
HAL Id: hal-04461557
https://hal.science/hal-04461557

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive local search for a pickup and delivery problem
applied to large parcel distribution

Matthieu Fagot, Laure Brisoux Devendeville, Corinne Lucet

To cite this version:
Matthieu Fagot, Laure Brisoux Devendeville, Corinne Lucet. Adaptive local search for a pickup and
delivery problem applied to large parcel distribution. International Conference on Optimization and
Learning (OLA2023), 2023, Malaga, Espagne, Spain. �hal-04461557�

https://hal.science/hal-04461557
https://hal.archives-ouvertes.fr

Adaptative local search for a pickup and delivery
problem applied to large parcel distribution⋆

Matthieu Fagot1,2, Laure Brisoux Devendeville1, and Corinne Lucet1

1 Laboratoire MIS (UR 4290), Université de Picardie Jules Verne,
33 rue Saint-Leu 80039 Amiens Cedex 1, France

{m.fagot, laure.devendeville, corinne.lucet}@u-picardie.fr
2 Smile Pickup, 80440 Boves, France

mfagot@smilepickup.com

1 Introduction

In 2020 alone, the number of parcels shipped in France has increased by 12.4% to
reach 1.5 billion3. This phenomenon can be seen all over the world and has been
reinforced by the recent sanitary crisis and successive lock downs. This growth
has seen the explosion of a business: pickup points. More environmentally-
friendly than home deliveries and often more practical, these pickup points are
usually held by convenience stores close to customers. Although this works per-
fectly for small parcels, bigger ones such as furniture are usually not accepted
either because of size, weight or space.

Smile Pickup is a young business which manages a group of pickup points
dedicated to big parcels. With such an activity comes a logistical challenge for
shipping parcels from stores to pickup points using local transport solutions.
This sets up a vehicle routing problem with specific constraints that need to be
taken into account. The objective is to give our partners customers the choice to
be delivered in one of our pickup points accommodated for receiving oversized
parcels. The store then packs the order for our fleet of vehicles to deliver to the
pickup point chosen by the customer as soon as possible.

In this paper we will describe the particular vehicle routing problem faced
by Smile Pickup which combines different well known vehicle routing problems:
the Smile Pickup Problem (SPP). SPP is part of the class of paired vehicle
routing problems with pick up and delivery [1]. As our problem is an extension
of the classic VRP and PDP problem [2], SPP is also an NP-hard problem. The
core of SPP is similar to the Pickup and Delivery Problem with Time Window
(PDPTW) described by Li and Lim [3] with which they provide a benchmark.
Regarding the time windows, Smile Pickup needs to be able to ensure great
flexibility. For this purpose, we added the possibility of multiple time windows.
This constraint was first proposed by DeJong et al. [4] to take into account
customer brakes on home deliveries. More recently, Belhaiza [5] and Ferreira [6]
have both proposed variable neighbourhood search heuristics to solve the vehicle
⋆ CIFRE no 2021/0599 between Smile Pickup and MIS Laboratory
3 https://www.data.gouv.fr/fr/datasets/observatoire-du-courrier-et-du-colis/

2 M. Fagot et al.

routing problem with multiple time windows. Additional constraints such as
multiple depots and an heterogeneous fleet will also be considered in our problem
as described in Salhi and al. [7]. If we look at pickup and delivery problems, we
can refer to the multi-depot dial-a-ride problem with heterogeneous vehicles (M-
DARP-HV) by Braekers [8] or more recently by Detti [9]. Dial a ride problems
are close to PDP problems except that they transport people and not goods.
Braekers [8] gives an exact method while Detti’s article [9] gives a detailed integer
linear program, a tabu search algorithm and multiple variable neighbourhood
searches all tested on real life instances. The main difference between M-DARP-
HV and our problem comes from the fact it takes into account the quality of
the service delivered to the patients in the constraint deviates the problem from
ours and makes the comparison difficult.

The main features of SPP which distinguish our problem from those en-
countered in the literature are: stores and pickup points can be loading places
and unloading places for parcels at the same time - moreover, parcels can share
their origins and destinations. This prevents us from using classical exploration
methods of the solution space.

The remainder of this paper is organised as follows. Section 2 gives a detailed
description of Smile Pickup’s vehicle routing problem (SPP). Section 3 presents
our ALNSϵ

AS algorithm. We detail movements and its two diversification process:
an acceptance criterion based on simulated annealing and an epsilon greedy
exploration strategy. Results follow in section 4 and conclusion in section 5.

2 Problem description

In this section, we give a detailed description of the problem faced by Smile
Pickup. First, we will present the data of the problem. Afterwards, we will detail
the representation of the solutions we chose and describe the objective. The
example in Fig. 1 will be used through out this article to illustrate the problem.

2.1 Data

The problem faced by Smile Pickup spans over a total of H ∈ N consecutive days
J = {1, ...,H} during which parcels C need to be transported between places Ω
using vehicles V .

Places. The set of places Ω is divided in three subsets: depots D where
vehicles start and end their day, stores E and pickup points P which exchange
parcels. A travel distance dij and duration mij is associated to each arc between
places (i, j) ∈ Ω2. For day τ ∈ J , a set of time windows {[eτik, fτ

ik]|k ∈ [1, kmax]}
is assigned to each place i ∈ Ω. kmax is the maximum number of time windows
per place. Unused time windows are set to [0, 0]. When a vehicle visits a place,
it must load and unload its parcels during one of the associated time windows.
The vehicle can arrive early at a place even though it will have to wait until a
time window opens before starting loading and unloading. For depots, the time
windows model the opening hours during which vehicle may depart and return.

ALNS for large parcel distribution 3

Fig. 1: Example of data
.

Parcels. A parcel cr ∈ C of length sr is made available in a store or a pickup
point or ∈ E∪P and needs to be delivered to it’s destination dr ∈ E∪P . A parcel
can be pickup up and delivered from day davr ∈ J but can also be stored in or
and serviced on a later day τ ≥ davr for a penalty cost pτr . Solutions do not need
to deliver all parcels but each undelivered parcel will cost PNL. Furthermore,
the time needed to load (resp. unload) a parcel cr is f c

r (resp. fd
r).

Vehicles. For each day τ ∈ J , a set of vehicles Vτ is available (V =
⋃

τ∈J Vτ).
Each vehicle starts at a depot dv and returns at the same depot at the end of
the day. Vehicle v ∈ V is given a usage cost Puv and a capacity Kv. The sum of
the length of the parcels in a vehicle v must not exceed Kv at any time during
the tour.

In Fig. 1, an example of data is given. The instance spans on a single day
J = 1 using 2 vehicles V = V1 = {v0, v1}, 6 parcels C = {c0, c1, ..., c5} and
7 places including depots D = {0, 1}, stores E = {2, 3} and pickup points
P = {4, 5, 6}. As for example, parcel c5 of length s5 = 1 needs to be picked
up at point 6 and delivered at store 3. Loading will take f c

5 = 7 minutes while
unloading only takes fd

5 = 4. If vehicle v0 is used, it starts from depot 0 and cost
Pu0 = 800. The vehicle would need to load at point 6 either between time slots
10 and 12 or 14 and 18. Unloading in 3 must take place between 8 and 13.

2.2 Solution representation

A solution S is represented by a set of tours. A tour is assigned a single vehicle.
We will consider a vehicle to be equivalent to a tour and use the same notation
v. A tour v ∈ V is an ordered list of triplets < tv0, t

v
1, ..., t

v
k >. Triplet i of tour v is

such that tvi = (pvi , C
v,+
i , Cv,−

i) with pvi ∈ Ω, Cv,+
i ⊆ C the set of parcels loaded

at pvi by v and Cv,−
i ⊆ C the set of parcels unloaded at pvi by v. During servicing

of a place, unloading will always be performed before loading. We notice that
∀v ∈ S, pv0 ∈ D, pvk ∈ D, pv0 = pvk, C

v,+
0 = Cv,−

0 = ∅ and Cv,+
k = Cv,−

k = ∅.
We also introduce the following notations: the set of undelivered parcels Cu,

the set of delivered parcels Cd, V + the set of used vehicles and the function

4 M. Fagot et al.

d : C → J indicating the day d(cr) parcel cr ∈ Cd is delivered. For simplicity,
we also introduce dist(v) the distance travelled by vehicle v ∈ V +.

Furthermore, a solution S is feasible if capacity constraints are respected and
if for every tour, there exists at least one schedule for the associated vehicle to
be able to respect the time windows of every place visited by the tour.

Using this notation we can represent the solution in Fig. 2 as follows:

v0 =< (0, ∅, ∅), (2, {c4}, ∅), (6, ∅, {c4}), (0, ∅, ∅) >
v1 =< (1, ∅, ∅), (3, {c1}, ∅), (5, ∅, {c1}), (1, ∅, ∅) >

In the representation in Fig. 2, the sets Cv,+
i and Cv,−

i are listed under place
pi. If we look at Fig. 3 presenting a solution containing all parcels, the first
vehicle loads c5 when visiting pickup point 6 for the first time. It then goes to
store 3 where c5 is unloaded and c3 is loaded. After having picked up parcel c4
in store 3, both c4 and c3 are unloaded when visiting pickup point 6 once again.
The vehicle finishes his journey by coming back to depot 0.

Fig. 2: An initial solution. Fig. 3: An optimal solution.

2.3 Solution evaluation

The objective of the problem is to find the solution S which minimises the follow-
ing criteria: the sum of the vehicles used cost, the number of undelivered parcels,
the total distance travelled and the storage penalties. To normalise and priori-
tise the different criteria, we assign the respective weights αveh, αnl, αdist, αpen
to them. The fitness function is shown in equation 1.

f(S) = αveh
∑

v∈V +

PUv + αnl |Cu|+ αdist
∑

v∈V +

dist(v) + αpen
∑

cr∈Cd

pd(cr)r (1)

3 An Adaptative Large Neighborhood Search: ALNSϵ
SA

In this section, we are going to describe the different steps in building the lo-
cal search algorithm we propose and named ALNSϵ

SA, to solve Smile Pickup
problem (SPP). The principle of such a method consists in exploring the solu-
tion space by generating a set of neighbours from the current solution S and
choosing one of them as the new current solution. Neighbourhoods are gener-
ated by movements dedicated to the specific problem considered. The process is

ALNS for large parcel distribution 5

iterated and the best solution SB found is returned. After testing different local
search algorithms as the Variable Neighbourhood Search (VNS) and the Large
Neighbourhood Search (LNS), we selected the Adaptative Large Neighbourhood
Search (ALNS) [10], an extension of the LNS in which algorithms learn how to
move in the search space more efficiently. The method we use, iterates over a
deterioration phase and a reconstruction phase. These neighbours are generated
from specific movements of two different types: deteriorating movements and
constructive movements which we will describe in section 3.2.

3.1 General ALNS algorithm

Adaptative Large Neighbourhood Search algorithm dictates the general strategy
used to decide which neighbouring solution to move to at each iteration. A
general scheme is presented in algorithm 1. The algorithm starts by generating
an initial solution using a greedy algorithm before iterating over the following
four steps until the time limit is exceeded.

Algorithm 1 general scheme of ALNS algorithm
1: Nb_iterations ← 0
2: S ← greedy()
3: while stopping criteria do
4: Nb_iterations++
5: SP ← S
6: Ns ← choose a deteriorating movement using distribution WS

7: Apply Ns to SP

8: while stopping insertion criteria do
9: Ns ← choose a constructive movement using distribution WI

10: Apply Ns to SP

11: end while
12: Update current solution S according to SP .
13: Rewards (πm

S , πm
I) and counts (θiS , θiI) movements used in iteration.

14: if Nb_iterations mod ∆ = 0 then
15: Update movement weights Wm

S and Wm
I according to rewards and move-

ment counts.
16: end if
17: end while

The first step is the deterioration phase (lines 5 to 7). One of the three
deteriorating movements (see 3.2) is chosen and applied to the current solution
SP . Each deteriorating movement m is given a weight Wm

S used to choose one
of them.

The second step is the constructive phase (lines 8 to 11) which rebuilds the
solution by inserting unassigned parcels by performing constructive movements
(see 3.2). These movements are selected and applied using their own weights
Wm

I . While deteriorating movements are applied once, constructive movements

6 M. Fagot et al.

are applied iteratively. The process stops when Emax successive movements fail
to produce a feasible solution.

In the deteriorating phase as in the constructive phase, two different strate-
gies are tested. The first one is the classical roulette wheel selection which is
performed following the distribution WS (resp. WI) to choose the movement to
apply. The second one is the epsilon greedy strategy detailed in section 3.4.

The next step decides if this newly built solution is worthy enough to be-
come the new current solution for the next iteration (line 12). It also classifies
the performance of the iteration based on the solution produced for the weight
adjustment step. This step is detailed on section 3.3.

The final step (lines 13 to 18) adapts the weights as follows: each movement
applied successfully is rewarded based on the classification given in step 3. πm

S

(resp. πm
I) counts the rewards earned by the deteriorating (resp. constructive)

movement m while θmS (resp. θmI) counts the number of times it was successfully
applied. Each ∆ iterations, the weight distributions are corrected using the fol-
lowing formula: Wm

S ← ρ
πm
S

θm
S PS

+ (1− ρ)Wm
S with PS the sum of πm

S

θm
S

for the set
of deteriorating movements. The weights Wm

I are updated in the same way as
Wm

S .

3.2 Movements

In the following section, the six movements created to move from neighbour to
neighbour in the solution space will be detailed.

Parcel insertion movement: pim
This movement pim first randomly selects a parcel r ∈ Cu and tries to insert

it in a tour. Candidate tours are classified in four sets ξj , j = 1, . . . , 4. The first
one, ξ1 contains tours that visit both origin or and destination dr of cr in the
right order. Next, ξ2 contains tours visiting origin or and ξ3 contains those that
visit only the destination dr. Finally ξ4 contains tours that visit neither or nor
dr. Tours where dr precedes or are included in ξ2.

Let ξk be the first non-empty set, then operator pim will randomly pick out
in ξk a tour v. Depending on ξk, the following processes are applied to v:

– case ξk = ξ1. Choose a triplet tvi ∈ v and tvj ∈ v such that pvi = or, pvj = dr

and i < j. Add cr to Cv,+
i and to Cv,−

j .
– case ξk = ξ2. Choose a triplet tvi ∈ v such that pvi = or and add cr to Cv,+

i .
Choose tvj such that j ≥ i. Insert the triplet (dr, ∅, {r}) in tour v between tvj
and tvj+1.

– case ξk = ξ3. Choose a triplet tvj ∈ v such that pvj = dr and add cr to Cv,−
j .

Choose tvi , such that i < j. Insert the triplet (or, {cr}, ∅) in tour v between
tvi and tvi+1.

– case ξk = ξ4. Choose a triplet tvi . Insert the triplet (or, {cr}, ∅) in tour v
between tvi and tvi+1. Choose a second triplet tvj , i ≤ j. Insert the triplet
(dr, ∅, {cr}) in tour v between tvj and tvj+1.

ALNS for large parcel distribution 7

When cr is added to Cv,+
i , if capacity constraint is violated, then movement

pim is reject. In a same manner, when triplets tvi = (or, {cr}, ∅) and/or tvj =
(dr, ∅, {cr}) are inserted to tour v, if window constraints are violated, movement
is rejected.

Consider now the initial solution in Fig. 2 and c0 ∈ Cu the parcel to insert
(o0 = 2 and d0 = 4). Then the four sets are: ξ1 = ∅, ξ2 = {v1}, ξ3 = ∅ and
ξ4 = {v2}. We add c0 to Cv1,+

2 and insert the triplet tv14 = (dc0 , ∅, {c0}) in tour
v1. The resulting tour is illustrated in Fig. 4(b).

Fig. 4: Examples of solutions after the application of constructive movements.

Fig. 5: Examples of solutions after the application of deteriorating movements.

Forced parcel insertion movement: fpim
Movement fpim starts by randomly selecting a parcel cr ∈ Cu and a tour v ∈ V .
Then two triplets tvi and tvj (0 ≤ i ≤ j < k) are randomly selected. Next,
triplets (or, {cr}, ∅) and (dr, ∅, {cr}) are respectively inserted after tvi and tvj in
the right order. Capacity and time window constraints are then checked on v.
If unsuccessful, fpim is rejected. Fig. 4(a) presents a possible outcome of the
application of fpim on the solution of Fig. 2. c0 is added to v1 by inserting both
(2, {c0}, ∅) and (4, ∅, {c0}) after tv10 in the right order.

Fill movement: fm
Movement fm randomly selects a vehicle v =< tv0, ..., t

v
k > and one of its triplets

tvi = (pvi , C
v,+
i , Cv,−

i) with 0 < i < k. For every triplet tvj = (pvj , C
v,+
j , Cv,−

j) such
that 0 < j < i, let’s define Cu

fm = {cr ∈ Cu | or = pvj and dr = pvi }. Parcels of
Cu

fm are added in a random order to both Cv,+
j and Cv,−

i as long as capacity and
time window constraints are not broken. Ditto with triplets tvj where i < j < k,
parcels of Cu

fm = {cr ∈ Cu | or = pvi and dr = pvj} are inserted in Cv,+
i and

Cv,−
j . Fig. 4(c) gives an example with the application of fm on the solution in

Fig. 4(a) where Cu = {c2, c3, c5}. v1 is selected as well as tv11 . The only triplet
tv1j (1 < j ≤ 4) where Cu

fm ̸= ∅ is tv14 : Cu
fm = {c2}. Hence, c2 is added in Cv1,+

1

and Cv1,−
4 . No more parcel can be added because the tour is full with capacity

Kv1 = 2.
Parcel suppression movement: psm

Movement psm starts by randomly selecting a parcel cr ∈ Cd. Let be tvi =

8 M. Fagot et al.

(pvi , C
v,+
i , Cv,−

i) and tvj = (pvj , C
v,+
j , Cv,−

j) such that cr ∈ Cv,+
i and cr ∈ Cv,−

j .
Movement psm modifies both triplets by removing cr from Cv,+

i and Cv,−
j . cr is

added to Cu. psm finishes by removing unused places (Cv,−
i = Cv,+

i = ∅) and
unused tours. Fig. 5(a) shows the result of the application of psm on parcel c0 of
solution in Fig. 4(c). c0 is added to Cu and removed from tv11 and tv12 . Because
Cv1,−

2 = Cv1,+
2 are empty, tv1

2 is removed from v1.
Place suppression movement: lsm

Movement lsm starts by randomly selecting a tour v ∈ V + and one of its triplet
tvi = (pvi , C

v,+
i , Cv,−

i). All parcels from Cv,+
i and Cv,−

i are removed from tour
v. psm finishes by removing unused places (Cv,−

i = Cv,+
i = ∅) and unused

tours. Fig. 5(b) shows the outcome of applying lsm to tour v1 of the solution in
Fig. 4(c). tv14 = (5, ∅, {c1, c2}) is removed and {c1, c2} are added to Cu. Triplet
tv13 is now empty and hence removed from v.

Tour suppression movement: tsm
This movement is the most disruptive movement. A tour v ∈ V + is chosen at
random. All parcels serviced by v are added to Cu while v is removed.

A short term tabu memory was added to avoid cycling over a set of solutions.
Parcels are set tabu when they are removed from a tour. Afterwards, the parcel
can not be re-inserted in the same tour for a certain number of iterations called
tenure δ.

3.3 Solution updating and classification

After a neighbour SP of S has been chosen by the first two steps of an iteration,
we update the current solution S. Four cases are possible: (1) f(SP) < f(SB)
where SB is the best solution visited so far, (2) f(SP) < f(S), (3) SP satisfies
the acceptance criterion and (4) SP does not satisfy the acceptance criterion.
When cases (1), (2) or (3) occur, S is replaced by SP . Furthermore, when case
(1) is met, SB is updated with SP . These cases are also used to choose the reward
σi (i ∈ {1, . . . , 4}) according to the quality of the solution in order to update the
weights of the movements WS and WI [10].

The acceptance criterion is used to accept some solutions (case (3)) which
have decreased the fitness function and hence avoid getting stuck in local op-
tima. Simulated annealing was chosen to manage the acceptance criterion (see
section 3.4).

3.4 Exploitation, exploration and learning strategies

In this subsection, strategies to improve the performance of the ALNS are dis-
cussed including a simulated annealing strategy to accept degraded solutions
and an epsilon greedy movement selection strategy.

Simulated annealing (SA). Simulated annealing is used as an acceptance
criterion to allow degradation of the solutions. Indeed, in case (3) (see section 3.3)
the solution SP is accepted with probability p(SP) = e−

f(SP)−f(S)

T where T is the

ALNS for large parcel distribution 9

temperature and S the current solution. The temperature controls the range of
solutions to be accepted with high probability. When T is high, worse solutions
have higher chance of passing while when T is lower, only solutions with close
fitness scores have a real chance of going through.

We tested two scenarios. The first one is the classical SA process where the
temperature decreases progressively using a multiplicative coefficient γSA. The
second one proceeds with restarts when the solution is not improved for RSA

step
iterations. In this case the weight learning is conserved.

Epsilon greedy. The epsilon greedy strategy is used to balance between ex-
ploration and exploitation during movement selection. This new strategy takes
in consideration the weight distributions WI and WS . The movement with the
heavier weight is chosen with probability (1 − ϵ) while with probability ϵ the
roulette wheel is used with weight distributions WI and WS to select a move-
ment. During the execution of the algorithm, ϵ is slowly decreased by a constant
multiplicative coefficient γϵ and reinitialised if, for Rϵ

step iterations, there is no
improvement since the last restart.

The version of our algorithm, including SA with restart and epsilon-greedy
strategy is named ALNSϵ

SA.

4 Computational experiments

In this section we will describe the experiments we made to test our ALNSϵ
SA

algorithm. First we will describe the instances used before talking about the
method we used to tune our parameters. A comparison of VNS, LNS and ALNS,
and for each of them their combination with the SA acceptance criterion is
presented. Then two movement selection strategies were put in competition:
roulette wheel and epsilon greedy. Finally, we tested our ALNSϵ

SA on Li & Lim
benchmark [3].

4.1 Instances

Our algorithms were tested, tuned and compared on two different sets of in-
stances: Li & Lim benchmark instances4 and our own instances. Li and Lim’s
instances are dedicated to the PDPTW. This benchmark was the closest we
found to our problem. A simplification of our problem is necessary to be able to
compare. The horizon is set to H = 1 and places have exactly one time window.
Parcels do not share their place of origin and destination meaning the number
of stores and pickup points equal the number of parcels. Finally, we adjust the
weights αi of the criteria in the fitness function in equation 1 in order to de-
liver all parcels and prioritise the number of vehicles used before minimising the
travelled distance.

We also generated a benchmark PickOptBench to fully test our problem.
These 135 instances where generated to be as close as possible to the reality
4 Benchmark available on http://www.sintef.no/pdptw

10 M. Fagot et al.

faced by Smile Pickup. This was achieved by analysing the distribution of parcels
across working days J and places Ω. Time windows and vehicles data where
chosen based on existing ones. Here are the main characteristics for our set of
instances: H = 3, |D| ∈ {1, 2}, |E| ∈ {1, 2, 4}, |P | ∈ {5, 10, 20, 40}, kmax = 3,
|C| ∈ {60, 120, 240, 480, 960}, |V | ∈ [2, 46] and Kv ∈ [20, 30] (see section 2).

The experimentations were conducted on an intel core i7-10875H for a max-
imum execution time of 10 minutes each.

4.2 Parameter tuning

To tune our algorithms and the different strategies implemented, we used the
Irace software by López-Ibáñez and al. [11]. The tuning was done using instances
from PickOptBench with 1000 experiments per run. We proceeded step by step
and started by tuning the ALNS with simulated annealing without restart. After
having fixed those parameters, we added other strategies one by one and tuned
them separately. The results are presented in table 1 with coefficient αveh =
1000, αnl = 500, αdist = 1, αpen = 1 for the fitness function (see section 1).

algorithm parameters tuned configuration
ALNS SA < ρ, σ1, σ2, σ3, σ4, γSA, δ > < 3, 29, 10, 1, 1, 895, 7428 >

restart < Trestart, R
sa
step > < 6164, 9598 >

epsilon greedy < γϵ, R
ϵ
step > < 4.5 · 105, 105 >

Table 1: Best configurations after tuning with irace.
4.3 ALNS and Simulated Annealing contributions

We first compare the following algorithms: greedy, VNS, VNSSA, LNS, LNSSA,
ALNS and ALNSSA on the PickOptBench and Li & Lim Benchmark. VNSSA
(resp. LNSSA, ALNSSA) is the VNS (resp. LNS, ALNS) algorithms improved
with a simulated annealing acceptance criterion. Each instance was ran 5 times
on each algorithm. Maximum execution time is 3 minutes.

PickOptBench
algorithms Greedy VNS VNSSA LNS LNSSA ALNS ALNSSA

best 1739 1236 1041 1138 1027 1081 1011
average all 1959 1300 1077 1156 1056 1151 1027

worst 2230 1363 1107 1172 1090 1230 1047
Li & Lim Benchmark

algorithms Greedy VNS VNSSA LNS LNSSA ALNS ALNSSA

best 1651 1017 1083 1692 1017 1622 865
average all 1760 1068 1124 1728 1061 1654 889

worst 1877 1118 1165 1764 1104 1686 911
Table 2: Algorithm comparison on both benchmarks.

Table 2 gives the average fitness score over all runs and the average of the
best (resp. worst) scores obtained over the 5 runs. We can deduce multiple infor-
mations from results in Table 2: first, as expected, all the local search algorithms
improve over the greedy algorithm by at least 50%. We also notice simulated an-
nealing improves the results for LNS, VNS and ALNS with a gain of 10% up to
20% on average.

ALNS for large parcel distribution 11

4.4 Combining epsilon greedy and simulated annealing restart
strategies

Here we measure the impact of the strategy used in the choice of a movement
by comparing roulette wheel to epsilon greedy. We also evaluate the interest of
integrating a restart of the SA, when updating the current solution. Experimen-
tation results presented in Table 3 were obtained on PickOptBench 35 biggest
instances. The smaller ones are not discriminating enough since every strategies
find the same results. 10 runs of 10 minutes were made for each instance. The
column best (resp. worst) presents the average over all instances of the fitness
(see equation 1) of the best (resp. worst) solution returned during the 10 runs
of each instance. Likewise, the column average is the average of fitness of all the
solutions.

We clearly see the benefit of combining in ALNSϵ
SA epsilon greedy strategy

with restart for SA.

Algorithms roulette wheel epsilon greedy
best average worst best average worst

SA no restart 2565 2602 2637 2578 2604 2630
restart 2582 2607 2636 2554 2591 2613

Table 3: Comparison of the different strategies on PickOptBench.

4.5 Comparison on Li & Lim benchmark

The comparison of our algorithm ALNSϵ
SA with the best known results found

for Li & Lim benchmark [3] are presented in this section. This benchmark is
composed of 56 instances organised in six classes LC1, LC2, LR1, LR2 LRC1
and LRC2, for wich results are a pair of values: the number of used vehicles
and the total distance travelled. ALNSϵ

SA finds the best known solutions on
more than 70% for classes LC1, LC2, LR1 and LRC1. Nevertheless, only 10%
are reached for classes LR2 and LRC2. Table 4 illustrates a small part of these
results, for classes LC1 and LRC2.

LC1 best known ALNSϵ
SA LRC2 best known ALNSϵ

SA
|V +| distance |V +| distance |V +| distance |V +| distance

lc101 10 824.94 10 824.94 lrc201 4 1406.94 5 1497.47
lc102 10 824.94 10 824.94 lrc202 3 1374.27 5 1544.84
lc103 9 1035.35 10 826.44 lrc203 3 1089.07 4 1092.13
lc104 9 860.01 9 860.01 lrc204 3 818.66 3 818.66
lc105 10 824.94 10 824.94 lrc205 3 1302.2 5 1363.63
lc106 10 824.94 10 824.94 lrc206 3 1159.03 4 1210.00
lc107 10 824.94 10 824.94 lrc207 3 1062.05 4 1138.55
lc108 10 826.44 10 826.44 lrc208 3 852.76 4 937.57

Table 4: Comparison with best solutions on classes LC1 and LRC2.

12 M. Fagot et al.

5 Conclusion
This paper presented our ALNSϵ

SA algorithm for a pickup and delivery problem
applied to a real life case for Smile Pickup business (SPP). Additional constraints
considered are multiple time windows, heterogeneous fleet and multiple depots.
ALNSϵ

SA is an Adaptive Learning Neighbourhood Search algorithm, combining
two diversification processes. The first one is based on a simulated annealing
technique dedicated to updating the current solution. The second one is an ep-
silon greedy strategy used to balance between exploration and exploitation dur-
ing the generation of neighbourhoods. ALNSϵ

SA was tested on PickOptBench
and Li&Lim benchmarks. Experimentation results show that such an approach
is very promising for solving SPP. In addition, many levers exist to improve the
performance of ALNSϵ

SA. For example, we plan to improve suppression move-
ments by integrating more relevant selection criteria than the random selection
of deleted items.

References

1. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery models
part ii: Transportation between pickup and delivery locations. Journal für Betrieb-
swirtschaft 58 (2006) 81–117

2. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and
delivery problems: a classification scheme and survey. Top 15 (2007) 1–31

3. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time win-
dows. In: Proceedings 13th IEEE International Conference on Tools with Artificial
Intelligence. ICTAI 2001. (2001) 160–167

4. de Jong, C., Kant, G., Van Vlient, A.: On finding minimal route duration in the
vehicle routing problem with multiple time windows. Manuscript, Department of
Computer Science, Utrecht University, Holland (1996)

5. Belhaiza, S., Hansen, P., Laporte, G.: A hybrid variable neighborhood tabu search
heuristic for the vehicle routing problem with multiple time windows. Comput.
Oper. Res. 52 (2014) 269–281

6. Ferreira, H.S., Bogue, E.T., Noronha, T.F., Belhaiza, S., Prins, C.: Variable neigh-
borhood search for vehicle routing problem with multiple time windows. Electron.
Notes Discret. Math. 66 (2018) 207–214

7. Salhi, S., Imran, A., Wassan, N.A.: The multi-depot vehicle routing problem with
heterogeneous vehicle fleet: Formulation and a variable neighborhood search im-
plementation. Comput. Oper. Res. 52 (2014) 315–325

8. Braekers, K., Caris, A., Janssens, G.K.: Exact and meta-heuristic approach for
a general heterogeneous dial-a-ride problem with multiple depots. Transportation
Research Part B: Methodological 67 (2014) 166–186

9. Detti, P., Papalini, F., de Lara, G.Z.M.: A multi-depot dial-a-ride problem with
heterogeneous vehicles and compatibility constraints in healthcare. Omega 70
(2017) 1–14

10. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science 40 (2006)
455–472

11. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3 (2016) 43–58

