lines outside the box) extend from the quartiles to the last data point
within 1.5 times the interquartile range (IQR) of the lower or upper
quartile. The circles ◦ represent the outliers, which are the values outside
the whiskers and the box.

delay prediction, the Fs2x models exhibit underperformance in
predicting resolution, especially Fs2all which fails to achieve
an F1-score of at least 70%. Conversely, the Fs1x models
demonstrate greater consistency, with F1-scores ranging be-
tween 70% and 74%.
For both Fs2x and Fs3x , the results indicate that reducing

the number of features improves the quality of resolution
prediction. The peak of this effect is observed in Fs33, which
achieves comparable or even superior results compared to
Fs13.

3) Stalling events
Figure 8 displays the whisker boxes representing the average
F1-score achieved for each feature set in the prediction of
stalling events. The difference in F1-scores between models
is smaller compared to the F1-score difference observed in
the resolution prediction.

The Fs3all and Fs
2
all models exhibit the poorest performance

among all the models. Moreover, the feature sets Fs2x appear
to be less effective in predicting stalling events, whereas the
Fs1x approach yield better results. In terms of consistency in
predicting stalling events, theFsy1 models demonstrate greater
stability. In addition, the Fs1x models exhibit more consistency
compared to the Fs2x and Fs

3
x models.
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FIGURE 6. Cumulative distribution of absolute prediction error of each feature sets.

FIGURE 7. Box-and-Whisker Plot of F1-Score in Resolution Prediction.

C. INTERPRETATION OF THE RESULTS

This section summarizes the performance results and presents
the best feature set approach. Table 6 summarizes the perfor-
mance metrics obtained for each median-performing model
of each Fsyx . Noted that the median value shown in the previ-
ous graphic displays the medians for each metric individually,
rather than the median of all three metrics collectively.

First, let us compare the results based on the number of time
windows considered (Fsy). If we summarize the results, we
can observe that Fs1x demonstrates the highest performance
for predicting stalling events and resolution, whereas it shows
poorer performance for initial delay prediction. On the other

FIGURE 8. Box-and-Whisker Plot of F1-Score in Stalling Event Prediction.

hand, Fs2x exhibits the best performance for initial delay pre-
diction, but it performs less effectively in predicting stalling
events and resolution. This result is unexpected, as our initial
hypothesis was that the feedback connections in the LSTM
models should effectively replace the data from the trending
window. Fs3x shows good performance for stalling events and
initial delay prediction, but it yields relatively weaker results
for resolution prediction. Therefore, when considering only
the time window used to train the model, the features derived
from the last second (Fs1x ) are the most effective. This is
particularly significant when considering that stalling events
have the most harmful impact on QoE.
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TABLE 6. Prediction performance of the median-performing model for each Fsy
x .

Time Window
Considered

Feature set (nb features) MAE for Initial Delay F1-score for Resolution F1-score for Stalling
Se

co
nd

(F
s1 x
)

Fs1all (67) 2.325 s 71.52% 84.77%
Fs11 (47) 2.913 s 74.13% 85.45%
Fs12 (40) 2.542 s 71.07% 84.69%
Fs13 (28) 2.477 s 72.36% 84.98%

Se
co
nd

+
Se

ss
io
n

(F
s2 x
)

Fs2all (133) 1.942 s 66.12% 82.57%
Fs21 (93) 2.229 s 68.86% 83.66%
Fs22 (79) 2.294 s 67.40% 83.26%
Fs23 (55) 2.338 s 70.65% 84.51%

Se
co
nd

+
Tr

en
d
+

Se
ss
io
n

(F
s3 x
)

Fs3all (199) 2.138 s 66.36% 82.79%
Fs31 (139) 2.131 s 65.19% 83.04%
Fs32 (118) 1.988 s 70.01% 84.24%
Fs33 (82) 2.590 s 72.51% 85.07%

Let us compare the results based on the features consid-
ered within each time window (Fsx). The Fs

y
all models show

superior performance for initial delay prediction, but they are
the worst performingmodels regarding stalling and resolution
predictions. On the other hand, Fsy1 and Fsy2 models achieve
similar results within the same considered time windows,
with no clear advantage or significant weaknesses. As for the
Fsy3 models, they generally yield inferior results for initial
delay prediction, except for Fs13, which performs comparably
to Fs12 and Fs11; models have better results for resolution
prediction and stalling, except for Fs13, which exhibits compa-
rable results to Fs12 and Fs11. Considering these findings, we
select Fsy3 as the preferred model.

Combining these two conclusions, we can determine that
the optimal approach for simultaneous prediction of initial
delay, resolution, and stalling events is the Fs13 feature set.
Furthermore, the Fs13 feature set also has the advantage of
having the fewest number of features; this characteristic will
facilitate real-time implementation in the future.

Now, let us present the performance of the median-
performing Fs13 model. The previous graphic displays the
medians for each metric individually, rather than the median
of all three metrics collectively. Table 7 provides the predic-
tion performance of the median-performing Fs13 model. In
addition, Figures 9 present the confusion matrices for both
resolution and stalling event predictions. To summarize the
performance of this specific Fs13 model, it achieves a MAE of
2.477,s for predicting the initial delay, an average F1-score of
72.36% for predicting the resolution, and an average F1-score
of 84.25% for predicting stalling.

D. COMPARISON WITH PREVIOUS STUDIES
It is important to confirm the relevance of our work compared
with the state of the art on other networks. Therefore, this
section conducts a comparative analysis, contrasting our per-
formance results with those of the state-of-the-art.

As detailed in one of our previous papers [32],Wassermann
et al. [16] employed questionable practices to generate their
results. They employed a five-fold cross-validation method

to obtain their results. This well-established method involves
splitting the dataset into five groups and training a model on
four groups while testing the model on the remaining group.
This process is repeated for each unique group, resulting in
multiple models and their corresponding predictions. Bymix-
ing video session data, Wasserman et al. trained their mod-
els using time slots from both past and future test datasets.
While this approach has improved their model performance
on mixed data, it introduces an issue regarding the indepen-
dence between the training and test datasets. As a result, their
models may not generalize well to video sessions that are not
mixed with their training dataset. Consequently, we will not
make a direct comparison between our findings and theirs in
this particular section.
First, let us compare the performance of predicting the

initial delay. Nevertheless, it is challenging to make a precise
comparison between our performance and that of previous
studies, primarily due to the use of different metrics to mea-
sure accuracy in predicting initial delay. For instance, Mazhar
et al. [12] employed precision and recall as metrics, but we
consider these values to be irrelevant as they do not accurately
demonstrate the precision of predicting the start of a video. On
the other hand, Loh et al. [6] presentedMAE as a performance
metric.
Loh et al. achieved an MAE of approximately 0.65 s in

predicting the initial delay, whereas our models obtain aMAE
around 2.48 seconds. The disparity between our conditions
may explain this difference. The Loh et al. dataset has a mean
initial delay of 2.64 s, whereas our dataset, due to satellite
latency, has a mean initial delay more than ten times longer
(38.43 seconds). To make a fair comparison of these results,
our MAE corresponds to 6% of our average initial delay,
whereas theirs corresponds to 24% of their average initial
delay.
To compare the predictive capabilities of our model and

those of previous studies in terms of resolution, we use the
average F1 score obtained. Some studies, such as Malzhar’s
andOrsolic’s [15], predict resolution based on categories such
as low or high, making it challenging to directly compare
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TABLE 7. Fs1
3 Prediction Performance

Initial delay MAE 2.477 s

Resolution Precision Recall F1
144p 89.79% 76.90% 82.84%
240p 78.77% 85.53% 82.01%
360p 54.67% 58.59% 56.56%
480p 53.01% 64.27% 58.10%
720p 65.25% 52.25% 58.04%
1080p 97.09% 96.15% 96.62%
Average 73.10% 72.28% 72.36%

Weighted avg 80.82% 80.14% 80.24%

Stalling Events Precision Recall F1
Yes 99.62% 99.53% 99.57%
No 66.69% 71.34% 68.93%

Average 83.15% 85.43% 84.25%
Weighted avg 99.19% 99.16% 99.17%

(a) Confusion Matrix of Resolution Predictions. (b) Confusion Matrix of Stalling Event Predictions.

FIGURE 9. Confusion Matrices of Fs1
3 Model for Resolution and Stalling Event Predictions.

our results with theirs. Nevertheless, most studies employ the
same resolution classification as we do. With an average F1
score of approximately 72%, our model’s performance falls
between that of Gutterman et al. [13] (66.69%, calculated
from the data they presented) and Loh et al. (78%). In con-
clusion, Loh’s work demonstrates significantly better results
in resolution prediction than our approach.

To compare the performance of the stalling prediction, we
also utilize the average F1 score. Our performance is similar
to that of other studies, with an average F1 score of 84.25%.
This is comparable to Loh et al. study, which achieved 87%.
Mazhar’s work also demonstrated comparable results for
HTTPS flows with an average F1 score of 85.68% (calculated
from the data they presented), but had lower results for QUIC
flows with an average F1 score of 77.93% (calculated from

the data they presented). Shen et al. study, on the other hand,
obtained an average F1 score of 59.92% (calculated from
the data they presented), which is significantly lower than
our results. In conclusion, our model performs relatively well
compared to state-of-the-art approaches in predicting stalling
events on other networks, although Loh’s work shows slightly
better performance in this aspect.

To conclude this comparison with the state of the art,
although our model does not surpass all other studies, it is
important to point out that our results are comparable to other
studies that primarily focus on terrestrial networks, which
have been extensively studied by the research community.
Furthermore, we recall that we are working in the context
of a satellite network, which presents unique challenges and
characteristics. Therefore, considering the specific context of
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satellite networks, these results hold significant value and
contribute to the understanding of performance prediction in
this particular domain.

VI. REAL-TIME IMPLEMENTATION
Because our goal is to offer a practical solution for ISPs, the
implementation of our work in the real world is a crucial
part of this work. Ensuring that our models can be applied in
real-time is an essential aspect of this endeavor. In addition,
it is vital to monitor and address any potential drift in the
application process to maintain the accuracy and reliability
of our models over time.

One of the major challenges in this real-time implemen-
tation is to efficiently process every packet while effectively
using the ML model without delaying the overall process.

This section is intentionally designed as a proof of concept
and not intended to serve as a benchmark for various imple-
mentations. Instead, the focus is to showcase the feasibility
and viability of the proposed approach through a basic imple-
mentation.

In this section, we employ the median-performing Fs13
model, discussed in Section V-C where its performance is
presented. As a reminder, this model only uses 28 features,
which represents the lowest number of features considered in
our analysis.

First, this section provides an overview of the implemen-
tation process and discusses potential bottlenecks that may
impede the efficiency of the system. Second, this section
presents the monitored information within these bottlenecks
and offers a comparison between the predictions and the
ground truth.

A. IMPLEMENTATION OVERVIEW
This section discusses the implementation choices, specif-
ically how we processed the previously collected dataset.
During the processing of the collected dataset, as described
in Section III-C, we intentionally processed each packet sep-
arately, treating them as received in real-time. Furthermore,
we ensure that the feature set is dynamically updated in real-
time for each packet. Therefore, the processing of packets
for real-time implementation poses no issue for us, as we
have already implemented the necessary procedures during
the dataset processing phase.

The implementation of our system is relatively simple,
consisting of three parallel threads:

1) Packet Sniffer: this thread collects IP packets and places
them in the queue for the second thread. By assigning a
dedicated thread for packet collection, we can guaran-
tee that all packets are properly gathered;

2) Packet Process: the second thread processes the pack-
ets, examining their source and destination IP ad-
dresses, size, and timestamp. It processes the packets
individually and sends the data to the third thread after
a one-second interval;

3) ML Prediction: this thread normalizes the data received
from the second thread and predicts the KQIs.

From this implementation, two potential bottlenecks
emerge. The first potential bottleneck arises at the entrance to
the second thread, where a queue of packets may form if the
packet processing speed is cannot keep up with the incoming
packet rate. The second potential bottleneck lies in the ML
processing phase, particularly if it exceeds the allocated one-
second timeframe.

B. MONITORING AND ANALYSIS OF REAL-TIME
IMPLEMENTATION
This section presents and analyzes the monitored results of
the implementation.
Wemaintain the topology as presented in Section III-A and

illustrated in Figure 1. Furthermore, the prediction process
occurs at the same location where the traffic data are col-
lected, specifically on the router. It is worth noting that the
implementation is performed on a virtual machine with two
CPU cores of 2.6GHz, 4GB of RAM, and no GPU.
First, this section examines the packet queuing aspect at

the entrance of the second thread. Second, it assesses the
processing time of machine learning predictions in the third
thread. Finally, it presents examples of curves that illustrate
the relationship between the predictions and the collected
truth.

1) Packet Queuing
To verify the queue length, we monitor it at regular intervals
of 10ms during a video session. To stress the system, the test
uses a capacity of 12Mbps, ensuring no loss on the link and
no congestion. In addition, we select a video with a frame rate
of 30 fps, which is long enough to observe different phases.
Figure 10(a) presents the packet queue behavior throughout

the entire video session. From the figure, we can observe that
at the start of the video session, the traffic is notably high.
Around the 1000th second mark, the traffic comes to a halt
as the video concludes, causing the packet flow to stop and
subsequently filling the buffer. Notably, a peak is observed
around the 400th second, with the queue size exceeding 175
packets.
Figure 10(b) provides a zoomed-in view of the beginning

of the video, where the traffic density is the highest. Contrary
to the initial assumption derived from the unzoomed figure,
this new figure reveals that the number of packets in the
queue occasionally falls below a 10-packet length. Specif-
ically, we observe that the queue size experiences periodic
growth, reaching a range of 75–100 packets within a 10ms
interval; however, it quickly decreases in the subsequent 10
ms interval.
Figure 10(c) provides a zoomed-in view of the highest

peak observed during the video session. From this figure, it
is evident that the peak, surpassing 175 packets, is rapidly
absorbed and does not persist for more than 10ms.
Overall, these figures demonstrate that the packet rate

can experience significant increases; however, despite these
challenges, the implemented packet processing mechanism
exhibits the capability to efficiently manage and absorb any

12



(a) Packet Queue over Time during a Video Session.

(b) Zoomed-in View of the Beginning of the Video Session. (c) Zoomed-in View of the Peak of the Packet Queue.

FIGURE 10. Packet Queue Analysis during a Video Session: Overall Dynamics, Session Start, and Peak Behavior.

peaks or dense traffic. This demonstrates the effectiveness of
the implemented packet processing approach in maintaining
a low real-time drift of the system.

2) Machine Learning Prediction Time

Following the methodology described in Section VI-B1, we
monitor the ML prediction time.

Figure 11 presents the CDF of the prediction time for the
ML model. The data are collected from four video sessions,
consisting of a total of 4111 predictions, with each prediction
corresponding to a one-second time slot. To improve data
visualization, a logarithmic scale is applied to the x-axis. The
prediction time exhibits a notable range of variance, spanning
from a minimum of 0.5ms to a maximum of 342ms, with
a standard deviation of 9.7ms. From the data in the figure,
it is clear that 20% of the predictions are completed within
1ms, while 50% of the predictions are realized within 1.6ms.
Moreover, in approximately 90% of the cases, the predictions
are completed within 10ms; however, it is worth noting that
a small fraction of predictions, less than 1%, exceed 100ms.

FIGURE 11. CDF of ML Prediction Time during Video Sessions
(Logarithmic Scale Y-Axis).

Even in rare instances where the prediction time reaches its
longest duration of 342ms, its impact onmeeting the schedule
for subsequent predictions remains insignificant. Neverthe-
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less, if we want to implement this for multiple clients on the
same connection, the process may get out of schedule when
there are many concurrent predictions. A potential solution to
address potential obstructions to the ML prediction process is
to allocate a dedicated CPU specifically for ML predictions.
By doing so, we can ensure that no other processes interfere
with or hinder the execution of the ML algorithms.

3) Checking the Quality of Prediction
The performance prediction aspects are addressed in Sec-
tion V; however, in this section, we compare the real-time
monitored ground truth with our predictions. As a result, this
section presents a comparison between the ground truth and
prediction for a video session conducted over a satellite link
with a capacity of 12Mbps. Figures 12 illustrate the compar-
isons between the monitored ground truth and the prediction
during a video session over a satellite link with a capacity of
12Mbps. No congestion or loss is introduced in this scenario,
and as a result, there are no figures representing stalling events
because no such events occurred or were predicted.

Figure 12(a) and Figure 12(b) provide a comparison be-
tween the start of the video and the corresponding prediction
of the start of the video. The second figure is a zoomed-in
view of the first 30 s, focusing on the crucial moment of the
video playback initiation. Upon analyzing these figures, it
becomes evident that the beginning of the video is accurately
predicted, with no delay. The predicted start time aligns per-
fectly with the actual start time of the video playback.

Figure 12(c) displays the video resolution and predicted
video resolutions throughout the video session. Meanwhile,
Figure 12(d) zooms in on the first 100 s of the data, which
encompasses the resolution switches. The predicted resolu-
tions are not considered relevant before the prediction of
the start of video playback. These figures indicate that there
are no major issues with predicting the 1080p resolution.
Nevertheless, the challenge lies in accurately predicting the
timing of the resolution switches. In these cases, resolutions
are overpredicted before actual changes occur.

VII. LIMITATIONS
This section outlines the limitations of the experimental ap-
proaches employed in this study to evaluate and contextualize
the results effectively.

In this paper, we construct our dataset and the models over
emulated satellite link use cases for a specific application, i.e.,
YouTube. Nevertheless, each stored video streaming applica-
tion has its own Adaptive Bit Rate (ABR) streaming algo-
rithms that affect the displayed resolution, initial delay, and
stalling event occurrences. Furthermore, each application can
use different rules for video encoding. For example, YouTube
offers encoding recommendations but leaves some liberties
to video creators on the matter. Netflix re-encodes available
videos, to optimize throughput and QoE for users. Therefore,
if we expect that it is possible to apply the same feature
processes to other stored video streaming applications, such

as Netflix, Amazon Prime, and Disney+, specific datasets
tailored to those applications need to be built.
Additionally, the dataset used to create the model consists

of 40 videos with a maximum resolution of 1080p and a frame
rate per second between 24 and 30. Nevertheless, YouTube
currently offers videos with resolutions up to 2160p (also
known as 4K). Moreover, YouTube is experimenting with a
"1080p Premium" resolution for paying users, providing an
"enhanced" 1080p version, which is encoded with a higher
bit rate, resulting in a better QoE [33]. Therefore, to adapt the
model, we would need to collect data with a wider range of
video characteristics.
Furthermore, the dataset we collected was based on spe-

cific scenarios, which may not cover all possible use cases.
For example, a change in the maximum packet size would
significantly impact most features, thus affecting the predic-
tion. Similarly, a very different available throughput from the
considered scenarios could also impact the prediction quality.
Finally, any evolution in the YouTube encoding policy or
their ABR algorithm would require collecting another dataset
and training new models. Therefore, to enable models to
adapt to changes over time, a data collection system must be
implemented and run to frequently update the model.

VIII. CONCLUSIONS
This study aims to predict QoE KQIs, i.e., initial delay, res-
olution, and stalling event occurrences, of YouTube sessions
over a geosynchronous satellite network.
For this purpose, we monitor 2,400 YouTube video ses-

sions and the resulting packet traffic. The collected dataset
is available as an open source to the research community.
We compare two ML models, RF and LSTM, trained to
predict the QoE KQIs based on packet traffic data using an
adjusted tried-and-tested approach from Wassermann et al.
study [16]. Next, we focus on reducing the required feature
set to optimize efficiency, considering both the prediction
performance and the computation time.
The results show that the LSTM approach significantly

outperforms the RF models, specifically in the prediction
of resolution and stalling events. Although the RF is a less
complex solution with a shorter computation time compared
to the LSTM, the difference in performance is too important
to be balanced by this gain. Regarding the optimization of the
feature sets for the LSTM training, we demonstrate that we
can eliminate multiple irrelevant features fromWassermann’s
approach. First, the results show that models have better
performances when using only features from the last second,
and not from the three considered time windows. Second,
within the time windows, it is possible to significantly reduce
the feature considered and achieve relatively the same level of
performance. Using the smallest feature set, with a reduction
in the number of features from 199 to only 28, we achieved
performance comparable to the state of the art on terrestrial
networks, demonstrating its applicability and effectiveness in
the context of GEO satellite networks.
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(a) Real-Time Initial Delay Prediction vs. Ground Truth. (b) Zoomed-in View of Real-Time Initial Delay Prediction vs. Ground
Truth.

(c) Real-Time Resolution Prediction vs. Ground Truth. (d) Zoomed-in View of Real-Time Resolution Prediction vs. Ground
Truth.

FIGURE 12. Real-Time Prediction vs. Ground Truth of a video session over a 12 Mbps Satellite Link.

This study also tackles the real-time implementation of
our model, and the potential risks associated with ensuring
smooth real-time functioning. After identifying two potential
bottlenecks, we show that they are not significant issues for
real-time functioning.

In future work, we wish to apply this approach to other
popular applications, such as Netflix, Twitch, and Teams.
Furthermore, another objective is to combine our models
with a reinforcement learning agent capable of dynamically
applying actions to enhance the QoE for end users.
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TABLE 8. Overview of the features used in a single time window and their presence in each reduced version of our tests

Feature Category Feature name Fsyall Fsy1 Fsy2 Fsy3
Time Slot Number Time Slot Number ✓ ✓ ✓ ✓

Total Number of Packets ✓ ✓ ✓ ✓

Packet Count Number of Uploaded Packets ✓ ✓ ✓ ✓

Number of Downloaded Packets ✓ ✓ ✓ ✓

Total of Bytes ✓ ✓ ✓ ✓

Byte Count Total of Uploaded Bytes ✓ ✓ ✓ ✓

Total of Downloaded Bytes ✓ ✓ ✓ ✓

Uploaded Packet Ratio ✓ ✗ ✗ ✗

Ratios Downloaded Packet Ratio ✓ ✗ ✗ ✗

Uploaded Byte Ratio ✓ ✗ ✗ ✗

Downloaded Byte Ratio ✓ ✗ ✗ ✗

Time of First Packet ✓ ✗ ✗ ✗

Time of Last Packet ✓ ✗ ✗ ✗

Time of First Uploaded Packet ✓ ✗ ✗ ✗

Arrival Time Time of Last Uploaded Packet ✓ ✗ ✗ ✗

Time of First Downloaded Packet ✓ ✗ ✗ ✗

Time of Last Downloaded Packet ✓ ✗ ✗ ✗

Throughput of Burst ✓ ✗ ✗ ✗

Throughput of Uploaded Burst ✓ ✗ ✗ ✗

Throughput of Downloaded Burst ✓ ✗ ✗ ✗

Burst Length of Burst ✓ ✗ ✗ ✗

Length of Uploaded Burst ✓ ✗ ✗ ✗

Length of Downloaded Burst ✓ ✗ ✗ ✗

Temporal Variance Upload ✓ ✓ ✓ ✗

Covariance Time Size Upload ✓ ✓ ✓ ✗

Covariance of Cumulative Mean Cumulative Size Upload ✓ ✓ ✓ ✗

Upload Traffic over Time Mean Time Upload ✓ ✓ ✓ ✗

Slope Upload ✓ ✓ ✓ ✗

Intercept Upload ✓ ✓ ✓ ✗

Temporal Variance Download ✓ ✓ ✓ ✗

Covariance Time Size Download ✓ ✓ ✓ ✗

Covariance of Cumulative Mean Cumulative Size Download ✓ ✓ ✓ ✗

Download Traffic over Time Mean Time Download ✓ ✓ ✓ ✗

Slope Download ✓ ✓ ✓ ✗

Intercept Download ✓ ✓ ✓ ✗

Mean Upload IAT ✓ ✓ ✓ ✓

Min Upload IAT ✓ ✓ ✓ ✓

Max Upload IAT ✓ ✓ ✓ ✓

Uploaded Packet Variance Upload IAT ✓ ✗ ✗ ✗

IAT Statistics Standard Deviation Upload IAT ✓ ✓ ✓ ✓

Covariance Upload IAT ✓ ✓ ✓ ✓

Skewness Upload IAT ✓ ✓ ✓ ✓

Kurtosis Upload IAT ✓ ✓ ✓ ✓

Mean Upload Byte Size ✓ ✓ ✓ ✓

Min Upload Byte Size ✓ ✓ ✓ ✓

Max Upload Byte Size ✓ ✓ ✓ ✓

Uploaded Packet Variance Upload Byte Size ✓ ✗ ✗ ✗

Byte Size Statistics Standard Deviation Upload Byte Size ✓ ✓ ✓ ✓

Covariance Upload Byte Size ✓ ✓ ✓ ✓

Skewness Upload Byte Size ✓ ✓ ✓ ✓

Kurtosis Upload Byte Size ✓ ✓ ✓ ✓

Mean Download IAT ✓ ✓ ✓ ✓

Min Download IAT ✓ ✓ ✓ ✓

Max Download IAT ✓ ✓ ✓ ✓

Downloaded Packet Variance Download IAT ✓ ✗ ✗ ✗

IAT Statistics Standard Deviation Download IAT ✓ ✓ ✓ ✓

Covariance Download IAT ✓ ✓ ✓ ✓

Skewness Download IAT ✓ ✓ ✓ ✓

Kurtosis Download IAT ✓ ✓ ✓ ✓

Mean Download Byte Size ✓ ✓ ✗ ✗

Min Download Byte Size ✓ ✓ ✗ ✗

Max Download Byte Size ✓ ✓ ✗ ✗

Downloaded Packet Byte Variance Download Byte Size ✓ ✗ ✗ ✗

Size Statistics Standard Deviation Download Byte Size ✓ ✓ ✗ ✗

Covariance Download Byte Size ✓ ✓ ✗ ✗

Skewness Download Byte Size ✓ ✓ ✗ ✗

Kurtosis Download Byte Size ✓ ✓ ✗ ✗
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