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The equality between the Stochastic CRB and its
semiparametric version for elliptical data

Stefano Fortunati and Esa Ollila, Senior, IEEE

Abstract—In this letter, the proof of the following quite sur-
prising result is provided: if the data are elliptically distributed,
the “parametric” Stochastic Cramér-Rao Bound (derived by
assuming the a priori knowledge of the density generator) and its
semiparametric counterpart (obtained by considering the density
generator as an additional nuisance parameter) are equal. In
other words, this means that, in the presence of finite-dimensional
nuisance parameters (the source correlation matrix and noise
power in the decomposition of the array covariance/scatter
matrix), not knowing the data density generator does not lead
to an additional loss of efficiency.

Index Terms—DOA estimation, Stochastic Cramér-Rao Bound,
semiparametric models.

I. INTRODUCTION

The celebrated Stochastic Cramér-Rao Bound (SCRB) is
a well-known tool in array processing since it represent
a lower bound for the Mean Square Error (MSE) of any
Direction of Arrival (DOA) estimation algorithm. While the
SCRB is generally exploited in Gaussian-based scenarios,
recent advances have allowed for a relaxation of this rather
stringent assumption in favor of the more general hypothesis
of elliptically distributed data. This letter shows a surprising
equality between the parametric version of the elliptical SCRB
and its semiparametric counterpart [2].

Notation: In this letter, italics indicates scalar quantities (a),
lower case and upper case boldface indicate column vectors
(a) and matrices (A), respectively. The superscripts T , ∗
and H indicate the transpose, the complex conjugate and the
Hermitian operators, respectively. Each entry of a vector a
and of a matrix A is indicated as ai ≜ [A]i and ai,j ≜ [A]i,j ,
respectively. Let A(θ) be a matrix (or possibly a vector or
even a scalar) function of the real vector θ ∈ Θ ⊆ Rd, then
A0 ≜ A(θ0) while A0

i ≜ ∂A(θ)
∂θi

|θ=θ0
, where θ0 is a particular

(or true) value of θ ∈ Θ. For random variables or vectors, =d

stands for ”has the same distribution as”.

II. DOA ESTIMATION IN ELLIPTICAL DATA

Let x ∈ Cm be the observation vector collected by an
array of m sensors and let ν0 = (ν0,1, . . . , ν0,q)

T ∈ Γ ⊆ Rq

be the vector of the location parameters (in some reference
systems) of q narrowband sources. As firstly proposed in [1],
we suppose that the observation vector is CES-distributed,
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i.e. x ∼ CESm(x;0,Σ0, g0), and its scatter matrix has the
following peculiar structure:

Σ0 ≡ Σ(ν0,Γ0, σ
2
0) = A0Γ0A

H
0 + σ2

0I, (1)

• A0 ≜ A(ν0) = [a(ν0,1) · · ·a(ν0,q)] ∈ Cm×q such that
(s.t.) a(ν0,k) is the steering vector for the k-th source,

• Γ0 ∈ Mq ⊂ Cq×q is the source covariance matrix and
Mq stands for the set of the Hermitian, positive definite
matrices of dimension q × q,

• σ2
0 ∈ R+ is the noise power,

• g0 ∈ G is the density generator.
To avoid the scale ambiguity between the density generator
and the data covariance matrix, we define the set G as [2]:

G ≜

{
g : R+

0 → R+
0

∣∣∣∣2−1sm

∫ +∞

0

qmg(q)dq = m

}
, (2)

where sm ≜ 2πmΓ(m)−1 and Γ(·) is the Gamma function.
Note that, if x ∼ CESm(x;0,Σ0, g0), then it admits the
following stochastic representation [3]:

x =d

√
QΣ

1/2
0 v, (3)

where v ∼ U(CSm) is uniformly distributed on the unit m−1
sphere and Q ∼ pQ(q) = 2−1smq

m−1g0(q) is called the 2nd-
order modular variate.

In the rest of this letter, instead of Γ0, we will make use of
ζ0 ∈ Ψ ⊆ Rq2 defined as:

ζ0 ≜
(
diag(Γ0)

T , vecl(Re(Γ0))
T , vecl(Im(Γ0))

T
)T
, (4)

where the operator vecl(·) selects all the entries strictly below
the main diagonal of Γ0 taken in the column-wise order [4,
Sec. 2.4] while diag(Γ0) is a column vector collecting the
diagonal elements of Γ0. Finally, let us define ξ0 as:

ξ0 ≜ (ζT
0 , σ

2
0)

T ∈ Ψ× R+ ⊆ Rq2+1. (5)

The celebrated “Stochastic” Cramér-Rao Bound (SCRB) has
been introduced as the CRB on the estimation of the sources
location vector ν0 in the presence of the nuisance vector ξ0
(see e.g. [5]). According to the degree of a priori knowledge
on g0 ∈ G, we may have the following three results:
C1 g0 is assumed to be equal to the density generator of the

Gaussian distribution. This leads to the Gaussian SCRB
GSCRB(ν0|ξ0, σ2

0) derived in, among others, [5].
C2 g0 is assumed to be equal to a specific density generator.

This leads to the Elliptical SCRB ESCRB(ν0|ξ0, σ2
0)

that can be obtained by inverting the Fisher Information
Matrix introduced in [6].

C3 g0 is assumed to belong to the CES class but, unlike in C1
and C2, it is left fully unspecified, i.e. it is not assumed
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to be a priori known. This leads to the Semiparametric
SCRB SSCRB(ν0|ξ0, σ2

0 , g0) derived in [2].

In this letter, we show that the Elliptical SCRB is equal to
the Semiparametric CRB for each possible g0 ∈ G, i.e.

ESCRB(ν0|ξ0, σ2
0) = SSCRB(ν0|ξ0, σ2

0 , g0), ∀g0 ∈ G. (6)

In word, this means that if we do not know ξ0, not knowing
the density generator g0 does not lead to an additional loss
in estimation efficiency.

To provide a proof of this (quite surprising) result, let us
start by framing this estimation problem in the geometric,
“Hilbert-spaces based” context of semiparametric models.

III. MODELS, TANGENT SPACES AND SCORE VECTORS

Let us consider the general semiparametric model:

P = {pX(x|ν, ξ, g) : ν ∈ Γ, ξ ∈ Ψ, g ∈ G} , (7)

where Γ ⊆ Rq is the set of the (finite-dimensional) parameter
vectors ν of interests, Ψ ⊆ Rr is the set of (finite-dimensional)
nuisance parameter vectors ξ and G is the space of the
(infinite-dimensional) nuisance functions g. Note that, in the
scenario described in Sect. II, r = q2 + 1. We indicate
as ν0 ∈ Γ, ξ0 ∈ Ψ and g0 ∈ G the true, but unknown,
related quantities and with E0{f} ≜

∫
f(x)dPX(x|ν0, ξ0, g0)

the expectation of a measurable function f with respect to
(w.r.t.) the true distribution PX(x|ν0, ξ0, g0). Before moving
on, let us introduce an Hilbert space that holds fundamental
importance in our subsequent derivations. Specifically, we
indicate with (H, ⟨·, ·⟩) the (infinite-dimensional) Hilbert space
of the measurable functions with i) zero-mean E0{h} = 0
and ii) finite variance E0{h2} = σ2

h < +∞ ( [7, Sect.
2.2] and [8, Ch. 2]). The related inner product is given by
⟨h1, h2⟩ = E0{h1h∗2}.

By using a self-explanatory notation, we now introduce
three parametric submodels of P as:

P1 = {pX(x|ν, ξ0, g0) : ν ∈ Γ} , (8)

P2 = {pX(x|ν0, ξ, g0) : ξ ∈ Ψ} , (9)

P1,2 = {pX(x|ν, ξ, g0) : ν ∈ Γ, ξ ∈ Ψ} , (10)

along with the non-parametric model

P3 = {pX(x|ν0, ξ0, g) : g ∈ G} . (11)

Let us define the score vector sν0 in P1 as:

[sν0 ]i ≜ [sν0(x)]i = ∂ ln pX(x|ν, ξ0, g0)/∂νi|ν=ν0
, (12)

for i = 1, . . . , q, that represents the score vector of the
parameters of interest. Similarly, the score vector sξ0

of the
finite-dimensional nuisance parameters ξ0 in P2 is given by:

[sξ0
]j ≜ [sξ0

(x)]j = ∂ ln pX(x|ν0, ξ, g0)/∂ξj |ξ=ξ0
, (13)

for j = 1, . . . , r. Under the standard regularity conditions
discussed in [9, Sect. 6.2 and 6.3], it is immediate to verify
that [sν0

]i, [sξ0
]j ∈ H,∀i, j.

We can now introduce the (finite-dimensional) tangent space
of the parametric submodels P2 as the linear span of sξ0

in
H (see e.g. [8, Sect. 2.3] or [7, eq. (24)]):

H ⊇ T2 ≜ Span{[sξ0
]1, . . . , [sξ0

]r}. (14)

Remark: It is worth noticing that in this letter we prefer
to work only with the Hilbert space H instead of introducing
the related “q-replicating space” Hq ≜ H × . . . × H as in
[7, Sect. 2.2]. The two approaches are fully equivalent. In
particular, if we work on (subspaces of) H, instead of Hq ,
all the operators, as expectations and projections, has to be
interpreted componentwise (see e.g. [8, Sect. 2.4, Remark 2]).
Specifically, for each h = (h1, . . . , hq)

T s.t. hi ∈ H and
u ∈ U ⊆ H, we have, for i = 1, . . . , q:

[Π(h|U)]i ≜ Π([h]i|U) = Π(hi|U), (15)

[E0{hu∗}]i ≜ E0{[h]iu∗} = ⟨hi, u⟩ , (16)

Finally, the (infinite-dimensional) nuisance tangent space
T3 ⊆ H of the non-parametric model P3 is defined as in
[7, eq. (44)]. Note that, by construction, T2 and T3 are finite-
and infinite-dimensional closed subspaces of H.

According to the previous definition, let us define the
efficient score vector t̄ν0 for the vector ν0 of the parameter of
interest in the parametric submodel P1,2 in (10) as [7, Sect.
2.3, Def. 4]:

t̄ν0
≜ sν0

−Π(sν0
|T2), (17)

where the projection operator has to be interpreted compo-
nentwise as defined in (15). Since T2 is a finite-dimensional
subspace of H, the projection operator Π(·|T2) can be derived
in closed form as [7, eq. (16)], [8, Sect. 2.4, Example 1]:

[Π(h|T2)]i = E0{hisHξ0
}I−1

ξ0
sξ0 , hi ∈ H ∀i, (18)

where:
Iξ0 ≜ E0{sξ0s

H
ξ0
}, (19)

is the FIM for ξ0 in the parametric submodel P2 in (9). Then,
we have that t̄ν0

can be explicitly expressed as:

t̄ν0
= sν0

− E0{sν0
sHξ0

}I−1
ξ0

sξ0
= sν0

− Iν0ξ0
I−1
ξ0

sξ0
, (20)

where
Iν0ξ0

≜ E0{sν0
sHξ0

} (21)

is the matrix of the cross-information terms in the parametric
submodel P1,2 in (10).

On the same line, the semiparametric efficient score vector
s̄ν0 for ν0 in the semiparametric model P in (7) is given by
[10, Sect. 3.4, eq. (18)]:

s̄ν0
≜ sν0

−Π(sν0
|T2 + T3),

where, since T2 is a (closed) finite-dimensional subspace and
T3 is closed, then T2 + T3 is closed. In general, since T2 +
T3 is infinite-dimensional, a closed form for the projection
operator Π(·|T2+T3) does not exist in general. Consequently,
an explicit expression for s̄ν0 cannot be obtained. Fortunately,
some further manipulation is still possible. Since T2 ⊆ T2+T3,
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by using [10, A2, eq. (11)], s̄ν0
can be expressed as:

s̄ν0
≜ sν0

−Π(sν0
|T2 + T3)

= sν0
−Π(sν0

|T2)−Π(sν0
|(T2 + T3) ∩ T ⊥

2 )

= t̄ν0
−Π(t̄ν0

|(T2 + T3) ∩ T ⊥
2 ),

(22)

where the last equality holds true since, by definition,
(T2 + T3) ∩ T ⊥

2 ⊆ T ⊥
2 and T2 ∋ Π([sν0

]i|T2) ⊥ T ⊥
2 ,∀i.

The two following Lemmas are given, without proof, in [10,
Sect. 3.4, Prop. 3]. Here, to make the presentation as self-
contained as possible, we provide a complete proof of these
two key results.

Lemma 1. The efficient Semiparametric FIM (SFIM) for ν0

in the presence of the finite- and infinite-dimensional nuisance
terms ξ0 and g0, can be evaluated as:

Ī(ν0|ξ0, g0) = Ī(ν0|ξ0)− E0

{
wwH

}
, (23)

where
w ≜ Π

(
t̄ν0

|(T2 + T3) ∩ T ⊥
2

)
, (24)

and
Ī(ν0|ξ0) ≜ E0

{
t̄ν0

t̄Hν0

}
. (25)

Proof. We start by recalling that E0 {(·)(·)∗} = ⟨·, ·⟩ in H
(see [7, Sect. 2.2]). From (22), it follows that t̄ν0

= s̄ν0
+w.

Then, through direct calculation, we get:

E0

{
s̄ν0

s̄Hν0

}
= Ī(ν0|ξ0)− E0

{
t̄ν0

wH
}
−

+ E0

{
wt̄Hν0

}
+ E0

{
wwH

}
= Ī(ν0|ξ0)− 2Re

[
E0

{
s̄ν0w

H
}]

− E0

{
wwH

}
.

(26)

Then the equality in (23) follows immediately iff
E0

{
s̄ν0w

H
}

= 0. From the componentwise application of
the inner product, we have that:

E0

{
s̄ν0w

H
}
= 0 ⇔ ⟨[s̄ν0 ]i, wj⟩ = 0, (27)

∀i, j ∈ {1, . . . , q}. To show that [s̄ν0 ]i is orthogonal to
wj , ∀i, j, we note that according to its definition given in
(22), [s̄ν0

]i ∈ (T2 + T3)⊥. Moreover, again by definition in
(24), wj ∈ (T2 + T3) ∩ T ⊥

2 ⊆ T2 + T3. Consequently,
⟨[s̄ν0

]i, wj⟩ = 0, ∀i, j since (T2 + T3) ⊥ (T2 + T3)⊥.

It is worth noticing that the matrix Ī(ν0|ξ0) is the efficient
FIM for ν0 in the presence of the finite-dimensional nuisance
vector ξ0 in the parametric submodel P1,2 in (10). Conse-
quently the CRB for ν0 in the presence of ξ0 is given by:

CRB(ν0|ξ0) = Ī(ν0|ξ0)−1 =
[
Iν0

− Iν0ξ0
I−1
ξ0

IHν0ξ0

]−1

,

(28)
where:

Iν0
≜ E0{sν0

sHν0
}, (29)

is the FIM for ν0 in the parametric submodel P1 in (8).

Lemma 2. The efficient SFIM Ī(ν0|ξ0, g0) for the model P in
(7) is equal to the parametric efficient FIM Ī(ν0|ξ0) in P1,2

iff E0

{
wwH

}
= 0 and consequently iff w = 0. Moreover,

w = 0 ⇔ [t̄ν0
]i = [sν0

]i −Π([sν0
]i|T2) ⊥ T3, (30)

for i = 1, . . . , q.

Proof. To prove the double implication in (30), let
us start with the implication ⇐. From [10, A2, eq.
(4)] and by recalling that T2 + T3 is closed, we
have that (T2 + T3) ∩ T ⊥

2 = (T ⊥
2 ∩ T ⊥

3 )⊥ ∩ T ⊥
2 . Then, since

(T ⊥
2 ∩ T ⊥

3 ) ⊆ T ⊥
2 , from [10, A2, Prop. 4], we have that:

Π(t̄ν0
|(T2 + T3) ∩ T ⊥

2 ) = Π(t̄ν0
|T ⊥

2 )−Π(t̄ν0
|T ⊥

2 ∩ T ⊥
3 ).
(31)

By definition, [t̄ν0
]i ∈ T ⊥

2 . Moreover, if [t̄ν0
]i ⊥ T3, then

[t̄ν0 ]i ∈ T ⊥
3 . Then, [t̄ν0 ]i ∈ T ⊥

2 ∩ T ⊥
3 for i = 1, . . . , q. This

implies that, from (31):

Π(t̄ν0
|(T2 + T3) ∩ T ⊥

2 ) = t̄ν0
− t̄ν0

= 0. (32)

Let us now prove the second implication ⇒. If the projection
Π(t̄ν0 |(T2 + T3) ∩ T ⊥

2 ) = 0, then, from [10, A.2, eq. (4)]:

[t̄ν0 ]i ∈ [(T2 + T3) ∩ T ⊥
2 ]⊥ = (T ⊥

2 ∩ T ⊥
3 ) + T2, (33)

since T2 and (T2+T3)⊥ are closed subspaces. Moreover, since
(T ⊥

2 ∩ T ⊥
3 ) ⊆ T ⊥

2 , we have that:

[t̄ν0 ]i ∈ (T ⊥
2 ∩ T ⊥

3 ) + T2 = (T ⊥
2 ∩ T ⊥

3 )⊕ T2, (34)

where ⊕ indicates the direct sum of two subspaces. Then,
since by definition [t̄ν0

]i ∈ T ⊥
2 , as a consequence of (34),

we need to have that [t̄ν0
]i ∈ T ⊥

3 as well, or equivalently,
[t̄ν0

]i ⊥ T3 for i = 1, . . . , q.

IV. THE EQUALITY BETWEEN THE ESCRB AND SSCRB

We can now use the results of Lemma 2 to show the equality
in (6). We start by specializing the semiparametric model P
in (7) for the DOA estimation described in Sect. II as:

P = {pX(x|ν, ξ, g) = CESm(x;0,Σ(ν, ξ), g) :

ν ∈ Γ, ξ = (ζT , σ2)T ∈ Ψ, g ∈ G
}
,

(35)

then, its parametric submodel P1,2 in (10) becomes:

P1,2 = {pX(x|ν, ξ, g0) = CESm(x;0,Σ(ν, ξ), g0) :

ν ∈ Γ, ξ = (ζT , σ2)T ∈ Ψ,
}
, g0 ∈ G.

(36)

The Elliptical Stochastic CRB ESCRB(ν0|ξ0, σ2
0) for a

specific density generator g0 ∈ G can then be obtained as
the inverse of the efficient FIM Ī(ν0|ξ0) for the model P1,2

in (36). From (28), this is equivalent to calculating the first
top-left block submatrix of the inverse of the joint FIM for ν0

and ξ0 in the model P1,2 in (36), i.e.

I(ν0, ξ0) =

(
Iν0

Iν0ξ0

IHν0ξ0
Iξ0

)
, (37)

that can be evaluated by means of the elliptical Slepian-Bangs
formula provided in [6]. On the other hand, the Semipara-
metric SCRB for the model P in (35) can be expressed as
SSCRB(ν0|ξ0, σ2

0 , g0) = [Ī(ν0|ξ0, g0)]−1, where Ī(ν0|ξ0, g0)
is given in (23) and it has been evaluated in [2].

Consequently, the equality (6) is verified iff :

Ī(ν0|ξ0) = Ī(ν0|ξ0, g0) ⇔ [t̄ν0
]i ⊥ T3, (38)

for i = 1, . . . , q, where the double implication comes from a
direct application of Lemma 2. Moreover, from (20), confirm-
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ing the orthogonality condition on the RHS of equation (38)
is equivalent to verifying the following equality:

Π(t̄ν0
|T3) = Π(sν0

|T3)−Π(Iν0ξ0
I−1
ξ0

sξ0
|T3) = 0. (39)

Let us now prove that (39) actually holds. To this end, we
rely on the results already derived in [2]. By adopting the same
notation of [2], let us introduce the quantities:

ψ0(t) ≜ d ln g0(t)/dt, (40)

P0
i ≜ Σ

−1/2
0 Σ0

iΣ
−1/2
0 , (41)

tr
(
P0

i

)
= tr

(
Σ0

iΣ
−1
0

)
= vec(Σ−1

0 )Hvec(Σ0
i ), (42)

for i = 1, . . . , q + r where r = q2 + 1.
As discussed in [7, Sect. 3.2.2] (see also [10, Sect 4.2]) the

projection operator Π(·|T3) onto the nuisance tangent space
T3, defined in [7, Sect. 3.2.2, Lemma 1], can be evaluated as
the following conditional expectation:

[Π(h|T3)]i = E0{hi|
√
Q}, ∀hi ∈ H. (43)

Consequently, from [2, eq. (42)], we have: 1

Π([sν0
]i|T3) =d −(1 +m−1Qψ0(Q))tr

(
P0

i

)
, (44)

Π([sξ0 ]j |T3) =d −(1 +m−1Qψ0(Q))tr
(
P0

j

)
, (45)

for i = 1, . . . , q, j = 1, . . . , r and

φ0(Q) ≜ −(1 +m−1Qψ0(Q)). (46)

Moreover, let us introduce Wν0 and Wξ0 as matrices
whose i-th column is given by vec(Σ0

i ), i.e. :

Cm2×q ∋ Wν0
≜ ∇T

ν vec(Σ0), (47)

Cm2×r ∋ Wξ0 = [Wζ0 |vec(I)] ≜ ∇T
ξ vec(Σ0). (48)

Then, from (42), it is immediate to verify that eqs. (44) and
(45) can be rewritten in vectorial form as:

Π(sν0
|T3) =d φ0(Q)WT

ν0
vec(Σ−1

0 )∗, (49)

Π(sξ0 |T3) =d φ0(Q)WT
ξ0
vec(Σ−1

0 )∗. (50)

From [6], the matrices Iξ0 and Iν0ξ0 can be expressed as:

Iξ0
=
E{Q2ψ0(Q)2}
m(m+ 1)

(KWξ0
)H(KWξ0

), (51)

Iν0ξ0 =
E{Q2ψ0(Q)2}
m(m+ 1)

(KWν0)
H(KWξ0), (52)

where K ≜ (Σ
−T/2
0 ⊗Σ

−1/2
0 ). Following the notation of [5],

let us introduce the matrices G ≜ KWν0 and ∆ ≜ KWξ0 =
[V|u], where u ≜ Kvec(I) = vec(Σ−1

0 ).
Then, by collecting the previous results, we have:

Π(Iν0ξ0I
−1
ξ0

sξ0 |T3) = Iν0ξ0I
−1
ξ0
E0{sξ0 |

√
Q}

=d φ0(Q)GH∆
[
∆H∆

]−1
WT

ξ0
u∗.

(53)

By substituting (49) and (53) in (39), and by using the

1In [2, eq. (42)] there were some typos that have been fixed in [11].

properties of the Kronecker product, we can easily verify that:

Π(t̄ν0
|T3) =d φ0(Q)

[
WT

ν0
−GH∆

[
∆H∆

]−1
WT

ξ0

]
u∗

= φ0(Q)
[
GH −GHΠ∆

]
vec(I) = φ0(Q)GHΠ⊥

∆vec(I),
(54)

where, for notational simplicity, we introduced the orthogonal
projection matrices:

Π∆ ≜ ∆
[
∆H∆

]−1
∆H , (55)

Π⊥
∆ ≜ I−Π∆ = Π⊥

V − Π⊥
VuuHΠ⊥

V

uHΠ⊥
Vu

, (56)

where the last equality is defined by [5, eq. (14)].
Thus the condition (30) of Lemma 2 is equivalent to:

Π(t̄ν0
|T3) = 0 ⇔ vec(I)HΠ⊥

∆G = 0. (57)

To conclude, we need to prove that vec(I)HΠ⊥
∆G = 0.

Following again [5], let us indicate as gi the i-th column
of G. Then, by using the equality in (56), the condition (57)
can be written as:

vec(I)HΠ⊥
Vgi −

(vec(I)HΠ⊥
Vu)(uHΠ⊥

Vgi)

uHΠ⊥
Vu

= 0, (58)

i = 1, . . . , q. Now, the second term in (58) is equal to 0, since
from [5, eq. (28)], uHΠ⊥

Vgi = 0, i = 1, . . . , q. Then, the last
step consists in proving that:

vec(I)HΠ⊥
Vgi = 0, i = 1, . . . , q. (59)

To this end, by exploiting the relation in [5, eq. (23)] and
the properties of the vec operator, we have that the following
chain of equality holds true:

vec(I)HΠ⊥
Vgi = 2Real

(
tr
(
Π⊥

Σ
−1/2
0 A0

Zi

))
= 0, (60)

i = 1, . . . , q, where the matrix Zi is given in [5, eq. (18)] as:

Zi ≜ Σ
−1/2
0 A0c0,id

H
0,iΣ

−1/2
0 , (61)

where c0,i is the i-th column of the matrix Γ0 in (1) while

d0,i ≜ da(νi)/dνi|νk=ν0,i
. (62)

We note that the last equality in (60) follows directly from the
fact that Π⊥

Σ
−1/2
0 A0

Zi = 0, i = 1, . . . , q.
This proves the identity (6).

V. CONCLUSION

We showed that the Elliptical SCRB ESCRB(ν0|ξ0, σ2
0),

evaluated at a specific and a-priori known density generator
g0 ∈ G, is actually equal to the Semiparametric SCRB
SSCRB(ν0|ξ0, σ2

0 , g0) where, on the contrary, g0 is assumed
to be an additional unknown nuisance function:

ESCRB(ν0|ζ0, σ2
0) = SSCRB(ν0|ζ0, σ2

0 , g0)

=
m(m+ 1)σ2

0

2E{Q2ψ0(Q)2}
[C(ν0, ζ0, )]

−1, ∀g0 ∈ G,
(63)

C(ν0, ζ0, ) ≜ Re
(
DH

0 Π⊥
A0

D0

)
⊙
(
Γ0A

H
0 Σ−1

0 A0Γ0

)T
,

(64)
where D0 is a matrix whose i-th column is d0,i in (62).
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