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In this letter, the proof of the following quite surprising result is provided: if the data are elliptically distributed, the "parametric" Stochastic Cramér-Rao Bound (derived by assuming the a priori knowledge of the density generator) and its semiparametric counterpart (obtained by considering the density generator as an additional nuisance parameter) are equal. In other words, this means that, in the presence of finite-dimensional nuisance parameters (the source correlation matrix and noise power in the decomposition of the array covariance/scatter matrix), not knowing the data density generator does not lead to an additional loss of efficiency.

I. INTRODUCTION

The celebrated Stochastic Cramér-Rao Bound (SCRB) is a well-known tool in array processing since it represent a lower bound for the Mean Square Error (MSE) of any Direction of Arrival (DOA) estimation algorithm. While the SCRB is generally exploited in Gaussian-based scenarios, recent advances have allowed for a relaxation of this rather stringent assumption in favor of the more general hypothesis of elliptically distributed data. This letter shows a surprising equality between the parametric version of the elliptical SCRB and its semiparametric counterpart [START_REF] Fortunati | Semiparametric CRB and Slepian-Bangs formulas for complex elliptically symmetric distributions[END_REF].

Notation: In this letter, italics indicates scalar quantities (a), lower case and upper case boldface indicate column vectors (a) and matrices (A), respectively. The superscripts T , * and H indicate the transpose, the complex conjugate and the Hermitian operators, respectively. Each entry of a vector a and of a matrix A is indicated as a i ≜ [A] i and a i,j ≜ [A] i,j , respectively. Let A(θ) be a matrix (or possibly a vector or even a scalar) function of the real vector θ ∈ Θ ⊆ R d , then A 0 ≜ A(θ 0 ) while A 0 i ≜ ∂A(θ) ∂θi | θ=θ0 , where θ 0 is a particular (or true) value of θ ∈ Θ. For random variables or vectors, = d stands for "has the same distribution as".

II. DOA ESTIMATION IN ELLIPTICAL DATA

Let x ∈ C m be the observation vector collected by an array of m sensors and let ν 0 = (ν 0,1 , . . . , ν 0,q ) T ∈ Γ ⊆ R q be the vector of the location parameters (in some reference systems) of q narrowband sources. As firstly proposed in [START_REF] Ollila | Influence function and asymptotic efficiency of scatter matrix based array processors: Case MVDR beamformer[END_REF], we suppose that the observation vector is CES-distributed, Stefano Fortunati is with Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette & DR2I-IPSA, 94200, Ivry sur Seine (e-mail: stefano.fortunati@centralesupelec.fr).
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i.e. x ∼ CES m (x; 0, Σ 0 , g 0 ), and its scatter matrix has the following peculiar structure:

Σ 0 ≡ Σ(ν 0 , Γ 0 , σ 2 0 ) = A 0 Γ 0 A H 0 + σ 2 0 I, (1) 
• A 0 ≜ A(ν 0 ) = [a(ν 0,1 ) • • • a(ν 0,q )] ∈ C m×q such that (s.t.
) a(ν 0,k ) is the steering vector for the k-th source, • Γ 0 ∈ M q ⊂ C q×q is the source covariance matrix and M q stands for the set of the Hermitian, positive definite matrices of dimension q × q, • σ 2 0 ∈ R + is the noise power, • g 0 ∈ G is the density generator. To avoid the scale ambiguity between the density generator and the data covariance matrix, we define the set G as [START_REF] Fortunati | Semiparametric CRB and Slepian-Bangs formulas for complex elliptically symmetric distributions[END_REF]:

G ≜ g : R + 0 → R + 0 2 -1 s m +∞ 0 q m g(q)dq = m , (2) 
where s m ≜ 2π m Γ(m) -1 and Γ(•) is the Gamma function. Note that, if x ∼ CES m (x; 0, Σ 0 , g 0 ), then it admits the following stochastic representation [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]:

x = d √ QΣ 1/2 0 v, (3) 
where v ∼ U (CS m ) is uniformly distributed on the unit m-1 sphere and Q ∼ p Q (q) = 2 -1 s m q m-1 g 0 (q) is called the 2ndorder modular variate.

In the rest of this letter, instead of Γ 0 , we will make use of

ζ 0 ∈ Ψ ⊆ R q 2
defined as:

ζ 0 ≜ diag(Γ 0 ) T , vec l (Re(Γ 0 )) T , vec l (Im(Γ 0 )) T T , (4) 
where the operator vec l (•) selects all the entries strictly below the main diagonal of Γ 0 taken in the column-wise order [4, Sec. 2.4] while diag(Γ 0 ) is a column vector collecting the diagonal elements of Γ 0 . Finally, let us define ξ 0 as:

ξ 0 ≜ (ζ T 0 , σ 2 0 ) T ∈ Ψ × R + ⊆ R q 2 +1 . (5) 
The celebrated "Stochastic" Cramér-Rao Bound (SCRB) has been introduced as the CRB on the estimation of the sources location vector ν 0 in the presence of the nuisance vector ξ 0 (see e.g. [START_REF] Stoica | The stochastic CRB for array processing: a textbook derivation[END_REF]). According to the degree of a priori knowledge on g 0 ∈ G, we may have the following three results: C1 g 0 is assumed to be equal to the density generator of the Gaussian distribution. This leads to the Gaussian SCRB GSCRB(ν 0 |ξ 0 , σ 2 0 ) derived in, among others, [START_REF] Stoica | The stochastic CRB for array processing: a textbook derivation[END_REF]. C2 g 0 is assumed to be equal to a specific density generator.

This leads to the Elliptical SCRB ESCRB(ν 0 |ξ 0 , σ 2 0 ) that can be obtained by inverting the Fisher Information Matrix introduced in [START_REF] Besson | On the Fisher Information Matrix for multivariate elliptically contoured distributions[END_REF]. C3 g 0 is assumed to belong to the CES class but, unlike in C1 and C2, it is left fully unspecified, i.e. it is not assumed to be a priori known. This leads to the Semiparametric SCRB SSCRB(ν 0 |ξ 0 , σ 2 0 , g 0 ) derived in [START_REF] Fortunati | Semiparametric CRB and Slepian-Bangs formulas for complex elliptically symmetric distributions[END_REF]. In this letter, we show that the Elliptical SCRB is equal to the Semiparametric CRB for each possible g 0 ∈ G, i.e.

ESCRB(ν

0 |ξ 0 , σ 2 0 ) = SSCRB(ν 0 |ξ 0 , σ 2 0 , g 0 ), ∀g 0 ∈ G. (6)
In word, this means that if we do not know ξ 0 , not knowing the density generator g 0 does not lead to an additional loss in estimation efficiency.

To provide a proof of this (quite surprising) result, let us start by framing this estimation problem in the geometric, "Hilbert-spaces based" context of semiparametric models.

III. MODELS, TANGENT SPACES AND SCORE VECTORS

Let us consider the general semiparametric model:

P = {p X (x|ν, ξ, g) : ν ∈ Γ, ξ ∈ Ψ, g ∈ G} , (7) 
where Γ ⊆ R q is the set of the (finite-dimensional) parameter vectors ν of interests, Ψ ⊆ R r is the set of (finite-dimensional) nuisance parameter vectors ξ and G is the space of the (infinite-dimensional) nuisance functions g. Note that, in the scenario described in Sect. II, r = q 2 + 1. We indicate as ν 0 ∈ Γ, ξ 0 ∈ Ψ and g 0 ∈ G the true, but unknown, related quantities and with E 0 {f } ≜ f (x)dP X (x|ν 0 , ξ 0 , g 0 ) the expectation of a measurable function f with respect to (w.r.t.) the true distribution P X (x|ν 0 , ξ 0 , g 0 ). Before moving on, let us introduce an Hilbert space that holds fundamental importance in our subsequent derivations. Specifically, we indicate with (H, ⟨•, •⟩) the (infinite-dimensional) Hilbert space of the measurable functions with i) zero-mean E 0 {h} = 0 and ii) finite variance E 0 {h 2 } = σ 2 h < +∞ ( [7, Sect. 2.2] and [8, Ch. 2]). The related inner product is given by ⟨h 1 , h 2 ⟩ = E 0 {h 1 h * 2 }. By using a self-explanatory notation, we now introduce three parametric submodels of P as:

P 1 = {p X (x|ν, ξ 0 , g 0 ) : ν ∈ Γ} , (8) 
P 2 = {p X (x|ν 0 , ξ, g 0 ) : ξ ∈ Ψ} , (9) 
P 1,2 = {p X (x|ν, ξ, g 0 ) : ν ∈ Γ, ξ ∈ Ψ} , (10) 
along with the non-parametric model

P 3 = {p X (x|ν 0 , ξ 0 , g) : g ∈ G} . ( 11 
)
Let us define the score vector s ν0 in P 1 as:

[s ν0 ] i ≜ [s ν0 (x)] i = ∂ ln p X (x|ν, ξ 0 , g 0 )/∂ν i | ν=ν0 , (12) 
for i = 1, . . . , q, that represents the score vector of the parameters of interest. Similarly, the score vector s ξ0 of the finite-dimensional nuisance parameters ξ 0 in P 2 is given by:

[s ξ0 ] j ≜ [s ξ0 (x)] j = ∂ ln p X (x|ν 0 , ξ, g 0 )/∂ξ j | ξ=ξ0 , (13) 
for j = 1, . . . , r. Under the standard regularity conditions discussed in [9, Sect. 6.2 and 6.3], it is immediate to verify that [s ν0 ] i , [s ξ0 ] j ∈ H, ∀i, j.

We can now introduce the (finite-dimensional) tangent space of the parametric submodels P 2 as the linear span of s ξ0 in H (see e.g. [8, Sect. 2.3] or [7, eq. ( 24)]):

H ⊇ T 2 ≜ Span{[s ξ0 ] 1 , . . . , [s ξ0 ] r }. (14) 
Remark: It is worth noticing that in this letter we prefer to work only with the Hilbert space H instead of introducing the related "q-replicating space" H q ≜ H × . . . × H as in [START_REF] Fortunati | Semiparametric estimation in elliptical distributions[END_REF]Sect. 2.2]. The two approaches are fully equivalent. In particular, if we work on (subspaces of) H, instead of H q , all the operators, as expectations and projections, has to be interpreted componentwise (see e.g. [8, Sect. 2.4, Remark 2]). Specifically, for each h = (h 1 , . . . , h q ) T s.t. h i ∈ H and u ∈ U ⊆ H, we have, for i = 1, . . . , q:

[Π(h|U)] i ≜ Π([h] i |U) = Π(h i |U), (15) 
[E 0 {hu * }] i ≜ E 0 {[h] i u * } = ⟨h i , u⟩ , (16) 
Finally, the (infinite-dimensional) nuisance tangent space T 3 ⊆ H of the non-parametric model P 3 is defined as in [7, eq. ( 44)]. Note that, by construction, T 2 and T 3 are finiteand infinite-dimensional closed subspaces of H.

According to the previous definition, let us define the efficient score vector tν0 for the vector ν 0 of the parameter of interest in the parametric submodel P 1,2 in (10) as [7, Sect.

2.3, Def. 4]:

tν0

≜ s ν0 -Π(s ν0 |T 2 ), (17) 
where the projection operator has to be interpreted componentwise as defined in (15). Since T 2 is a finite-dimensional subspace of H, the projection operator Π(•|T 2 ) can be derived in closed form as [7, eq. ( 16)], [8, Sect. 2.4, Example 1]:

[Π(h|T 2 )] i = E 0 {h i s H ξ0 }I -1 ξ0 s ξ0 , h i ∈ H ∀i, (18) 
where:

I ξ0 ≜ E 0 {s ξ0 s H ξ0 }, (19) 
is the FIM for ξ 0 in the parametric submodel P 2 in (9). Then, we have that tν0 can be explicitly expressed as:

tν0 = s ν0 -E 0 {s ν0 s H ξ0 }I -1 ξ0 s ξ0 = s ν0 -I ν0ξ0 I -1 ξ0 s ξ0 , (20) where I ν0ξ0 ≜ E 0 {s ν0 s H ξ0 } (21) 
is the matrix of the cross-information terms in the parametric submodel P 1,2 in (10).

On the same line, the semiparametric efficient score vector sν0 for ν 0 in the semiparametric model P in [START_REF] Fortunati | Semiparametric estimation in elliptical distributions[END_REF] is given by [10, Sect. 3.4, eq. ( 18)]:

sν0 ≜ s ν0 -Π(s ν0 |T 2 + T 3 ),
where, since T 2 is a (closed) finite-dimensional subspace and T 3 is closed, then T 2 + T 3 is closed. In general, since T 2 + T 3 is infinite-dimensional, a closed form for the projection operator Π(•|T 2 + T 3 ) does not exist in general. Consequently, an explicit expression for sν0 cannot be obtained. Fortunately, some further manipulation is still possible. Since T 2 ⊆ T 2 +T 3 , by using [10, A2, eq. ( 11)], sν0 can be expressed as:

sν0 ≜ s ν0 -Π(s ν0 |T 2 + T 3 ) = s ν0 -Π(s ν0 |T 2 ) -Π(s ν0 |(T 2 + T 3 ) ∩ T ⊥ 2 ) = tν0 -Π( tν0 |(T 2 + T 3 ) ∩ T ⊥ 2 ), (22) 
where the last equality holds true since, by definition,

(T 2 + T 3 ) ∩ T ⊥ 2 ⊆ T ⊥ 2 and T 2 ∋ Π([s ν0 ] i |T 2 ) ⊥ T ⊥ 2 , ∀i.
The two following Lemmas are given, without proof, in [START_REF] Bickel | Efficient and Adaptive Estimation for Semiparametric Models[END_REF]Sect. 3.4,Prop. 3]. Here, to make the presentation as selfcontained as possible, we provide a complete proof of these two key results.

Lemma 1. The efficient Semiparametric FIM (SFIM) for ν 0 in the presence of the finite-and infinite-dimensional nuisance terms ξ 0 and g 0 , can be evaluated as:

Ī(ν 0 |ξ 0 , g 0 ) = Ī(ν 0 |ξ 0 ) -E 0 ww H , ( 23 
)
where w ≜ Π tν0 |(T 2 + T 3 ) ∩ T ⊥ 2 , (24) 
and

Ī(ν 0 |ξ 0 ) ≜ E 0 tν0 tH ν0 . (25) 
Proof. We start by recalling that

E 0 {(•)(•) * } = ⟨•, •⟩ in H (see [7, Sect. 2.2]
). From ( 22), it follows that tν0 = sν0 + w.

Then, through direct calculation, we get:

E 0 sν0 sH ν0 = Ī(ν 0 |ξ 0 ) -E 0 tν0 w H - + E 0 w tH ν0 + E 0 ww H = Ī(ν 0 |ξ 0 ) -2Re E 0 sν0 w H -E 0 ww H . (26) 
Then the equality in (23) follows immediately iff E 0 sν0 w H = 0. From the componentwise application of the inner product, we have that:

E 0 sν0 w H = 0 ⇔ ⟨[s ν0 ] i , w j ⟩ = 0, (27) 
∀i, j ∈ {1, . . . , q}. To show that [s ν0 ] i is orthogonal to w j , ∀i, j, we note that according to its definition given in (22), [s ν0 ] i ∈ (T 2 + T 3 ) ⊥ . Moreover, again by definition in (24),

w j ∈ (T 2 + T 3 ) ∩ T ⊥ 2 ⊆ T 2 + T 3 . Consequently, ⟨[s ν0 ] i , w j ⟩ = 0, ∀i, j since (T 2 + T 3 ) ⊥ (T 2 + T 3 ) ⊥ .
It is worth noticing that the matrix Ī(ν 0 |ξ 0 ) is the efficient FIM for ν 0 in the presence of the finite-dimensional nuisance vector ξ 0 in the parametric submodel P 1,2 in [START_REF] Bickel | Efficient and Adaptive Estimation for Semiparametric Models[END_REF]. Consequently the CRB for ν 0 in the presence of ξ 0 is given by:

CRB(ν 0 |ξ 0 ) = Ī(ν 0 |ξ 0 ) -1 = I ν0 -I ν0ξ0 I -1 ξ0 I H ν0ξ0 -1 , (28) 
where:

I ν0 ≜ E 0 {s ν0 s H ν0 }, (29) 
is the FIM for ν 0 in the parametric submodel P 1 in (8).

Lemma 2. The efficient SFIM Ī(ν 0 |ξ 0 , g 0 ) for the model P in [START_REF] Fortunati | Semiparametric estimation in elliptical distributions[END_REF] is equal to the parametric efficient FIM Ī(ν 0 |ξ 0 ) in P 1,2 iff E 0 ww H = 0 and consequently iff w = 0. Moreover,

w = 0 ⇔ [ tν0 ] i = [s ν0 ] i -Π([s ν0 ] i |T 2 ) ⊥ T 3 , (30) 
for i = 1, . . . , q.

Proof. To prove the double implication in (30), let us start with the implication ⇐. From [10, A2, eq. ( 4)] and by recalling that T 2 + T 3 is closed, we have that

(T 2 + T 3 ) ∩ T ⊥ 2 = (T ⊥ 2 ∩ T ⊥ 3 ) ⊥ ∩ T ⊥ 2 . Then, since (T ⊥ 2 ∩ T ⊥ 3 ) ⊆ T ⊥ 2
, from [10, A2, Prop. 4], we have that:

Π( tν0 |(T 2 + T 3 ) ∩ T ⊥ 2 ) = Π( tν0 |T ⊥ 2 ) -Π( tν0 |T ⊥ 2 ∩ T ⊥ 3 ). (31) By definition, [ tν0 ] i ∈ T ⊥ 2 . Moreover, if [ tν0 ] i ⊥ T 3 , then [ tν0 ] i ∈ T ⊥ 3 . Then, [ tν0 ] i ∈ T ⊥ 2 ∩ T ⊥
3 for i = 1, . . . , q. This implies that, from (31):

Π( tν0 |(T 2 + T 3 ) ∩ T ⊥ 2 ) = tν0 -tν0 = 0. (32) 
Let us now prove the second implication ⇒. If the projection Π( tν0 |(T 2 + T 3 ) ∩ T ⊥ 2 ) = 0, then, from [10, A.2, eq. ( 4)]:

[ tν0 ] i ∈ [(T 2 + T 3 ) ∩ T ⊥ 2 ] ⊥ = (T ⊥ 2 ∩ T ⊥ 3 ) + T 2 , (33) 
since T 2 and (T 2 +T 3 ) ⊥ are closed subspaces. Moreover, since

(T ⊥ 2 ∩ T ⊥ 3 ) ⊆ T ⊥ 2 , we have that: [ tν0 ] i ∈ (T ⊥ 2 ∩ T ⊥ 3 ) + T 2 = (T ⊥ 2 ∩ T ⊥ 3 ) ⊕ T 2 , (34) 
where ⊕ indicates the direct sum of two subspaces. Then, since by definition [ tν0 ] i ∈ T ⊥ 2 , as a consequence of (34), we need to have that [ tν0 ] i ∈ T ⊥ 3 as well, or equivalently, [ tν0 ] i ⊥ T 3 for i = 1, . . . , q.

IV. THE EQUALITY BETWEEN THE ESCRB AND SSCRB

We can now use the results of Lemma 2 to show the equality in [START_REF] Besson | On the Fisher Information Matrix for multivariate elliptically contoured distributions[END_REF]. We start by specializing the semiparametric model P in [START_REF] Fortunati | Semiparametric estimation in elliptical distributions[END_REF] for the DOA estimation described in Sect. II as:

P = {p X (x|ν, ξ, g) = CES m (x; 0, Σ(ν, ξ), g) : ν ∈ Γ, ξ = (ζ T , σ 2 ) T ∈ Ψ, g ∈ G , (35) 
then, its parametric submodel P 1,2 in (10) becomes:

P 1,2 = {p X (x|ν, ξ, g 0 ) = CES m (x; 0, Σ(ν, ξ), g 0 ) : ν ∈ Γ, ξ = (ζ T , σ 2 ) T ∈ Ψ, , g 0 ∈ G. (36) 
The Elliptical Stochastic CRB ESCRB(ν 0 |ξ 0 , σ 2 0 ) for a specific density generator g 0 ∈ G can then be obtained as the inverse of the efficient FIM Ī(ν 0 |ξ 0 ) for the model P 1,2 in (36). From (28), this is equivalent to calculating the first top-left block submatrix of the inverse of the joint FIM for ν 0 and ξ 0 in the model P 1,2 in (36), i.e.

I(ν 0 , ξ 0 ) = I ν0 I ν0ξ0 I H ν0ξ0 I ξ0 , (37) 
that can be evaluated by means of the elliptical Slepian-Bangs formula provided in [START_REF] Besson | On the Fisher Information Matrix for multivariate elliptically contoured distributions[END_REF]. On the other hand, the Semiparametric SCRB for the model P in (35) can be expressed as SSCRB(ν 0 |ξ 0 , σ 2 0 , g 0 ) = [ Ī(ν 0 |ξ 0 , g 0 )] -1 , where Ī(ν 0 |ξ 0 , g 0 ) is given in (23) and it has been evaluated in [START_REF] Fortunati | Semiparametric CRB and Slepian-Bangs formulas for complex elliptically symmetric distributions[END_REF].

Consequently, the equality ( 6) is verified iff :

Ī(ν 0 |ξ 0 ) = Ī(ν 0 |ξ 0 , g 0 ) ⇔ [ tν0 ] i ⊥ T 3 , (38) 
for i = 1, . . . , q, where the double implication comes from a direct application of Lemma 2. Moreover, from (20), confirm-ing the orthogonality condition on the RHS of equation ( 38) is equivalent to verifying the following equality:

Π( tν0 |T 3 ) = Π(s ν0 |T 3 ) -Π(I ν0ξ0 I -1 ξ0 s ξ0 |T 3 ) = 0. (39)

Let us now prove that (39) actually holds. To this end, we rely on the results already derived in [START_REF] Fortunati | Semiparametric CRB and Slepian-Bangs formulas for complex elliptically symmetric distributions[END_REF]. By adopting the same notation of [START_REF] Fortunati | Semiparametric CRB and Slepian-Bangs formulas for complex elliptically symmetric distributions[END_REF], let us introduce the quantities: ψ 0 (t) ≜ d ln g 0 (t)/dt, (40)

P 0 i ≜ Σ -1/2 0 Σ 0 i Σ -1/2 0 , ( 41 
)
tr P 0 i = tr Σ 0 i Σ -1 0 = vec(Σ -1 0 ) H vec(Σ 0 i ), (42) 
for i = 1, . . . , q + r where r = q 2 + 1.

As discussed in [7, Sect. 3.2.2] (see also [START_REF] Bickel | Efficient and Adaptive Estimation for Semiparametric Models[END_REF]Sect 4.2]) the projection operator Π(•|T 3 ) onto the nuisance tangent space T 3 , defined in [7, Sect. 3.2.2, Lemma 1], can be evaluated as the following conditional expectation:

[Π(h|T 3 )] i = E 0 {h i | √ Q}, ∀h i ∈ H. (43) 

Consequently, from [2, eq. ( 42)], we have: 1

for i = 1, . . . , q, j = 1, . . . , r and

Moreover, let us introduce W ν0 and W ξ0 as matrices whose i-th column is given by vec(Σ 0 i ), i.e. :

Then, from (42), it is immediate to verify that eqs. ( 44) and (45) can be rewritten in vectorial form as:

From [START_REF] Besson | On the Fisher Information Matrix for multivariate elliptically contoured distributions[END_REF], the matrices I ξ0 and I ν0ξ0 can be expressed as:

where

). Following the notation of [START_REF] Stoica | The stochastic CRB for array processing: a textbook derivation[END_REF], let us introduce the matrices G ≜ KW ν0 and ∆ ≜ KW ξ0 = [V|u], where u ≜ Kvec(I) = vec(Σ -1 0 ). Then, by collecting the previous results, we have:

By substituting (49) and ( 53) in (39), and by using the 1 In [2, eq. ( 42)] there were some typos that have been fixed in [START_REF] Fortunati | Corrections to "Semiparametric CRB and Slepian-Bangs formulas for complex elliptically symmetric distributions[END_REF].

properties of the Kronecker product, we can easily verify that:

where, for notational simplicity, we introduced the orthogonal projection matrices:

where the last equality is defined by [5, eq. ( 14)].

Thus the condition (30) of Lemma 2 is equivalent to:

To conclude, we need to prove that vec(I) H Π ⊥ ∆ G = 0. Following again [START_REF] Stoica | The stochastic CRB for array processing: a textbook derivation[END_REF], let us indicate as g i the i-th column of G. Then, by using the equality in (56), the condition (57) can be written as:

i = 1, . . . , q. Now, the second term in ( 58) is equal to 0, since from [5, eq. ( 28)], u H Π ⊥ V g i = 0, i = 1, . . . , q. Then, the last step consists in proving that:

To this end, by exploiting the relation in [5, eq. ( 23)] and the properties of the vec operator, we have that the following chain of equality holds true:

i = 1, . . . , q, where the matrix Z i is given in [5, eq. ( 18)] as:

where c 0,i is the i-th column of the matrix Γ 0 in (1) while

We note that the last equality in (60) follows directly from the fact that Π ⊥ Σ -1/2 0 A0 Z i = 0, i = 1, . . . , q. This proves the identity (6).

V. CONCLUSION

We showed that the Elliptical SCRB ESCRB(ν 0 |ξ 0 , σ 2 0 ), evaluated at a specific and a-priori known density generator g 0 ∈ G, is actually equal to the Semiparametric SCRB SSCRB(ν 0 |ξ 0 , σ 2 0 , g 0 ) where, on the contrary, g 0 is assumed to be an additional unknown nuisance function:

) where D 0 is a matrix whose i-th column is d 0,i in (62).