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Highlights 

 Midlife constitutes a pivotal period characterized by a discontinuity in brain structure. 

 Early middle-aged adults (age 45-55) adopt a "semantic strategy" to facilitate semantic 

access and sustain lexical production (LP) performances. 

 Late middle-aged adults (age 55-60) gradually lose the ability to exert cognitive control 

over semantic representations, marking the onset of LP decline. 
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Abstract 

This study aimed to elucidate the white matter changes associated with lexical production 

(LP) difficulties that typically emerge in middle age, resulting in increased naming latencies. 

To delay the onset of LP decline, middle-aged adults may rely on domain-general (DG) and 

language-specific (LS) compensatory mechanisms as proposed by the LARA model (Lexical 

Access and Retrieval in Aging). However, our knowledge of the white matter changes 

supporting these mechanisms remains incomplete. Based on a sample of 155 middle-aged 

adults from the CAMCAN cohort, we combined dimensionality reduction techniques with 

multivariate statistical methods to jointly examine the relationships between diffusion-

weighted imaging and LP-related neuropsychological data. Our findings (i) show that midlife 

constitutes a pivotal period marked by a discontinuity in brain structure within distributed 

networks within dorsal, ventral, and anterior cortico-subcortical pathways, and (ii) reveal that 

this discontinuity signals a neurocognitive transition around age 53-54, marking the onset of 

LP decline. Indeed, our results propose that middle-aged adults may initially adopt a 

“semantic strategy” to compensate for initial LP challenges. Still, this strategy may be 

compromised when late middle-aged adults (age 55-60) lose the ability to exert cognitive 

control over semantic representations (i.e., reduced semantic control). 

In summary, our study advances our comprehension of brain structure changes that underpin 

the neurocognitive profile of LP in middle age. Specifically, we underscore the importance of 

considering the interplay between DG and LS processes when studying the trajectory of LP 

performance in healthy aging. Furthermore, these findings offer valuable insights into 

identifying predictive biomarkers related to the compensatory dynamics observed in midlife, 

which can help understand language-related neurodegenerative pathologies. 

Keywords: language, middle age, white matter integrity, cognition, LARA 
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1. Introduction 

Population aging has led to an increase in average life expectancy. However, this 

demographic transition is accompanied by a higher prevalence of neurodegenerative diseases 

and cognitive decline, leading to an increase in healthcare demand (United Nations, 2023). 

Language function, crucial for human communication and cognition (Hagoort, 2019, 2023), 

undergoes significant and differentiated changes related to individuals age (De Zubicaray & 

Schiller, 2018). Indeed, while some aspects of language processes, such as language 

comprehension (LC), remain relatively stable compared to younger adults, others, such as 

language production (LP), decline relatively early with age, starting in middle age (Oosterhuis 

et al., 2023; Verhaegen & Poncelet, 2013). The disparity between LP and LC can be 

attributed to the benefits from rich semantic knowledge accumulated over the lifespan (Gollan 

& Goldrick, 2019; Salthouse, 2019). Indeed, this semantic expertise (Spreng & Turner, 2019) 

contributes to preserving language comprehension and implementing compensatory 

mechanisms to mitigate LP decline in older adults (Baciu et al., 2021). At the behavioral 

level, while advanced age is associated with the most significant LP decline (e.g., lower 

naming accuracy) (Shafto & Tyler, 2014; Verhaegen & Poncelet, 2013), increased naming 

latencies in low-frequency words with poorer semantic connections may onset in middle age 

(Benítez-Burraco & Ivanova, 2023). Therefore, a comprehensive investigation of midlife is 

crucial to understanding the aging mechanisms at play and predicting the neurocognitive 

trajectory in older late adulthood (Lachman, 2015; Park & Festini, 2016). 

Previous studies have reported a gradual LP decline resulting from the interplay between 

domain-general and language-specific mechanisms (Gertel et al., 2020; Shafto & Tyler, 2014; 

Steinberg Lowe & Buchwald, 2023). Typically, there is reduced access to and/or retrieval of 

lexico-semantic representations (Baciu et al., 2016; Boudiaf et al., 2018) in association with a 

decline in executive functioning with age (Higby et al., 2019), reduced working memory 
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(Burke & Shafto, 2004)  and inhibitory processes (Gordon & Kurczek, 2014) explaining the 

slowdown of information processing and reduced verbal fluency (Gordon et al., 2018; 

Whiteside et al., 2016) within the LP decline context.  

The decline in LP varies among older individuals, exhibiting significant variability (Gordon et 

al., 2018; Wen & Dong, 2023) linked to cognitive reserve differences (Oosterhuis et al., 2023; 

Perneczky, 2019). As highlighted by previous studies (Baciu et al., 2021; Wulff et al., 2022) 

this variability depends on various cognitive reserve factors such as education, social, 

intellectual, physical, and leisure activities (Brosnan et al., 2023; Perneczky, 2019). As 

previously reported by the STAC (Scaffolding Theory of Aging and Cognition) model (Park 

& Reuter-Lorenz, 2009), scaffolding is a natural process throughout life that entails utilizing 

and enhancing alternative neural pathways to accomplish specific cognitive tasks. Its 

effectiveness is enhanced by cognitive engagement, physical exercise, and reduced default 

network activity. Subsequently, a revised version of this model entitled STAC-r (Reuter-

Lorenz & Park, 2014, 2023) has been described as incorporating life-course factors that 

contribute to either bolstering or depleting neural resources, thereby influencing the 

developmental trajectory of brain structure, function, and cognitive abilities. The life-course 

factors also impact individuals' compensatory mechanisms to address cognitive challenges 

and mitigate the adverse effects of structural and functional decline. Specifically, studies point 

to midlife lifestyle activities as a key contributor to this idiosyncratic nature of cognitive 

aging (Chan et al., 2018; Xu et al., 2019). The intricate landscape of language aging 

underscores the need to comprehend behavioral and cognitive changes and the functional and 

structural network reorganization associated with compensatory mechanisms. This 

understanding aims to delay, as much as possible, a decline in LP performance and maintain a 

relatively normal level. 
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At a functional level, data from resting-state and task-activation fMRI suggest that aging 

influences activation dynamics within large brain networks, reorganizing them to maintain 

cognitive performance (Deery et al., 2023; Sun et al., 2023). With aging, cerebral networks 

exhibit reduced functional specialization, as seen by decreased within-network connectivity 

(Chan et al., 2014; Edde et al., 2021; Jockwitz et al., 2017). Simultaneously, increased 

between-network connectivity may counteract cognitive decline (Bertolero et al., 2015; 

Cabeza et al., 2018; Meunier et al., 2009). Notably, reduced activity within the Default Mode 

Network (DMN), primarily involved in semantic processes  (Alves et al., 2019; Menon, 2023; 

Raichle et al., 2001), coupled with enhanced functional integration in control-executive 

regions play a crucial compensatory role in tasks with significant attentional demands (see the 

DECHA model; Spreng & Turner, 2019) such as LP (Roger, Banjac, et al., 2022). This aligns 

with studies showing that semantic cognition becomes increasingly reliant on domain-general 

processes with age to ensure efficient and context-relevant use of semantic representations 

(Hoffman & Morcom, 2018; Martin, Saur, et al., 2022; Martin, Williams, et al., 2022). For 

example, Hoyau et al. (2018) found that, compared to younger adults, older adults modulate 

the top-down connectivity from inferior frontal to medial temporal regions (IFC-MTC) to 

facilitate semantic access, suggesting a compensatory mechanism to provide the neural 

resources needed for LP performance. Similarly, Krieger-Redwood et al. (2019) highlighted 

that increased within-DMN connectivity between the right anterior temporal lobe (ATL) and 

medial prefrontal cortex (mPFC) might translate to inefficient semantic retrieval, reflecting 

older adults’ reduced ability to access the semantic store in a goal-directed manner. 

At a structural or neuroanatomical level, our understanding of the white matter integrity that 

accompanies these midlife functional changes remains largely unexplored, despite recent 

research highlighting white matter degradation as an explanation for the onset of LP deficits 

(Kljajevic & Erramuzpe, 2019; Sánchez et al., 2023; Troutman et al., 2022; Yeske et al., 
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2021). Within the language network (Shekari & Nozari, 2023), microstructural integrity 

assessed via diffusion tensor-based metrics (e.g., fractional anisotropy, radial diffusivity) is 

associated with higher-order aspects of naming, such as lexico-semantic selection, notably 

along the left superior fasciculus (SLF III; Troutman & Diaz, 2020) and inferior longitudinal 

fasciculus (ILF; Kantarci et al., 2011; Stamatakis et al., 2011; Troutman & Diaz, 2020). 

Moreover, the frontal aslant tract (FAT; Rizio & Diaz, 2016; Troutman & Diaz, 2020), which 

connects the IFG to the premotor cortex (SMA and pre-SMA), is relevant for the 

sensorimotor aspects of fluency and speech-to-motor planning, with its anterior terminations 

associated with working memory (Varriano et al., 2020). This is in line with a recent study 

suggesting that converging locations between the left frontal aslant tract (FAT), frontostriatal 

tract (ST-FO; Stamatakis et al., 2011), and left SLF I are essential for efficient verbal working 

memory (Ribeiro et al., 2023). In addition, the middle longitudinal fasciculus (MLF) can also 

support the executive functions and working memory aspects of LP (Rizio & Diaz, 2016; 

Troutman & Diaz, 2020). Correspondingly, these studies align with recent findings (Roger, 

Rodrigues De Almeida, et al., 2022) on the left arcuate fascicle (AF), SLF III, ILF, and 

thalamic-premotor projections, which overlap spatially with language networks. In addition, 

spatial concordance was found between the left SLF II/left cingulum bundle (CG) and 

control-executive subnetwork, as well as between the fornix/hippocampal formation and the 

abstract-knowledge (DMN-related) subnetwork (see in detail Roger et al., 2022). 

Based on behavioral and neurofunctional results, a recent study reported a comprehensive 

overview of various compensatory mechanisms for LP with aging (LARA model, Lexical 

Access and Retrieval in Aging, Baciu et al., 2021). This model describes two dimensions, LA 

(Lifespan Aging, uniform aging; natural effect of age) and RA (Reserve Aging, idiosyncratic 

aging; effect of cognitive reserve), according to two dimensions: Language-Specific (LS, 

specific to LA dimension) and Domain-General (DG, specific to RA dimension). Despite 
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being grounded in experimental findings, the LARA model remains predominantly 

descriptive, and the brain structure dynamics that fit these dimensions are not included. 

In the current study, our primary objective is to evaluate white matter changes supporting LP 

decline that emerges in midlife (Fargier & Laganaro, 2023; Oosterhuis et al., 2023). We 

anticipate decreased white matter integrity across the brain, especially along the dorsal and 

frontostriatal pathways, correlating with neurocognitive changes linked to age-related LP 

decline. Furthermore, we expect nonlinear microstructural changes that reflect accelerated 

cognitive decline in older adults. In line with the LARA model (Baciu et al., 2021), we further 

hypothesize that these white matter changes will align with two dimensions: (1) Lifespan 

Aging/Language-Specific LA/LS, involving semantic-related mechanisms with enhanced 

diffusivity along lateral pathways to enhance lexico-semantic representations, and along 

ventral mesial pathways to strengthen lexico-semantic memory retrieval. In line with Hoyau 

et al. (2018), this dimension could represent a compensatory mechanism that onsets in midlife 

to maintain LP performance, and (2) Reserve Aging/Domain-General RA/DG, representing 

the decline of domain-general mechanisms associated with reduced diffusivity within 

prefrontal regions, potentially involving SLF II and CG bundles. In line with Krieger-

Redwood et al. (2019), this could challenge efficient and goal-directed access to the semantic 

store, compromising LP performance in older adults. 

2. Material and Methods 

Using state-of-the-art tractography techniques, we analyzed diffusion-weighted imaging and 

lexical production (LP)-related neuropsychological data of 155 healthy middle-aged adults 

(aged 45-60) from the CamCAN cohort (Cam-CAN et al., 2014).  Figure 1 outlines the study 

workflow. After preprocessing diffusion-weighted imaging (DWI) data, we investigated the 

relationship between middle age and structural integrity by generating a track-weighted 



9 

 

fractional anisotropy image (TW-FA) for each subject (Calamante, 2017). Subsequently, 

using Non-Negative Matrix Factorization (NMF), we reduced the dimensionality of these 

TW-FA images to identify sets of networks consisting of structurally covarying voxels. We 

then assessed the impact of age on the average microstructural integrity of each NMF network 

by using generalized additive models. Finally, we applied Partial Least Squares (PLS) 

correlation analysis at the voxel and network levels to examine how localized and distributed 

microstructural integrity changes covary with LP performance during middle age. To enhance 

the theoretical relevance of our study, a preliminary lifespan analysis (not depicted in Figure 

1)) was conducted to specify the most critical age window for cognitive aging. This age 

window guided the main statistical analyses described earlier (please refer to section 2.3.1). 
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Figure 1: Workflow of the study. For multilevel PLS analysis, only one covariance matrix (R) is depicted for 

visual clarity; however, it is important to emphasize that a separate PLS model was executed using either voxel-

level TW-FA values or network-level values derived from NMF (H values), resulting in two distinct covariance 

matrices. 

2.1. Data and MRI acquisition 

2.1.1. Participants  

We selected 155 healthy adults (76 females and 79 males) aged–45-60 at the time of MRI 

acquisition based on our preliminary analysis (refer to Section 2.3.1). These individuals were 

chosen from the Cambridge Center for Ageing and Neuroscience project dataset (Cam-CAN 

et al., 2014). The East of England Cambridge Central Research Ethics Committee approved 

the CamCAN study. Please refer to Taylor et al. (2017) for further recruitment information. 
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There was no significant difference in mean age at the time of MRI acquisition (pFDR = .52) or 

handedness (pFDR = .49), but middle-aged females tend to have better overall cognition 

(MMSE; t = 2.7, pFDR = .017) across genders, and middle-aged males tend to have a higher 

total intracranial volume (t = -9.9, pFDR < .001) (Figure A.1, Appendix A). 

2.1.2. Cognitive data 

To assess lexical production (LP)-related performance, we selected eight neuropsychological 

tests that showed either: (i) a direct relationship with lexical production (LP) (e.g., Verbal 

Fluency, Naming, and Tip-of-the-Tongue tests) or (ii) an indirect relationship via the domain-

general (DG) and language-specific (LS) mechanisms posited by the LARA model (Baciu et 

al., 2021). Table 1 shows the main cognitive processes associated with each test. Middle-aged 

females show better performances in Naming (t = 2.8, pFDR = .04) and Story recall tasks (t = 

2.3, pFDR = .05). Specifically, the gap in sentence comprehension performances in favor of 

women grows as age increases (t = 2.18; p = .03) (see Table A.2, Appendix A for the results). 

2.1.3. Diffusion MRI 

Multi-shell diffusion-weighted imaging (DWI) data were acquired using a twice-refocused 

spin echo sequence.  The acquisition parameters were as follows: 66 axial slices, TR/TE = 

9100/104 ms, 2 mm isotropic voxels, 30 directions (b-values: 1000 and 2000 s/mm2), and 

three b0 images with an acquisition time of ~10 min. Details can be found in the study by 

Taylor et al. (2017). All DWI data were preprocessed using MRtrix3 (Tournier et al., 2019) 

(version 3.0.4; https://www.mrtrix.org/).  

LARA mechanisms Direct LP Direct LP Indirect LP 

(LS) 

Indirect LP 

(LS) 

Indirect LP 

(LS) 

Indirect LP 

(DG) 

Neuropsychological 

test 

Generation Retrieval Semantic Syntactic Long-term 

memory 

(LTM) 

Executive 

functions 

Cattell task 

(Cattell & Cattell, 

1960) 

      

Hotel Task 

(Shallice & Burgess, 
      

https://www.mrtrix.org/
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1991) 

Naming 

(Clarke et al., 2013) 
      

Proverb 

(Huppert et al., 1994) 

      

Sentence 

Comprehension 

(Rodd et al., 2010) 

      

Story Recall 

(Tulsky et al., 2003) 

      

Tip-of-the-Tongue 

(R. Brown & McNeill, 

1966) 

      

Verbal Fluency  

(Lezak et al., 2012) 
      

Table 1. Presentation of the eight neuropsychological tests considered in this study and associated cognitive 

processes. A detailed description can be found in Table A.1, Appendix A, and the effect of age on cognitive 

performances is illustrated in Figure A.2, Appendix A. 

2.2. MRI data processing 

2.2.1. Diffusion MRI  

Preprocessing includes denoising (Veraart et al., 2016), Gibbs artifact removal (Tustison et 

al., 2010), eddy current and motion correction with FSL (Andersson et al., 2003), and bias 

correction with ANTs N4. DWI images were then upsampled to a voxel size of 1.5 mm
3
 using 

cubic B-spline interpolation (Raffelt et al., 2012). Following these preprocessing steps, fiber 

orientation distributions (FOD) were computed using the multi-shell 3-tissue Constrained 

Spherical Deconvolution model (MSMT CSD; Dhollander et al., 2016; Jeurissen et al., 2014; 

Tournier et al., 2007) with group-averaged response functions calculated before upsampling. 

Finally, a joint bias field correction and intensity normalization were applied to the resulting 

FOD images.  

2.2.2. Track-Weighted Imaging 

We quantified structural integrity at each voxel location using Track-Weighted Imaging 

(TWI). Compared to conventional tensor-based metric, TWI enhances the sensitivity to 

microstructural changes and the representation of crossing fiber configurations (Calamante, 

2017; Calamante et al., 2012). The TW images were generated in four steps. (1) Whole-brain 

tractography (iFOD2; 10 million streamlines, max. length = 250 mm, cutoff = 0.06, backtrack 
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option) to obtain subject-specific tractograms while reducing reconstruction biases (SIFT2; 

Smith et al., 2015); (2) Generation of a study FOD template to ensure compatibility of tracks’ 

length and spatial location between participants (Willats et al., 2014). The template was based 

on normalized WM FOD images (Raffelt et al., 2011) from a subset of 35 participants, 

controlling for age (mean and standard deviation within 1%) and gender. Spatial 

correspondence across participants was achieved through FOD-guided nonlinear registration 

(Raffelt et al., 2011, 2012), producing a transformation image used to warp the tractograms to 

template space; (3) generation of subject-specific Fractional Anisotropy (FA) images using 

iterative least-squares (Basser et al., 1994; Veraart et al., 2013), and registered to the template 

space with the FOD-computed transformation images; (4) Generation of Track-Weighted FA 

images (TW-FA) by counting the number of tracks traversing a given voxel and weighting 

this count by the integrity (FA) of each track. We used a Gaussian neighborhood weighting of 

25 mm (FWHM) to assess the short-to-mid-range variations in track structural integrity 

(Willats et al., 2014). 

2.3. Statistical analysis 

Statistical analysis was conducted in MATLAB (R2020b) and R (4.2.1). We controlled for 

handedness, gender, MMSE scores, and total intracranial volume in all the models (Eikenes et 

al., 2023).  

2.3.1. Preliminary analysis 

To increase the theoretical relevance of our study, we determined the most relevant age 

window for cognitive aging with the hypothesis that middle age is a critical period. 

Method. We modeled the trajectory of each cognitive score across the lifespan (18-88 years; 

628 participants) using generalized additive models (GAM; Wood, 2006, 2017). We then 

calculated the curvature of each trajectory at each age point, selected the significant values 
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(i.e., confidence intervals do not contain 0), and averaged them across the seven cognitive 

scores. The inflection point of cognitive aging corresponds to the point at which the curvature 

crosses zero (i.e., changes its sign). Computational details are available in supplementary 

material (Appendix A). Results. Age 53-54 is the average inflection point for LP-related 

performance This confirms that middle age is a critical period for cognitive aging and 

indicates a sudden acceleration in cognitive decline around this age, specifically driven by a 

drop in executive function performances (i.e., fluid intelligence via the Cattell task). After 

visually inspecting Figure A.3 (please refer to Appendix A), we selected a sample of middle-

aged adults between the ages of 45 and 60 to target the period of transition associated with the 

onset of LP-related decline. Specifically, we chose at interval of 15 years that could equally 

be divided into 3 age groups for later statistical analysis (more details in section 2.3.3). 

2.3.2. Neuroanatomical level : Dimensionality Reduction  

We explored the relationship between middle age and microstructural alterations in two steps. 

First, dimensionality reduction was used to identify a low-dimensional number of white 

matter networks. We then examined the effects of age on each network’s average 

microstructural integrity. All analyses were performed within a group mask to mitigate the 

spatial bias due to inter-individual variability and potential shortcomings of registration. 

Voxels with null TW-FA values across more than 5% of the participants were not included in 

the mask. 

NMF network segmentation. We employed non-negative matrix factorization with an 

orthogonality constraint (https://github.com/asotiras/brainparts) to segment whole-brain white 

matter into networks. NMF is a dimensionality reduction technique widely used in 

neuroimaging to decompose high-dimensional datasets (e.g., voxel-level data) into 

meaningful networks (Sotiras et al., 2015). The orthogonality constraint ensured that networks 

were spatially non-overlapping. That is, each network comprised of a unique set of 

https://github.com/asotiras/brainparts
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structurally covarying voxels, indicating that the microstructural integrity changes (TW-FA) 

along these voxels covary across participants (i.e., either strongly correlated or anti-

correlated). Given its recent application in investigating age-related (Bagautdinova et al., 

2023; Lynch et al., 2023; Sotiras et al., 2015) and biological processes captured by 

microstructural changes (Patel et al., 2023; Robert et al., 2022), and given that TW-FA values 

are non-negative, we considered NMF as an appropriate approach for our research question.  

NMF implementation. NMF decomposes the matrix containing all TW-FA images (A) into 

two matrices: voxel matrix W (voxels × k) and subject matrix H (k × participants). The 

optimal number of networks k was determined using the procedure described by 

Bagautdinova et al. (2023): We performed NMF 10 times, incrementing the number of 

networks at each iteration (i) from k=2 two k=20 by steps of 2. The reconstruction error (RE), 

calculated as the Frobenius norm of the difference between the input and reconstructed matrix 

(Eq.2), guides the selection of the optimal k. The gradient of this error (GradientRE), 

representing the difference between reconstruction errors of two successive iterations (Eq.3), 

helped identify the point after which decomposing A into more networks yielded diminishing 

returns on model fit (Figure A.4, Appendix A).  

                               

                                    

Network interpretation and composition. To accurately identify the brain pathways involved 

in each network, we automatically segmented 72 major bundles from the study template SH 

peaks using TractSeg (Wasserthal et al., 2018) and combined two metrics based on 

volumetric information (i.e., network and bundle-focused spatial overlap) with one metric 

based on fiber-connectivity information (Bullock et al., 2022). We considered brain pathways 



16 

 

with a compositive score above or close to 1 as having a significant contribution. Further 

details are provided in supplementary material (Appendix A).  

Age trajectory with GAM. To examine the effect of age, we fitted one GAM model for each 

network, with subject-level weightings (H values) as the dependent variable. These 

weightings reflect the average TW-FA values of each subject within a specific network. 

GAMs were fitted using restricted maximum likelihood (REML) for an unbiased estimate of 

fixed effects, a 3-knot spline to address overfitting concerns, and FDR-corrected (q < 0.05). 

2.3.3. Neurocognitive level: Partial Least Squares 

To examine the many-to-many relationships between age-related white matter integrity 

changes and LP performance, we employed a Partial Least Squares (PLS) correlation analysis 

using the  toolbox myPLS (https://github.com/MIPLabCH/myPLS). PLS is a data-driven 

multivariate statistical technique that seeks to optimize the covariance between two datasets 

(Krishnan et al. 2011). In this study, PLS generates latent components that describe age-

related patterns of covariance (i.e., coordinated changes with age) between Track-Weighted 

FA (TW-FA) values and cognitive scores related to lexical production (LP).  

Multilevel PLS. While previous studies have used network-level NMF loadings in the PLS 

model (e.g., Patel et al., 2023; Robert et al., 2022), we reasoned that this may compromise the 

identification of more localized age effects at the voxel-level that would not have been 

captured using NMF as they may only appear when jointly considering white matter and 

cognitive performance changes. For this reason, we ran two models: network-level and voxel-

level PLS. This multilevel approach allowed us to examine whether distributed (network-

level) and localized (voxel-level) alterations are differently related to LP performance in 

middle age. 

https://github.com/MIPLabCH/myPLS
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PLS setup. We organized the data into a structural (X) and cognitive (Y) matrix to set up the 

PLS. For X, TW-FA loadings (for voxel-level PLS) or NMF loadings (for network-level PLS; 

H values) were vectorized, stacked, and z-scored across participants so that each row encoded 

the values of one subject. For Y, cognitive scores were first quantile-normalized to improve 

Gaussianity (Pur et al., 2022) and then z-scored before prepending two age-related contrast 

variables and their respective interaction with the cognitive variables. The contrasts were set 

between three age groups: (contrast #1) 56-60 > 45-50 + 51-55, (contrast #2) 51-55 > 45-50. 

These contrasts ensured that nonlinear relationships with age were accounted for while 

remaining consistent with the parameter chosen previously for GAM modeling (i.e., 3-knot 

spline; see section 2.4.1). In this way, PLS allowed us to disentangle the common and 

differing covariance effects across age groups without disregarding absolute differences in 

either dataset (Zöller et al., 2017). 

PLS implementation and interpretation. To start the PLS, the structural matrix (X) was cross-

correlated with the cognitive matrix (Y), resulting in a covariance matrix (R).  Singular value 

decomposition (SVD) was applied to decompose R, yielding a set of singular value (S), 

structural (U), and cognitive (V) saliences. The significance of S was assessed using 10,000 

permutations and the robustness of salience (U and V) with 1000 bootstrap resamples. S 

contains singular values that represent the amount of information shared between the two 

datasets for each latent component (LC). U and V contain salience weights representing the 

contribution of each voxel or cognitive variable to the pattern of covariance captured by each 

LC. For each LC, we obtained two latent variables, one structural (LVstruct) and one cognitive 

(LVcog), by projecting the saliences back onto the corresponding z-scored dataset (i.e., LVstruct 

= U X and LVcog = V
T Y). To assess the robustness of structure and cognitive saliences, we 

report bootstrap sampling ratios (BSR), calculated as the salience weight over its bootstrapped 
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standard deviation. A high BSR (± 2.58) indicates a robust contribution within a 99% 

confidence interval (Krishnan et al., 2011). 

3. Results 

3.1. Neuroanatomical level  

We applied non-negative matrix factorization (NMF) to identify patterns of white matter 

microstructural integrity (WMI) changes in middle-aged adults. We identified a total of 16 

white matter networks. Six white matter networks showed significant modifications with age, 

indicating a broad structural reorganization between 45 and 60.  

The average WMI of 4 of these 6 networks decreased nonlinearly with age, confirming that 

middle age is a transition period at the structural level. Specifically, we observed the largest 

decrease in WMI beyond age 53, compromising widely distributed brain pathways. Figure 2 

and the following white matter network presentation are organized based on the extent of 

change with age, ranging from the most to least significant. 
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Figure 2: Age-related white matter networks. Age trajectory: Plots display the significant relationships 

between TW-FA (track-weighted microstructural integrity) and age quantified by generalized additive models. 

Bars above the x-axis represent the derivative of the fitted GAM smooth function and correspond to age 

windows of significant changes. The color of this bar indicates the magnitude of the TW-FA change with age: 

orange when increasing (i.e., positive derivative), purple when decreasing (i.e., negative derivative), and white 

when no significant change was found. A derivative was considered significant when its confidence interval did 

not contain zero. The networks are sorted from the one showing the strongest (top left) to the one showing the 

weakest age-related effect (bottom right). Word cloud: Depicts the major brain pathways a given network 

engages (see Appendix A for details on calculations). Tract names correspond to the TractSeg nomenclature 

(https://github.com/MIC-DKFZ/TractSeg). Brain illustration. Depicts the bundle fibers (min. length 25 mm) 

crossing one or many of the voxel clusters associated with a given network. Fiber orientations: red (left-right), 

green (anterior-posterior), and blue (superior-inferior). Displayed on a mesh of the average TW-FA image using 

the Surf Ice software (https://www.nitrc.org/projects/surfice/). Abbreviations: L (left), R (right), Ant (anterior), 

Post (posterior), Sup (superior), Inf (inferior).  

In the discussion section, we discuss extensively how the following Net 16, 5, and 11 may 

contribute to the cognitive control processes required for lexical production. Specifically, Net 

16 shows reduced WMI from age 52 onwards (F = 7.6, pFDR = .016, partial R² = .09), 

primarily in a distributed left fronto-parietal-pontine network. This impacts the left-

hemispheric integrity of the left cingulum bundle (CG: z-scored contribution = 2.46), SLF II 

(1.61), left cortico-pontine tracts (FPT: 1.3; POPT: 1.13), also engaging the corpus callosum 

(CC: 1.42) and minor contributions from the right UF and right IFO (1.03/0.98). Net 5 is a 

bilateral association network with slight asymmetry along a left-right dorso-ventral axis, 

showing an initial increase in WMI (age 45-50) followed by a decrease from age 53 onwards 

(F = 5.73, pFDR = .016, partial R² = .08). Specifically, this translates to coordinated white 

matter modifications between the dorsal SLF II left/right (1.91/1.68) and the more ventral 

SLF III left/right (1.39/1.63) & MLF left/right (0.98/1.35). This network is bound across 

hemispheres via the isthmus of the corpus callosum (CC 6: 1.48). We also note minor 

contributions from the right thalamo-parietal (T PAR: 1.23), right POPT (1.12), and right AF 

(1.12). Net 11 primarily shows reduced thalamo-(pre)-frontal WMI, with a slight dominance 

of the right-hemispheric tracts, beyond age 52 (F = 6.72, pFDR = .016, partial R² = .08). This 

impacts the integrity of the anterior thalamic radiations (ATR; left: 1.48, right: 1.9), fronto-

pontine pathways (FPT; left: 1.43, right: 1.49), thalamo-prefrontal (T PREF; left: 1.4, right: 

https://github.com/MIC-DKFZ/TractSeg
https://www.nitrc.org/projects/surfice/
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1.49) and right striato-prefrontal (ST PREF; 0.97) bound mostly by the genu and rostrum of 

the corpus callosum (CC2: 2.06; CC1: 1.25).  

We identified 3 additional networks that were only moderately associated with middle age: 

Net 4 shows a moderate loss of WMI beyond age 52 as well (F = 5.08, pFDR = .045, partial R² 

= .06) in a distributed right network. This primarily affects the communication of the 

anterior/posterior midbody of the CC (i.e., CC4/primary motor: 1.24, and CC5/primary 

somatosensory: 1.83), the isthmus (CC6: 1.19), the right striato-occipital (ST OCC; 1.25), 

right POPT (1.07), and right ILF/right AF (0.98/0.95). Net 14 and Net 7 were associated with 

steady loss of integrity respectively engaging inferior (left: 2.84, right: 3.69), middle (4.13), 

superior (2.01/2.77) cerebellar peduncles (F = 8.03, pFDR = .02, partial R² = .05), and visual-

occipital pathways via the optic radiations (left: 1.6, right: 2.3) and T OCC (1.49/2.19) bound 

together by the splenium of the corpus callosum (CC 7: 2.08) (F = 5.76, pFDR = .048, partial 

R² = .04). 

  



21 

 

3.2. Neurocognitive level  

To evaluate the white matter changes supporting the emergence of LP difficulties in middle 

age, we performed two partial least squares (PLS) analyses: one at the network level to 

examine the effect of distributed alterations (i.e., network-level PLS) and one at the voxel 

level to examine the effect of localized alterations (i.e., voxel-level PLS). 

In line with our hypothesis, multilevel PLS found two latent components consistent with a 

domain-general (LC1) and language-specific mechanism (LC2) (Figure 3A). LC1 was 

significant at both levels of analysis (51.73/19.57% of the total shared variance; singular 

value = 228.4/9581.1; pBonferroni = .001/pBonferroni = .002), and LC2 remained significant only at 

the voxel level after Bonferroni correction (13.76%; 8033.3; pBonferroni = .002). The subsections 

below describe the cognitive and microstructural changes of each component and how their 

joint dynamic may suggest a relationship between middle-aged LP and the control of 

semantic representations (interplay LC1-LC2). 
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Figure 3: Results from voxel-level PLS analyses. (A) Depicts the 2D latent space across middle-aged 

groups. For each latent component (LC1 and LC2), latent cognitive and structural scores were combined with a 

PCA for visualization. See Figure B.3, Appendix B for the detail on each component and Figure B.1-2, 

Appendix B for diagnostic plots (B) Cognitive saliences. Only the variables with a robust contribution to the 

latent component are reported (i.e., bootstrap sampling ratio ± 2.58). Bars extend to the corresponding salience 

weight (U), and error bars indicate the bootstrapped standard deviation. (C) Brain saliences. Blue/green 

indicates a decrease in white matter microstructural integrity, and red/yellow indicates an increase. Please see 

Figure B.4, Appendix B for the raw brain saliences. Displayed on the study template is the average TW-FA 

image. Cluster analysis was performed using the MATLAB bwconncomp function. Voxels were considered part 

of the same cluster if they were both salient and connected in one of these directions (in/out, left/right, up/down; 

3D connectivity set to 6). Abbreviations: bootstrap sampling ratio (BSR), white matter (WM). 

3.2.1. Latent component 1: Domain-general mechanism 

The first latent component (LC1) aligned with our previous finding, suggesting that the 

magnitude of distributed and localized microstructural integrity alterations increases 

significantly in late middle-aged individuals (BSR56-60>45-55 = -9.66 for network-PLS/-19.2 for 

voxel-PLS) and correlated with an acceleration in cognitive decline (correlation between LVs: 

.42/.55).  
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Voxel-level PLS. At the cognitive level, individuals aged 56-60 versus younger adults 

(contrast 56-60>45-55), had lower performances in tasks related to executive functioning (see 

Section 2.1.2): multitasking (BSR = -6.59), fluid intelligence (-6.28), directly correlating with 

direct LP difficulties (naming = -6.22). More marginally, we also found a decline in sentence 

comprehension (-4.34) and proverb comprehension (-3.32). In comparison, individuals aged 

51-55 versus younger middle-aged adults (contrast 51-55>45-50) exhibited a tendency for 

long-term memory (-2.73) and verbal fluency difficulties (2.69) (Figure 3B). 

At the structural level, late middle-aged individuals showed a significant bilateral reduction in 

microstructural integrity in three localized clusters of white matter accounting for 84.39% of 

all alterations: Cluster I (37.65%) and Cluster II (35.91%) primarily engaged either left or 

right, subcortico-frontal and dorsal pathways; Cluster III engaged the cerebellar white matter 

(10.82%) (see Table 2 & Figure 3C). 

Network-level PLS. In line with these results, we found corresponding distributed alterations 

in all 6 age-related networks (Net 16: -7.21; Net 11: -6.25; Net 5: - 6.18; Net 4: -3.73; Net 7: - 

3.55; Net 14: - 3.15; Figure 4B). Specifically, Net 16 (left fronto-parieto-pontine), 11 

(thalamo-frontal) and 7 (visual-occipital) robustly underpinned the onset of multitasking 

difficulties in late middle-age (BSR = -3.2). Net 5 (bilateral association) additionally covaried 

with verbal fluency abilities and modulation of Net 14 (cerebellar) seemed to underpin a 

wider range of LP-related tasks except for multitasking (Figure 4A). 
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Brain pathways Cluster I Cluster II Cluster III 

FPT 1.93 1.44 / 

T PREF/ST PREF  2.04/1.81 1.72/1.83 / 

ATR  1.5 1.53 / 

SLF I/II/III  1.26/1.31/- 1.08/1.31/1.16 / 

CC/CC 2 1.72/1.19 1.8/1.23 / 

IFO/CG/AF  / 1.19/1.18/1.17 / 

T PREM/PREC 1.09/1 / / 

ST PREM/PREC/POSTC -/1.04/0.94 1.11/1.14/0.98 / 

MCP /  4.66 

ICP /  3.9 bilat. 

SCP  /  left: 2.26 & right: 2.33 

Table 2. Brain pathways contributing to LC1. Numerical values are a z-scored composite metric based on 

volumetric and connectivity-based overlap with the robust brain saliences (please refer to Appendix A for 

details). A score above 1 shows a significant contribution. Pathways highlighted in bold font show the highest 

contribution. Tract names correspond to the TractSeg nomenclature (https://github.com/MIC-DKFZ/TractSeg). 

 

Moreover, we found a robust contribution from networks not previously associated with age 

(primarily Net 8, Net 9, and Net 15 covarying with multitasking and long-term memory; see 

Figure B.5, Appendix B). This is in line with high residual variability found along the latent 

structural variable (x-axis), especially among late middle-aged adults (Figure B.3, Appendix 

B), suggesting that (unmodeled) age-invariant factors could primarily affect the 

microstructural integrity of white matter networks.  

 

https://github.com/MIC-DKFZ/TractSeg
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Figure 4: Results from network-level PLS. (A) Covariance matrix. (B) Brain structural saliences. 

Displayed on the study template is the average TW-FA image. Abbreviations: bootstrap sampling ratio (BSR). 

3.2.2. Latent component 2: Semantic mechanism 

The second latent component (LC2) differed markedly from LC1, revealing an intriguing age-

related trajectory stabilizing around aged 51-55 (BSR51-55>45-50 = 12.41). 

Voxel-level PLS. At the cognitive level, individuals aged 51-55 compared to early middle-

aged adults showed sign of increased semantic knowledge (proverb = 14.76; sentence 

comprehension = 12.41), translating to better naming (10.02) and long-term memory 

performances (4.99), and this increase was proportional to the decline in fluid intelligence (-

3.88). Interestingly, despite similar activation of semantic representations, late middle-aged 

adults exhibited significant multitasking (-6.7), naming (-4.56), and semantic abstraction 

difficulties (-4.18), suggesting that the onset of cognitive control challenges reported in LC1 

could regulate the access to semantic representations (Figure 3B).  

At the structural level, this pattern of cognitive changes covaried with an increase in 

microstructural integrity in two clusters of white matter accounting for 81.73% of all 

modifications: Cluster I (56.5%) and Cluster II (35.23%) primarily engage either left or right 

thalamo- and striato-sensory pathways (see Table 3 & Figure 3C). 

Brain pathways Cluster I Cluster II 

STR 2.22 2.54 

T PREC/ST PREC 2.05/1.78 2.09/1.71 

T POSTC/ST POSTC 1.88/1.6 2.12/1.74 

FPT 1.71 / 

POPT 1.78 2 

CST 1.82 1.62 

T PREF/PREM 1.32/1.3 / 

T PAR/ST PAR 1.54/1.28 2.11/1.88 

SLF II 1.01 1.18 

Table 3. Brain pathways most contributing to LC2. Numerical values are a z-scored composite metric based 

on volumetric and connectivity-based overlap with the robust brain saliences (please refer to Appendix A for 

details). A score above 1 shows a significant contribution. Pathways highlighted in bold font show the highest 

contribution. Tract names correspond to the TractSeg nomenclature (https://github.com/MIC-DKFZ/TractSeg). 

  

https://github.com/MIC-DKFZ/TractSeg
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3.2.3. Joint dynamic of LC1 and LC2: Cognitive control over semantic representations 

Having established the two structure-cognition patterns of covariance in middle age, we 

sought to gain additional insight by considering their joint dynamic. Doing so points to an 

interesting dynamic characterized by divergent middle-aged trajectories: executive functions 

tend to decline but semantic knowledge accrues. Moreover, these trajectories intersect around 

age 53-54 (Figure 5), which concurs with the inflection point for accelerated LP-related 

decline and microstructural integrity damage respectively reported in the preliminary (Section 

1.3.1) and neuroanatomical analysis section (Section 2.1).  

 

Figure 5. Compensatory dynamic of lexical production difficulties in midlife. Each component's latest 

cognitive and structural variables were combined with a PCA for visualization. Bars above the x-axis represent 

the second-order derivative of the fitted GAM smooth function in red. A blue hue indicates a period of transition 

during middle age. A derivative was considered significant when its confidence interval did not contain zero. 
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4. Discussion 

This study evaluated white matter changes supporting lexical production (LP) decline that 

emerges in middle age. Indeed, healthy aging is associated with a gradual decline in LP, 

beginning in middle age and manifesting in increased naming latencies. To delay the onset of 

LP decline as much as possible, middle-aged adults may rely on compensatory mechanisms, 

as  proposed by the LARA model (Lexical Access and Retrieval in Aging; Baciu et al., 2021). 

However, our knowledge of the white matter changes supporting these mechanisms remains 

incomplete. Therefore, in this study, we employed advanced machine learning approaches on 

diffusion-weighted imaging and neuropsychological data from a sample of 155 middle-aged 

adults to (i) identify the brain pathways undergoing age-related microstructural changes and 

(ii) explore how LP performance is related to structural brain reorganization as individuals 

age. 

Consequently, our main findings can be presented at two levels: (a) At a neuroanatomical 

level, middle age compromises the microstructural integrity of distinct white matter networks, 

revealing novel associations between brain pathways. (b) At a neurocognitive level, we 

reaffirm that middle age is a critical period for language processing. Indeed, while early 

middle-aged adults may rely on significant semantic access to maintain LP performance, our 

study suggests that late middle-aged adults may fail to exert cognitive control over these 

semantic representations, eventually leading to word-finding difficulties. The present study 

furthers our comprehension of middle-aged brain structure changes and sheds light on the 

neurocognitive transition leading to the onset of LP decline in middle age. We will discuss 

our neuroanatomical findings and the neurocognitive changes related to LP in middle-aged 

adults. 

From a neuroanatomical standpoint, our results reveal that large-distributed WM pathways 

undergo coordinated microstructural changes with age. This suggests that short-to-mid-range 
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(i.e., ~25 mm length) microstructural alterations along known brain pathways can be grouped 

and analyzed within WM networks. Crucially, this network-level approach complements the 

conventional view that the age-related loss of integrity takes place along dorsoventral (Boban 

et al., 2022; Zahr et al., 2009) and antero-posterior gradients (Bennett et al., 2010; Boban et 

al., 2022). Indeed, our results reveal that the SLF (II/III) and thalamo-frontal pathways, often 

attributed with the largest age-related changes (Bonifazi et al., 2018; Hughes et al., 2012; 

Troutman et al., 2022), are part of heterogeneous WM networks bind together by callosal 

fibers: the posterior midbody (CC6) binds association pathways (SLF II and SLFIII/MLF; Net 

5), and the rostrum and genu (CC1/2) bind anterior cortico-subcortical pathways (e.g., ATR, 

T PREF, FPT; Net 11). Temporally, the WM networks most affected by age (i.e., Net 16, 5, 

11, 4) showed the largest microstructural alterations occurring from age 53 onwards. This 

aligns with previous studies concluding that discontinuities (i.e., nonlinear trajectory) in brain 

structure are likely to onset at middle age (Beck et al., 2021; Park & Festini, 2016) and further 

reinforces the idea that midlife is a critical period of major brain structural reorganization in 

line with reports on brain function and language performance (Deery et al., 2023; Hennessee 

et al., 2022; Park & Festini, 2016; Roger et al., 2023; Shafto & Tyler, 2014). Overall, our 

study supports the current evidence that dorso-ventral association (SLF II/III, MLF) and 

anterior cortico-subcortical pathways suffer the largest age-related microstructural alterations 

(Gunning‐ Dixon et al., 2009; Park & Festini, 2016; Yeatman et al., 2014). Specifically, the 

reduction of TW-FA in the anterior corpus callosum (CC1/2) and deep (pre-)frontal regions 

suggests that fibers of the forceps minor could be preferentially affected (Hsu et al., 2008; 

Kelley et al., 2019), along with critical age-related modulation of the integrity of fronto-

limbic, and fronto-parieto-pontine fibers (i.e., FPT, POPT). Nonetheless, we also note that 

more posterior brain pathways do not show evidence for such disruptions. That is, cerebellar 
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(Net 14) and visual-occipital (Net 7) pathways tend to exhibit a weaker and continuous (i.e., 

linear) loss in microstructural integrity as individuals age. 

From a methodological standpoint, our results advocate for a network-level approach to 

complement anatomically defined bundle atlases (Bullock et al., 2019; Bullock et al., 2022; 

Catani & Thiebaut De Schotten, 2008; Mori et al., 2008; Rojkova et al., 2016; Wasserthal et 

al., 2018), leading to novel associations between brain pathways free from explicit spatial 

constraints (Bagautdinova et al., 2023). Ultimately, this emphasizes the need to apply 

advanced data-driven tools (i.e., dimensionality reduction via NMF; Sotiras et al., 2015) to 

capture the complexity of WM changes. This opens new research avenues for building 

complex yet highly interpretable models to explore how brain structure constrains brain 

function, for example projecting the functional signals onto white matter pathways of interest 

(see the functionnectome by Nozais et al., 2021, 2023) and, more broadly, assess the coupling 

between microstructure and brain function (e.g., Patel et al., 2023) (see also Calhoun & Sui, 

2016 for a review on data fusion methods).  

From a neurocognitive standpoint, our analyses offer new insights into the brain structure 

dynamics involved in maintaining lexical production (LP) performance in middle age. In line 

with our hypothesis, two latent components, LC1 and LC2, were identified, corresponding to 

the Domain-General (DG) & Language-Specific (LS) mechanisms posited in the LARA 

model (Lexical Access and Retrieval in Aging; Baciu et al., 2021).  

On one hand, LC1 indicated a decline in DG processes in late middle-age, such as 

multitasking and fluid intelligence, coinciding with the onset of LP difficulties, particularly in 

naming. This aligns with evidence linking the speed of lexical retrieval and the generation of 

lexical predictions to fluid processing abilities (Brothers et al., 2017; Strijkers et al., 2011). 

Specifically, this suggests that LP demands substantial cognitive effort, as older adults’ 



30 

 

reduced ability to flexibly allocate attentional resources (i.e., fluid processing; Carpenter et 

al., 1990) correlates with age-related LP decline. Structurally, LC1 highlighted 

microstructural integrity loss in bilateral medio-lateral WM areas, involving the association 

(SLF I/II/III) and anterior cortico-subcortical pathways (e.g., T PREF/ST PREF, ATR) that 

contribute to the white matter networks most affected by age (i.e., Net 16, 11, 5). Relatedly, a 

wealth of evidence concludes that such WM networks implement cognitive control 

mechanisms necessary for LP: (i) the SLF II and CG bundle along the anterior cingulate area 

(Net 16) (Hafkemeijer et al., 2014; Roger, Rodrigues De Almeida, et al., 2022), with the 

cingulum bundle being closely linked with inhibition tasks (Ribeiro et al., 2023); (ii) the 

anterior cortico-subcortical pathways (Net 11), especially right striato-prefrontal pathways 

(Buckner, 2004; Webb et al., 2020) and the right anterior thalamic radiations for response 

inhibition (Ribeiro et al., 2023); (iii) the SLF II and MLF for mental flexibility (Net 5) 

(Ribeiro et al., 2023; Rizio & Diaz, 2016; Troutman & Diaz, 2020). The link between DG and 

LP is further evidenced by a recent longitudinal study showing that the inability of structural 

brain networks to facilitate effortful brain state transitions is primarily associated with a 

deficit in executive functions (Tang et al., 2023). Of note, LC1 was also associated with 

minor sentence comprehension difficulties in late middle age. This could further underscore 

the high cognitive demands of LP, considering that lexical prediction is influenced by top-

down comprehension strategies (Brothers et al., 2017).  

On the other hand, LC2 revealed enhanced sentence comprehension, semantic abstraction, 

and long-term memory processes up until age 53-54. Interestingly, these changes were 

proportional to both (a) the increase in naming performances and (b) the decline in fluid 

abilities faced in early middle age. Given the constraint that fluid processing places on LP, 

this suggests that such an increase in semantic representations could provide the basis of a 

compensatory “semantic strategy” to maintain LP performance despite a decline in fluid-
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related abilities (e.g., problem-solving, learning). This is consistent with the idea that older 

adults may compensate for age-related decline in “control over LP” with higher vocabulary 

knowledge (Gollan & Goldrick, 2019). This also confirms that semantic knowledge 

accumulated over the lifespan (Salthouse, 2019; Spreng & Turner, 2019) is a viable 

alternative to meet reduced fluid processing with increased associative processing, thus 

lowering the control demands during LP (Spreng & Turner, 2021).   Structurally, this 

tendency towards an increasingly “semanticized” cognition (Spreng et al., 2018) is associated 

with enhanced microstructural integrity in a left-dominant cortico-subcortical network (e.g., 

STR, T/ST PREC, T/ST POSTC), aligning with the idea that thalamocortical pathways are 

crucial for stable semantic representations at the semantic-lexical interface (Crosson, 2021). 

Critically, our investigation sheds light on the interplay between DG and LS during middle 

age, suggesting that sufficient cognitive control is key to the compensatory “semantic 

strategy”. Indeed, in late middle age, LP decline co-occurs with significant DG deficits and 

increased semantic abstraction difficulties in LS. Yet, the brain structural changes of LS in 

late middle-aged adults remain comparable with that of younger adults (age 51-55), indicating 

late middle-aged difficulties are not underpinned by reduced semantic knowledge. Said 

differently, a richer repertoire of stored semantic resources in middle age, as captured by LS, 

appears to be a necessary but insufficient condition to maintain LP performance in late middle 

age. Instead, we argue that the compensatory dynamic of middle-aged LP is driven by the 

ability to use flexibly and abstract this semantic knowledge, that is the DG-LS interplay (as 

depicted in red in Figure 5). This supports the idea that semantic cognition depends on both 

representational and control neural systems (Hoffman & MacPherson, 2022; Wu & Hoffman, 

2023), with semantic control regulating access to semantic representations (Branzi & Lambon 

Ralph, 2023; Ralph et al., 2017). 
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Taken together, our investigation provides empirical evidence in favor of the LARA model 

(Baciu et al., 2021) by suggesting that the interplay between domain-general (DG) and 

language-specific (LS) mechanism is crucial to understanding the onset of word-finding 

difficulties in the middle age. Importantly, this reaffirms that LP is a highly integrative 

cognitive function and the product of intra-(LS) and extra-(DG) linguistic processes (Hagoort, 

2019; Hertrich et al., 2020; Roger, Banjac, et al., 2022). While middle-aged adults may adopt 

a compensatory “semantic strategy” to delay the onset of word-finding difficulties, this 

strategy may be compromised in late middle age when the ability to exert cognitive control 

over semantic representations is challenged, translating into a poorer filtering of irrelevant 

semantic associations (i.e., reduced semantic selection; Badre & Wagner, 2007; Barba et al., 

2010; Jefferies, 2013).  

Taking a broader perspective, this transition in midlife echoes recent proposals advocating for 

a learning-to-prediction shift (R. M. Brown et al., 2022) from an explorative to an exploitative 

cognitive mode (Hills et al., 2015; see Spreng & Turner, 2021 for a review), ultimately 

disproving that cognitive aging is solely synonymous with cognitive decline (Spreng & 

Turner, 2019). Indeed, exploiting accumulated semantic knowledge resources can be viewed 

as a predictive process, providing sufficient flexibility for comparing sensory inputs against 

long-term memory traces when given ambiguous, noisy, or incomplete lexical information 

(Bar, 2007; Bubic, 2010). In the context of LP, this signifies that middle-aged adults are better 

equipped to produce utterances elicited by semantic and/or episodic associations (i.e., 

inferential naming) compared to a typical picture naming task (i.e., referential naming) 

(Fargier & Laganaro, 2023). In the context of semantic processing, this is consistent with 

studies reporting that older adults make less use of contextual information as noted by 

Jongman & Federmeier (2022). 
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Limitations and Perspectives. We mention that we did not explicitly model cognitive reserve 

factors despite their key role in capturing the inter-individual variability in language 

processing (Chan et al., 2018; Oosterhuis et al., 2023; see also the dynamic framework 

proposed by the STAC-R model Reuter-Lorenz & Park, 2023). Relatedly, in our PLS model 

(please refer to Figure 3A), the residual variability highlights that age-invariant factors (e.g., 

lifestyle, leisure activities, socio-demographics) could affect LP performance (see also Gallo 

et al., 2021 for the association between residual-based measures and cognitive trajectories in 

late life). Indeed, we observed that the DG component (LC1) was also driven by brain 

structure changes in white matter networks, showing no significant association with age 

alone. This further ties in with our hypothesis, stating that DG processes are associated with 

reserve aging, potentially indexing the age-invariant search and retrieval of less salient 

semantic knowledge (Hoffman, 2018). Future research should investigate how cognitive 

reserve factors modulate the reported modified white matter networks, by considering 

universal and idiosyncratic mechanisms (Baciu et al., 2021).  

Similarly, while we controlled for gender differences, our findings would certainly benefit 

from directly investigating the effect of this variable, especially given that middle-aged 

women tend to preserve semantic access longer than men as age increases (i.e., higher 

sentence comprehension performances in late middle age, see Section 2.1.1). In line with this, 

supplementary analysis suggests that men’s ability to exploit stored semantic resources (LS 

mechanism) is delayed compared to women. Accordingly, the neurocognitive transition 

signaling the onset of LP difficulties (i.e., DG-LS interplay) is likely to occur earlier (age 52 

vs. 54) (please see Figure B.6, Appendix B for details). This could indicate that all other 

things being equal, women may more readily manipulate and generalize stored semantic 

knowledge, contributing to further delay of the onset of word-finding difficulties. Another 

question remains to understand how this compensatory dynamic pattern translates to 
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pathological aging. For example, one could hypothesize that individuals with neurocognitive 

disorders would show noticeably limited increases in semantic representations with age or 

that the ability to access stored semantic knowledge flexibly is compromised early on, 

resulting in heightened LP deficits. In sum, this perspective offers a promising avenue for 

establishing whether and how these midlife compensatory mechanisms could capture early 

signs/trends of neurodegenerative pathology (i.e., neurocognitive biomarkers), paving the way 

for targeted and anticipated cognitive rehabilitation. 

As methodological limitations of our study, we mention that relaxing the orthogonality 

constraint when performing NMF (Non-Negative Matrix Factorization; see Section 2.3) 

would be interesting to identify white matter regions overlapping with more than one WM 

network (Patel et al., 2022, 2023). This is particularly relevant at crossing fiber locations, 

considering that fiber from different bundle types may cross the same white matter area with a 

different orientation, thus not necessarily sharing the same component from the NMF 

solution. Additionally, we acknowledge that the voxel-wise analyses conducted in this study 

are insufficient for distinguishing fiber differences in white matter alterations in crossing fiber 

locations. Further analysis showed that cognitive control decline in our voxel-level PLS 

model was partially associated with a putative integrity increase from the corpus callosum's 

splenium extending to the right TPJ (see Figure B.4, Appendix B). Specifically, the bundles 

converging to the right TPJ (see Figure B.7, Appendix B) have been reported to form a 

bottleneck region of crossing fibers along an anterior-posterior axis (Schilling et al., 2022).  

This suggests that this localized increase may be deceitful and instead reflect fiber-specific 

degeneration (Han et al., 2023). Considering that age-related differences have also been 

reported in crossing fibers in addition to individual fiber segments (Kelley et al., 2019), fixel-

based analysis (FBA) would have been more accurate (Dhollander et al., 2021). However, we 

preferred not to perform FBA in this study, considering that the b-values (1000 and 2000 
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s/mm²) in this study are insufficient to attenuate the extra-axonal water signal, meaning that 

signals from the extra-cellular space outside the axons would contribute to a biased apparent 

fiber density, rendering “biological interpretation challenging and fundamentally limited” 

(p.9, Dhollander et al., 2021). Additionally, to our knowledge, MRtrix3 (version 3.0.4; 

Tournier et al., 2019), does not yet offer users a weighted variant of the streamline-to-voxel 

algorithm. This means that track-weighted-FA images could not be weighted by the length of 

the streamline traversing the voxel, resulting in a less accurate contrast.  

Finally, out-of-sample replication using larger, independent, and longitudinal databases would 

also enhance the reliability of our results in light of recent reports showing that cross-sectional 

studies may largely be underpowered for brain-behavior associations (Gratton et al., 2022; 

Marek et al., 2022). Additional investigations using a multiple DTI metric (e.g., AD, RD) 

would also give us a better outlook on age-related biological changes such as demyelination, 

axonal damage, as well as mild or chronic microstructural alterations (Molloy et al., 2021), 

leveraging sophisticated machine learning techniques (e.g., Mishra & Liland, 2022)  

5. Conclusion 

In this study, we aimed to disentangle the WM changes related to lexical production (LP) 

difficulties, typically beginning in middle age. Our findings underscore that midlife is a 

pivotal period characterized by a discontinuity in brain structure within distributed networks 

mainly comprised of dorsal, ventral, and anterior cortico-subcortical pathways. Importantly, 

this discontinuity signals a neurocognitive transition around age 53-54, marking the onset of 

LP decline. While middle-aged adults may initially adopt a “semantic strategy” to compensate 

for the initial LP challenges, this strategy may be compromised as late middle-aged adults 

(age 55-60) lose the ability to exert cognitive control over semantic representations. Taken 

together, our study (i) emphasizes the importance of considering the interplay between 
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domain-general and language-specific processes when studying the cerebral substrates of 

lexical production and (ii) reaffirms that sophisticated statistical analysis techniques studies 

applied to the middle-aged population is a promising avenue for identifying predictive 

biomarkers of neurodegenerative pathologies. 
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