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Abstract 50 

Plants growing with neighbours compete for light and consequently increase  growth of their 51 
vegetative organs to enhance access to sunlight. This response, called shade avoidance 52 
syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome 53 
interacting factors (PIFs), which regulate the expression of growth-mediating genes. 54 
Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of 55 
cell wall modifications for enabling growth was extensively shown in developmental models 56 
such as dark-grown hypocotyl.  However, the role of the cell wall in the growth of de-57 
etiolated seedlings regulated by shade cues remains poorly established. Through analyses of 58 
mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis 59 
of cell wall-related genes, we show the importance of cell wall modifications in neighbour 60 
proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the 61 
synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the 62 
cgr2cgr3 double mutant that is defective in homogalacturonan (HG) methyltransferase 63 
activity required for methylesterification of HG-type pectins. By following hypocotyl growth 64 
kinetically and spatially and analyzing the mechanical and biochemical properties of cell 65 
walls, we found that methylesterification of HG-type pectins was required to enable global 66 
cell wall modifications. Moreover, HG-class pectin modification was needed for plant 67 
competition-induced hypocotyl growth. Collectively our work suggests that in the hypocotyl 68 
PIFs orchestrate changes in the expression of numerous cell wall genes to enable neighbour 69 
proximity-induced growth.  70 



 

6 
 

Introduction 71 

Plants growing in dense populations compete for light required for photosynthesis 72 
(Fiorucci and Fankhauser, 2017). Proximity of competitors and shade are perceived as a 73 
change in light intensity and quality, resulting in various developmental adaptations (Galvão 74 
and Fankhauser, 2015). Depending on their response to shade, plants are classified into shade-75 
tolerant and shade-avoiding species (Gommers et al., 2013). The latter react to shade with 76 
characteristic growth responses in order to reach full sunlight for photosynthesis. This 77 
phenomenon, known as Shade-Avoidance Syndrome (SAS) can be observed in most aerial 78 
organs and involves a range of developmental changes (Pierik and De Wit, 2014). For 79 
example, SAS entails early flowering and inhibition of branching, leaves adopt an upright 80 
position (hyponasty), and petioles, stems and hypocotyls elongate (de Wit et al., 2016). These 81 
changes accelerate the life cycle of plants and warrant survival and propagation under limited 82 
light availability. 83 

 The phytochrome (phy) type photoreceptors have a central role in SAS with phyB 84 
playing a predominant role in Arabidopsis thaliana (Legris et al., 2019). Under high R:FR 85 
conditions, corresponding to full sunlight, active phyB moves into the nucleus, where it 86 
interacts with transcription factors known as Phytochrome Interacting Factors (PIFs) to inhibit 87 
their activities. Low R:FR conditions, on the other hand, cause inactivation of phyB and 88 
derepression of the PIFs, which modulate genes required for shade-induced growth (de Wit et 89 
al., 2016). A central mechanism in shade-induced growth is auxin biosynthesis in cotyledons 90 
and young leaves followed by polar transport and distribution in hypocotyls and stems, which 91 
elongate in response to shade (de Wit et al., 2014). phyB and PIFs also act localy in the 92 
hypocotyl to promote growth through mechanisms that are less clearly established (Fiorucci 93 
and Fankhauser, 2017; Pucciariello et al., 2018). For example PIFs regulate the expression of 94 
genes required for plasma-membrane lipid biogenesis in the hypocotyl (Ince et al., 2022). 95 
Moreover, numerous genes encoding cell wall-modifying proteins are induced by shade and 96 
targeted by PIFs (Kohnen et al., 2016; Pedmale et al., 2016), suggesting role for cell wall 97 
metabolism in the establishment of the shade-regulated growth.  98 

The primary cell wall of growing plant organs has seemingly contradictory functions. 99 
On the one hand, it provides mechanical strength to maintain cell shape and plant stature, on 100 
the other hand, it has to remain elastic and plastic to allow cell expansion and plant growth 101 
(Bashline et al., 2014). In dicotyledonous species such as Arabidopsis, the primary cell wall 102 
consists of interconnected networks of polysaccharides and structural proteins/glycoproteins 103 
(Cosgrove, 2005; Wolf et al., 2012a; Nguema-Ona et al., 2014). A first network of cellulose 104 
microfibrils cross-linked by hemicelluloses (network 1) is embedded in a second network 105 
made by pectins that have gelling properties (network 2). Pectins are intimately associated 106 
with a third network (network 3), consisting mainly of glycoproteins such as extensins 107 
(EXTs) and arabinogalactan proteins (AGPs) (Hijazi et al., 2014). This complex three-108 
dimensional mesh resists to internal turgor pressure, and at the same time yields to allow cell 109 
growth. Dynamic adjustment of physical cell wall properties (e.g. stiffness, elasticity, 110 
plasticity) involves cell wall-synthesizing and modifying enzymes that usually belong to 111 
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multigenic families and constantly modulate cell walls to allow growth (Atmodjo et al., 2013; 112 
Sénéchal et al., 2014b; Pauly and Keegstra, 2016; Showalter and Basu, 2016).  113 

Cell wall remodeling plays a central role in the control of seedling development, 114 
however, its contribution to adaptive growth phenomena in response to environmental cues 115 
such as SAS remains poorly understood. Although transcriptomic analyses suggested that cell 116 
wall remodeling may play a central role in adaptive growth processes (Kohnen et al., 2016), 117 
direct functional evidence is scarce. A role for xyloglucans in SAS has been established for 118 
petiole elongation in Arabidopsis (Sasidharan et al., 2010; Sasidharan and Pierik, 2010), and 119 
for shade-induced growth in Stellaria longipes (Sasidharan et al., 2008). Here, we took a 120 
systematic approach to explore the contribution of cell wall remodeling in SAS of the 121 
Arabidopsis hypocotyl. By combining Fourier-transformed infrared (FTIR) analyses of cell 122 
wall constituents with measurements of cell wall biophysics, we show that cell wall 123 
remodeling is triggered at early stages of the growth response induced by low R:FR, 124 
indicative of neighbour proximity that is a form of SAS. Employing systematic transcriptomic 125 
and genetic analysis with mutants affected in various aspects of cell wall biosynthesis and 126 
modification, we establish pectin methylesterification status as a central determinant of cell 127 
wall extensibility in the neighbour proximity-induced hypocotyl growth.  128 

  129 
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Results 130 

Low R:FR induces cell elongation mainly in the middle part of the hypocotyl 131 

In order to simulate the proximity of competing neighbours, we subjected Arabidopsis 132 
seedlings to white light supplemented with far red (low R:FR ratio). Within one day, this led 133 
to increased hypocotyl growth compared to control seedlings kept in white light (high R:FR 134 
ratio) (Fig. 1A). In order to determine the site of growth, we used the borders of epidermal 135 
cells as marks, since hypocotyl elongation proceeds almost exclusively by cell elongation 136 
without cell division. In order te assess cell dimensions, confocal images of seedlings were 137 
segmented in MorphoGraphX (de Reuille et al., 2015), followed by semiautomated cell size 138 
measurements. Cell length along the length of the hypocotyl was increased by low R:FR 139 
primarily in the middle part of the hypocotyl (Fig. 1B).  140 

 141 

Low R:FR changes mechanical properties of hypocotyl cell walls 142 

To assess the mechanical properties of the hypocotyl during growth induced by low 143 
R:FR, we used an automated confocal micro-extensometer (Robinson et al., 2017). This 144 
approach enabled in vivo quantification of the elastic properties of cell walls. Hypocotyls of 145 
intact seedlings were abraded by freezing and thawing and subjected to repeated cycles of 146 
application and removal of 5 mN of force . Our analysis revealed increased strain under low 147 
R:FR after one day of treatment, and decreased strain after three days (Fig. 2A). Interestingly 148 
this effect was specific to low R:FR conditions, since no such changes were observed under 149 
high R:FR (Fig. 2A).  150 

To relate growth and mechanical changes induced by low R:FR to cell wall properties, 151 
we applied Fourier-transformed infrared (FTIR) microspectroscopy to cells located in the 152 
middle part of the hypocotyl. The relative absorbance intensities for wavelengths related to 153 
the cell wall (from 830 to 1800 cm-1) were selected to assess the composition and status of 154 
various cell wall polysaccharides. FTIR analysis revealed significantly different patterns of 155 
relative absorption induced by low R:FR ratio after three days of treatment (Fig. 2B and Fig. 156 
S1). The main differences were observed between 1530 and 1200 cm-1 and between 1180 and 157 
1030 cm-1 (Fig. 2B). A relative decrease (at 1740 and between 1530-1200 cm-1) indicates 158 
lower levels of pectins and xyloglucans, as well as cellulose and lignin. On the other hand, an 159 
increase between 1180 and 1030 cm-1 indicates enrichement of pectins, xyloglucans, cellulose 160 
and arabinogalactan that can relate both to AGPs and rhamnogalacturonan I-type pectins (Fig. 161 
2B). These results indicate major cell wall remodeling in response to low R:FR ratio. In order 162 
to obtain further insight into the changed cell wall components, we performed hierarchical 163 
clustering for the wavelengths that have previously been assigned to certain cell wall 164 
components (Kakuráková et al., 2000; Wilson et al., 2000; Mouille et al., 2003; Alonso-simón 165 
et al., 2011; Szymanska-Chargot and Zdunek, 2013; Largo-Gosens et al., 2014) (Fig. 2C). 166 
This revealed an overall enrichment for pectins with a low degree of methylesterification (de-167 
esterified pectins), in addition to other pectins, arabinogalactan proteins, cellulose, and 168 
xyloglucans in response to low R:FR, while other wavelengths assigned to pectins, cellulose 169 
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and xyloglucans showed opposite trends. Depending on the chemical bonds revealed by the 170 
wavelengths, different structural part of the polysaccharides are assessed such as backbone 171 
and side chains. This could explain opposite trends for wavelengths related to the same 172 
polysaccharide, which can be more abundant with reduced side chains for instance. Taken 173 
together, these results revealed major changes in cell wall biosynthesis and remodeling in 174 
response to low R:FR. 175 

 176 

Low R:FR impinges on expression of cell wall-related genes 177 

   In order to investigate transcriptional regulation of cell wall properties under low 178 
R:FR, we considered 40 gene families that are thought to be involved in synthesis and/or 179 
remodeling of cell wall components. The expression of a total of 824 genes was analyzed 180 
using an RNA sequencing dataset from a time course experiment under low R:FR conditions 181 
(Kohnen et al., 2016). In this set of genes, 544 were found to be expressed in seedlings grown 182 
under control conditions, among which 224 were regulated by low R:FR in hypocotyls (Fig. 183 
3A). Only few genes were regulated in cotyledons or in both organs (26 and 16 genes, 184 
respectively) (Fig. 3A). Most genes were regulated at later stages (90 or 180 min after onset 185 
of light stimulus), and they were mostly up-regulated, in particular in hypocotyls (Fig. 3A). 186 
Modulated genes comprised functions related to (hemi)cellulose (network 1),  pectin (network 187 
2), and structural proteins (network 3) (Fig. 3B). The few genes that were induced at the early 188 
time points (15 or 45 min. after onset of the light stimulus) in hypocotyls are involved in cell 189 
wall remodelling (At1g49490:EXT, At5g47500:PME, At1g62760:PMEI, At5g02260:EXP, 190 
At5g57560:XTH, At1g02405:EXT, At3g10710:PME, Tables S1A and S1B). Considering the 191 
global influence of FR light on cell biosynthetic genes, the highest percentage related to 192 
pectins (network 2) with 96% of the genes expressed in seedlings, and 52% affected by low 193 
R:FR conditions. Taken together, these results indicate that cell wall remodelling is initiated 194 
within the first 15 minutes of low R:FR treatment, followed by general cell wall modifications 195 
involving both synthesis and remodeling of all cell wall constituents, in particular of pectin.   196 

SAS is controlled by PIFs, hence, we interrogated previously published ChIP 197 
sequencing data (Kohnen et al., 2016) for interactions of PIF4 and PIF5 with the 224 genes 198 
regulated in the hypocotyl under low R:FR conditions. Indeed, 59 genes showed a direct 199 
interaction with PIF4 and/or PIF5 (Fig. S2 and Table S1C), including genes related to all 200 
three polymer networks, as well as to all processes including cell wall synthesis, remodelling, 201 
and signalling.  202 

 203 

Cell wall-related mutants reveal the role of cell wall components in low R:FR-induced 204 
growth  205 

In order to gain insight into the mechanisms involved in low R:FR-induced growth, 206 
loss-of-function mutants defective in the three networks (cellulose, pectin, glycoproteins) 207 
were investigated for growth phenotypes under low R:FR treatment. We selected xxt mutants 208 
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impaired in xyloglucan biosynthesis (network 1), mutants affected in pectin biosynthesis 209 
(gaut, gatl and cgr) and pectin remodeling (pme and pmei; network 2), and mutants affected 210 
in AGP biosynthesis (galt, agp10c, and fla9; network 3). All of these mutants were subjected 211 
to low R:FR treatment for three days and their hypocotyl growth response was normalized to 212 
the wild type. None of the single mutants in network 1 had a growth phenotype (Fig. 4A), 213 
possibly because of genetic redundancy, but the double mutants xxt1xxt2 and xxt2xxt5 showed 214 
significantly reduced hypocotyl elongation in response to low R:FR. In network 2 mutants, 215 
only cgr2, had a growth defect, which was exacerbated in the cgr2cgr3 double mutant. 216 
Unexpectedely, mutants affected in network 3 generally grew longer than the wild type (Fig. 217 
4A). Taken together, these results highlight the importance of xyloglucan and pectin in SAS, 218 
while some proteinaceous component of the cell walls appear to restricts hypocotyl elongation 219 
in the wild type. 220 

Based on the induction of several homogalacturonan methyltransferases (HGMT), 221 
including the previously characterized HGMT genes CGR2 and CGR3 (Kim et al., 2015) 222 
(Fig. S3), and on the strong growth phenotype of the cgr2cgr3 double mutant, (Fig. 4A), we 223 
investigated cell wall constituents in cgr2cgr3 by FTIR analyses using wavelengths assigned 224 
to methylesterified (1740 cm-1) and demethylesterified (1630 cm-1) pectins (Fig. S4). Using 225 
these wavelengths we estimated the degree of methylesterification (DM), which was 226 
decreased by approximately 40%  in cgr2cgr3 compared to the wild type. In a time course 227 
experiment, cgr2cgr3 was not affected in hypocotyl growth under control conditions (high 228 
R:FR),  however, under low R:FR conditions, growth was reduced (Fig. 4B). Notably, 229 
cgr2cgr3 reacted slower (4d+1d) and weaker (4d+3d) than the wild type (Fig. 4B). The 230 
growth defect of cgr2cgr3 was particularly pronounced in the middle part of the hypocotyl 231 
that normally shows the strongest growth response (Fig. S5). This indicates that cgr2cgr3 232 
mutants have a defect in low R:FR-induced epidermal cell elongation. 233 

We next assessed the mechanical properties of cgr2cgr3 hypocotyls in response to low 234 
R:FR (Fig. 4C). Wild type hypocotyls had shown an increase in cell wall strain after 1d, and a 235 
decrease after 3d of FR treatment (Fig. 2A). In contrast, cgr2cgr3 did not show a change in 236 
strain at either time point, indicating that cell wall remodeling is defective in the double 237 
mutant. To further address this aspect, we investigated cell wall composition of cgr2cgr3 by 238 
FTIR microspectroscopy as in the wild type (Fig. 2B,C), in the range of wavelengths from 239 
830 to 1800 cm-1 to obtain a cell wall fingerprint. This analysis was performed in the middle 240 
part of hypocotyls which shows the strongest growth increment under low R:FR (Fig. 1B, 241 
Fig. S6). Relative absorbances for Col-0 and cgr2cgr3 did not show significant changes in 242 
response to low R:FR after the first day (Fig. 5A; Figs. S6A,B upper panels). However, 3 243 
days after transfer, both wild type and cgr2cgr3 showed significant changes of relative 244 
absorbances in response to low R:FR conditions (Fig. 5A; Figs. S6A,B, lower panels). 245 
Overall, the pattern of the significantly affected wavelengths were similar for both genotypes, 246 
but the differences were more pronounced in the wild type than cgr2cgr3 (Fig. 5B).  247 

The main differences beween the genotypes were observed in the range of 248 
wavelengths from 1630 to 1500 cm-1 with a decrease in the wild type but not in cgr2cgr3 249 
(Fig. 5B), and between 1180 to 1030 cm-1, where the wild type showed a stronger increase 250 
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than the double mutant. These results suggest that a change in pectin methylesterification in 251 
cgr2cgr3 results in secondary changes in cell wall composition (Fig. 5B).  252 
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Discussion 253 

While growth is simple to quantify, in particular in an organ like the hypocotyl that 254 
grows essentially in only one dimension, the underlying molecular mechanisms are extremely 255 
complex because they involve multiple regulatory levels such as hormonal and metabolic 256 
regulation, transcriptional activation of growth-related genes, and ultimately remodeling of 257 
the complex three-dimensional cell wall polymer network. Thanks to the ease of mutational 258 
analysis of growth, many of the upstream regulatory components in SAS have been identified 259 
(Procko et al., 2014; Ballaré and Pierik, 2017; Fiorucci and Fankhauser, 2017). A reduced 260 
R:FR indicative of neighbour proximity is primarily perceived by phyB in cotyledons and 261 
young leaves (Ballaré and Pierik, 2017; Fiorucci and Fankhauser, 2017). This leads to PIF-262 
mediated induction of auxin production, which following transport to the hypocotyl promotes 263 
elongation (Procko et al., 2014; Ballaré and Pierik, 2017; Fiorucci and Fankhauser, 2017). 264 
PIFs can also directly regulate expression of hypocotyl specific genes as shown for genes 265 
encoding enzymes involved in plasma-membrane biogenesis (Ince et al., 2022). Our data 266 
suggests low R:FR induces extensive hypocotyl-specific regulation of genes encoding 267 
enzymes involved in cell wall biosynthesis and remodeling (Fig. 3), that ultimately results in 268 
in alteration of cell wall properties and induction of growth. However, due to the 269 
interdependency of cell wall components, it has been difficult to disentangle the role of 270 
individual cell wall components in growth. Here, we identified and characterized pectin 271 
methylesterification status as a central element in the growth phenomenon of Arabidopsis 272 
seedlings in the shade avoidance response.  273 

Pectin consists mainly of homogalacturonan (HG) which represents a linear polymer 274 
of galacturonic acid (GalA) synthesized by galacturonosyltransferases (GAUTs) and GAUT-275 
like (GATL) enzymes in the Golgi apparatus (Atmodjo et al., 2013). HG is subsequently 276 
methylesterified by HGMTs before secretion into the cell wall, where it can be selectively 277 
demethylesterified by pectin methylesterases (PMEs) (Sénéchal et al., 2014b). Thus, PME 278 
activity adjusts the degree of methylesterification (DM), which in turn modulates cell wall 279 
mechanical properties (Peaucelle et al., 2011; Wang et al., 2020). Furthermore, PME-280 
mediated demethylesterification can expose HG to pectin-degrading enzymes such as 281 
polygalacturonases (PGs) and pectate lyases-like (PLLs) (Sénéchal et al., 2014b). Pectin 282 
degradation by these enzymes can contribute to cell wall loosening. There is evidence for a 283 
functional role of pectin metabolism in the regulation of growth (Bouton, 2002; Mouille et al., 284 
2007) (Pelletier et al., 2010; Guénin et al., 2011; Wolf et al., 2012b; Sénéchal et al., 2014a) 285 
(Wang et al., 2010; Xiao et al., 2014; Rui et al., 2017), however, the high degree of 286 
redundancy in cell-wall remodeling enzymes has complicated the analysis. For example, there 287 
are 66 and 76 genes, respectively, that encode PMEs and PME inhibitors (PMEIs), allowing 288 
for extensive compensatory responses upon genetic or pharmacological interference.  289 

A mechanistic understanding of growth phenomena requires the combined use of 290 
genetic, analytic, and biomechanical methods to identify the causal elements in cell growth. 291 
Using FTIR analysis, we document changes in cell wall composition in response to changes in 292 
the R:FR ratio, which correlate with accelerated growth. We identified two 293 
homogalacturonan-methyltransferase (HGMT) genes (CGR2 and CGR3) that are required for 294 
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neighbour proximity-induced growth. Biomechanical assays showed that CGR2 and CGR3 295 
contribute to cell wall extensibility at the onset of growth. Previous studies used atomic force 296 
microscopy to analyze cell walls, which meausures properties perpendicular to the direction 297 
of growth, to detect differences in mechanical properties in plants with modified pectin that 298 
correlated with growth (Peaucelle et al., 2008; Peaucelle et al., 2011; Braybrook and 299 
Peaucelle, 2013; Peaucelle et al., 2015). In this study we were able to measure differences in 300 
mechanical properties using an extensometer which measures properties in the direction of 301 
growth. Both approaches show a correlation between modifying pectin chemistry, changes in 302 
cell wall mechanical properties and growth, supporting a role of pectin in growth regulation. 303 
Further work is required to understand the nature of this regulation and how it relates to the 304 
other cell wall components (Coen and Cosgrove, 2023). 305 
  306 
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Materials and Methods 307 

Information on the biological material and methods is available in the supplemental data308 
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Figure legends 321 

Figure 1. Low R:FR induces fast growth in the middle part of the hypocotyl. (A) Length 322 
of the hypocotyls in response to high and low R:FR treatments. Col-0 seedlings were grown 323 
for 4 days in high R:FR before being transferred under low R:FR (blue bars) or kept in high 324 
R:FR (yellow bars) for 3 additional days. The bars show means in mm ± confidence intervals 325 
measured at 4 (4d), 5 (4d+1d) and 7 (4d+3d) days. Significant differences (indicated with 326 
letters) were determined according to one-way Anova followed by a multiple comparisons 327 
with Tukey’s test. (B) Length of the hypocotyl epidermis cells in response to high and low 328 
R:FR treatments. After 4 days under high R:FR (blue curve), Col-0 seedlings were grown for 329 
1 day under high R:FR (red curve) or low R:FR (green curve). The length of the epidermis 330 
cells were plotted from the top to the bottom part of the hypocotyl. The curves show means in 331 
µm ± confidence intervals (shaded areas). 332 

Figure 2. Low R:FR induces changes in mechanical and cell wall properties of the 333 
hypocotyl. (A) Elastic properties of hypocotyl assessed under high and low R:FR treatment. 334 
Hypocotyls were frozen and thawed then subjected to cycles of application and removal of 5 335 
mN of force using an automated confocal micro extensometer (see methods). The average 336 
magnitude of strain incurred by seedlings grown in a high R:FR (yellow bars) or low R:FR 337 
(blue bars) light regime after 1 (4d+1d) and 3 days (4d+3d) is shown. Bright-field images 338 
were collected every 645 ms and strain was computed from regions that were tracked in the 339 
images using the ACME tracker software. The bars show means in % ± SD (n>10 340 
independent seedlings, at least five oscillations were made). Pairwise comparisons were made 341 
using Welch t-test brackets indicated statistical tests that were made with significance p<0.1*, 342 
p<0.05** and p<0.01***. (B,C) Cell wall properties in the middle part of the hypocotyl under 343 
high and low R:FR treatments. Cell wall chemical bounds were analyzed by Fourrier-344 
Transformed InfraRed (FTIR) microspectroscopy. For each hypocotyl, 6 spectra were 345 
collected in the middle part, avoiding the central cylinder, for at least 5 independent 346 
hypocotyls per condition. Baseline correction and data normalization were made for the 347 
absorbances between 1810 and 830 cm-1 (corresponding to the cell wall fingerprint, see 348 
Supplemental Figure S1). Pairwise comparison between high and low R:FR was made after 349 
1 and 3 days treatments and significant differences were identified using Student’s t-test for 350 
each wavelength. (B) All Student’s t-values were plotted against wavelengths with horizontal 351 
lines referring to significant threshold for p<0.05. Student’s t-values above +2 or below -2 352 
indicate respectively an enrichment or an impoverishment of cell wall components in low 353 
compared to high R:FR. (C) Student’s t-values for wavelengths assigned to cell wall 354 
components were used to build the heatmap with negative and positive t-values respectively 355 
represented by a range of colors from blue to orange.  356 

Figure 3. Low R:FR triggers changes in the expression of cell wall-related genes. (A) 357 
Number of cell wall-related genes identified as expressed in seedling and regulated by low 358 
R:FR in hypocotyl, cotyledon or both. From cell wall-selected genes and RNA sequencing 359 
data (Kohnen et al. 2016), Venn diagrams highlight cell wall-related genes expressed in 360 
seedling and that are regulated by low R:FR in hypocotyl, cotyledon or both. For each, 361 
number of up and down-regulated genes are shown along the kinetic of low R:FR treatment. 362 
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Percentages of the low R:FR-regulated genes were determined according to the total of cell 363 
wall-related genes expressed in seedling. (B) Number of cell wall-related genes expressed in 364 
seedling and regulated by low R:FR classified according to their putative function in cell wall 365 
synthesis, remodeling and signaling as well as their related networks for synthesis and 366 
remodeling. Percentages were determined according to the total of cell wall-related genes 367 
classified for each condition (values between brackets). Network 1: cellulose and 368 
hemicelluloses ; Network 2: pectins ; Network 3: structural proteins ; CW: Cell Wall.       369 

Figure 4. Analysis of mutants impaired in cell wall metabolism reveals importance of 370 
CGR2 and CGR3 in the regulation of the hypocotyl growth and the elastic properties 371 
under low R:FR. (A) Length of the hypocotyls in response to low R:FR treatment. Seedlings 372 
were grown for 4 days in high R:FR and then for 3 additional days in low R:FR. Data of 373 
growth induced by low R:FR during the 3 days were normalized against the wild-type and 374 
expressed in log2FC. Significant differences (p<0.05*, p<0.001***) were determined 375 
according to Student’s t-test. (B) Length of the hypocotyls in response to high and low R:FR 376 
treatments in Col-0 and cgr2cgr3. Seedlings were grown for 4 days in high R:FR before being 377 
transferred under low R:FR (blue bars) or kept in high R:FR (yellow bars) for 3 additional 378 
days. The bars show means in mm ± confidence intervals measured at 4 (4d), 5 (4d+1d) and 7 379 
(4d+3d) days. Significant differences (indicated with letters) were determined according to 380 
one-way Anova followed by a multiple comparisons with Tukey’s test. (C) Elastic properties 381 
of hypocotyl assessed under high and low R:FR treatment for Col-0 and cgr2cgr3. 382 
Hypocotyls were frozen and thawed then subjected to cyclic loading at 5 mN of force and the 383 
strain compared to the data obtained for the wild-type seedlings in Figure 2. The average 384 
magnitude of strain incurred by seedlings grown in a high R:FR or low R:FR light regime 385 
after one (4d+1d) and three days (4d+3d) is shown. The bars show means in % ± SD (n>10 386 
independent seedlings for Col-0 and n>5 independent seedlings for cgr2cgr3, at least five 387 
oscillations were made per seedling). Pairwise comparisons were made between the mutant 388 
and the wild-type using Welch t-test brackets indicated statistical tests that were made with 389 
significance p<0.1*, p<0.05** and p<0.01***.  390 

Figure 5. Changes of cell wall properties that occur in response to low R:FR are reduced 391 
in cgr2cgr3  392 
(A,B) Cell wall properties in the middle part of the hypocotyl under high and low R:FR 393 
treatments for Col-0 and cgr2cgr3. Cell wall chemical bounds were analyzed by Fourrier-394 
Transformed InfraRed (FTIR) microspectroscopy. For each hypocotyl, 6 spectra were 395 
collected in the middle part, avoiding the central cylinder, for at least 5 independent 396 
hypocotyls per condition. Baseline correction and data normalization were made for the 397 
absorbances between 1810 and 830 cm-1 (corresponding to the cell wall fingerprint, see 398 
Supplemental Figure S6). Pairwise comparison between high and low R:FR was made after 399 
1 and 3 days treatments for Col-0 and cgr2cgr3 and significant differences were identified 400 
using Student’s t-test for each wavelength. (A) All Student’s t-values were plotted against 401 
wavelengths with horizontal lines referring to significant threshold for p<0.05 for Col-0 (left 402 
panel) and cgr2cgr3 (right panel). Student’s t-values above +2 or below -2 indicate 403 
respectively an enrichment or an impoverishment of cell wall components in low compared to 404 
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high R:FR. (B) Student’s t-values for wavelengths assigned to cell wall components were 405 
used to build the heatmap with negative and positive t-values respectively represented by a 406 
range of colors from blue to orange.        407 
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