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EMERGENT PROPERTIES IN A V1-INSPIRED NETWORK

OF HODGKIN–HUXLEY NEURONS

Mohamed Maama3, Benjamin Ambrosio1,2,* , M.A. Aziz-Alaoui1

and Stanislav M. Mintchev4

Abstract. This article is devoted to the theoretical and numerical analysis of a network of excitatory
and inhibitory neurons of Hodgkin–Huxley (HH) type, for which the topology is inspired by that of a
single local layer of visual cortex V1. Our model relies on recent work in this area and thus combines a
stochastic drive – which may be interpreted as an ambient drive for each neuron – with recurrent inputs
resulting from the network activity. After a review of the dynamics of a single HH equation for both the
deterministic and the stochastically driven case, we proceed to an analysis of the network. This analysis
reveals emergent properties of the system such as partial synchronization and synchronization (defined
here as a state of the network for which all the neurons spike within a short interval of time), correlation
between excitatory and inhibitory conductances, and oscillations in the Gamma-band frequency. The
collective behavior enumerated herein is observed when the input-amplitude parameter SEE measuring
excitatory-to-excitatory coupling (recurrent excitation) increases to within a certain range. Of note, our
work indicates a distinct mechanism for obtaining the emergent properties, some of which have been
classically observed. As a consequence our article contributes to the understanding of how assemblies
of inhibitory and excitatory cells interact together to produce rhythms in the network. It also aims to
bring problems from neuroscience to the realm of mathematics, where they can be analyzed rigorously.
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1. Introduction

1.1. Background and motivation

This paper deals with an analysis of the dynamics of a network of Hodgkin–Huxley (HH) ordinary differential
equations (ODEs). We briefly recall that the HH equations were introduced in 1952, see [30], in order to
describe the formation and propagation of action potentials along the giant squid nerve axon. They have
served as a basis for numerous other mathematical models in neuroscience, e.g., the FitzgHugh-Nagumo (FHN)
[27, 38], the Moris-Lecar [37], and the Hindmarsh–Rose model [29], to cite only a few. For general textbooks
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on mathematical models related to the HH model, we refer to [15, 21, 25, 26, 31]. All of the above-mentioned
models (used to describe the electrical activity of a single neuron) have subsequently been implemented in
various studies of neural ensembles, by way of networks of ODE’s; related meanfield models have also been
introduced [15, 16, 20, 22, 25, 28, 32, 50, 53].

Networks of ODEs have attracted a lot of attention from the applied mathematics and physics communities.
We refer the reader to [11, 12, 39] for various standard concepts developed generally for the theory of networks
with real-world topologies. Topics of interest regarding dynamical networks classically include synchrnonization,
the existence of an attractor, pattern formation, bifurcation phenomena, wave propagations, etc... Our own con-
tributions to this subject reside both in the context of networks of ODEs as well as in Reaction-Diffusion PDEs
inspired by Neuroscience [1, 2, 4, 5]. The present paper represents a special thread in this line of work, as it is
devoted specifically to studying emergent phenomena such as complete synchronization, partial synchronization,
and rhythms in a random network with visual cortex V1-inspired topology. Biology abounds with examples of
complete synchronization (all network elements coevolve with identical states), such as the synchronization of
the flashes of fireflies or heart pacemaker cells. Further examples are given in [8, 40, 42, 47] as well as the
references cited therein. Another type of synchronization of specific interest in Neuroscience is the so-called
partial synchronization (also sometimes referred to as cluster synchronization), observed when different sub-
groups of the total neural population synchronize their activity differently, see for example [13, 23, 43]. From
a physiological standpoint, the modeling of an assembly of neurons in the brain with networks of ODEs may
reveal how neurons in primary sensory areas produce their responses, how cortical maps process information,
etc... In particular, network models of ODEs can be used to address one of the typical questions prevalent
in the physiological literature: To what extent are the responses of neuronal ensembles (and the subsequent
perception of information) shaped by feed-forward vs. recurrent circuitry? This question is a current challenge
and a subject of debate in neuroscience; a typical example is provided by the neurons in layer IV of the primary
visual cortex, which receive sparse afferent inputs from the lateral geniculate nucleus (LGN) concurrent with
abundant inputs from other cortical neurons; see [32].

In the present paper we focus further on identifying numerically a region of parameters for which a network of
ODEs exhibits dynamics relevant to mathematical neuroscience. Accordingly, our setting features an ensemble
of HH systems for which the coupling relies on the following assumptions:

� the feed-forward inputs are represented by a stochastic drive;
� the recurrent inputs are incorporated by way of excitatory and inhibitory synaptic coupling terms;

and we are focused on three recognizable states of global activity – totally random activity, partial synchrony,
and complete synchronization.

As discussed above, the basic idea of leveraging the interplay between feed-forward and recurrent connection
structures is critical to the relevance of such models to neuroscience applications; among other information
coming from real physical data, this has been used successfully in a series of recent papers aiming to describe
the electrical activity of the visual cortex V1, see [17–19]. See also [44, 54].

The structure of the network model investigated herein is inspired by the studies carried out in these latter
three articles. An important contribution of these papers is the introduction of the Recurrent Excitation Inhi-
bition (REI) mechanism as way to obtain emergent properties observed in V1, such as the Gamma rhythm,
correlation between gE and gI conductances, and partial synchronization. In addition to these contributions,
this line of work features the discovery that when the parameters of the model are first tuned to the background
regime, orientation selectivity arises by way of only a slight variation of the inputs, which is to say that the total
energy contained in the inputs is very low in comparison to the energy coming from recurrent connections – and
yet, these slight changes in the inputs have the outsize effect of inducing orientation selectivity. The authors
also distinguished their contributions from a large body of work devoted to the so-called PING mechanism
(Pyramidal-Interneuronal Network Gamma) [14, 24, 52]; see also [51], as well as [15] for a broad overview.

It is important to stress that the CSY model incorporates a variety of parameters intended to take into account
physiological features whose investigation lies beyond the scope of our study. The model considered herein is
separate and distinct from CSY and features HH neurons, which possess a richer structure than Leaky Integrate
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and Fire (LIF) models but are substantially more challenging for both theoretical and numerical work. For LIF
models the reset and resting delay are set manually whereas in HH they are intrinsic properties of the dynamics.
There are also further distinctions to our work: we employ Dirac impulses to model both the drive to the network
and the signals between interacting units – a feature incorporated in [17] but subsequently modified with the
introduction of CSY; moreover, our analysis leverages the network outputs in order to extract a single parameter
(SEE) that plays a crucial role in the onset of emergent behaviors. The ensuing parameter study indicates a
path from the homogeneous stochastic state to a partial synchronization regime, global synchronization, the
emergence of a Gamma rhythm, and gE – gI correlation. N.B.: in the global synchronized regime, we observe
that I-population events completely encapsulate those by the E-population, i.e., the I-population spiking starts
before and ends at the same time or shortly after the end of the E-spiking. This is a novel phenomenology that
has to date not been observed in PING or REI. The work herein carries the potential to serve as a bridge to
further rigorous mathematical analysis. Most results in this setting, including most of what we discuss in the
present paper are of a computational nature. Nevertheless, to move further in the direction of rigor, our final
discussion proposes three 2-dimensional models deduced from our work that can be studied mathematically.

With this background in mind, our goal is to proceed to the analysis of a model of a few hundred HH neurons
driven individually by a stochastic input and connected with a topology inspired by V1 according to [17–19]
but with the aforementioned distinctions. Proceeding hierarchically, we review and revisit some known facts on
the dynamical characteristics of a single HH ODE model in Section 2. We focus specifically on the analysis for
a range of the parameter I in which HH transitions from steady state to oscillatory behavior. This detail is
critical to us going forward: since the current balance in individual cells resulting from inhibitory and excitatory
inputs is achieved in this parameter regime, this balance replaces the parameter I in the ensuing treatment. In
Section 3 we replace the parameter I by a stochastic Poisson input corresponding to a feed-forward drive, and
we analyze the switch between quiescent and excitatory activity as the drive intensity is increased. Finally, we
investigate the dynamics of the entire network in Section 4; we illustrate therein some numerical simulations of
the network and discuss the emergence of organized behavior subject to the variation of appropriate parameters.
We offer some concluding remarks and perspective regarding future work in Section 5. To set up an appropriate
emphasis for our treatment, we first complete our introduction in Section 1.2 by way of describing in greater
detail the network of HH equations to be considered in Section 4.

1.2. The HH ODE network model

The single unit of our network is the classical HH ODE system:
CVt = I + gNam

3h(ENa − V ) + gKn4(EK − V ) + gL(EL − V )
nt = αn(V )(1− n)− βn(V )n
mt = αm(V )(1−m)− βm(V )m
ht = αh(V )(1− h)− βh(V )h

(1.1)

with

αn(V ) = 0.01 −V−55
exp (−5.5−0.1V )−1 , βn(V ) = 0.125 exp(−(V + 65)/80),

αm(V ) = 0.1 −V−40
exp (−4−0.1V )−1 , βm(V ) = 4 exp(−(V + 65)/18),

αh(V ) = 0.07 exp(−(V + 65)/20), βh(V ) = 1
1+exp(−0.1V−3.5)),

(1.2)

and

C = 1, EK = −77, ENa = 50, EL = −54.387,

gK = 36, gNa = 120, and gL = 0.3.
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In equation (1.1), V represents the membrane potential and n,m, h are gating variables modeling the opening
and the closing of ionic channels; n is related to potassium fluxes, and m and h are related to sodium fluxes.
Hodgkin and Huxley ([30]) established these equations by a series of voltage measurements thanks to the
Voltage Clamp Technique, which allowed them to maintain the membrane potential at constant value. Thanks
to this approach, they were able to use data from such experiments in order to fit the functional parameters
of their model. In brief, the model is obtained by considering the cell as an electrical circuit, and writing the
Kirchoff law between internal and external currents. Thereafter the model assumes that the membrane acts
as a capacitor. Ionic currents result from ionic channels acting as variable voltage-dependent resistances. The
model takes into account three ionic currents: potassium (K+), sodium (Na+) and leakage (mainly chlorine,
Cl−). In equation (1.1), subscript t stands for the derivative d

dt , I is the external membrane current, C is
the membrane capacitance, gi, Ei, i ∈ {K,Na,L} are the maximal conductances and the Nernst equilibrium
potentials, respectively. The value of parameters is taken from [22, 48]. We refer to [15, 21, 25, 31] for textbooks
presenting this classical model.

The main goal of this article is to study networks of HH equations, in which each neuron receives excitatory
and inhibitory inputs from its presynaptic neurons. Hence, adapting [17], we consider a network 1 ≤ i ≤ N of
N = 500 HH-neurons with additional entries for excitatory and inhibitory presynaptic inputs. This leads to the
following equation for the network:



CVit = gNam
3h(ENa − Vi) + gKn4(EK − Vi) + gL(EL − Vi)

+gE(EE − Vi) + gI(EI − Vi)
nit = αn(Vi)(1− ni)− βn(Vi)ni

mit = αm(Vi)(1−mi)− βm(Vi)mi

hit = αh(Vi)(1− hi)− βh(Vi)hi

τEgEit = −gEi + Sdr
∑

s∈D(i) δ(t− s) + SQE
∑

j∈ΓE(i),s∈N (j) δ(t− s)

τIgIit = −gIi + SQI
∑

j∈ΓI(i),s∈N (j) δ(t− s)

(1.3)

where Q is equal to E for E-neurons and I for I-neurons.
This means that for each node in the network, we add two equations to the original HH ODE system. Those

are the equations which contain coupling terms inputs coming from:

1. the network (presynaptic E and I-neurons)
2. a stochastic input drive, only for gE .

These two variables stand here for gating variables and are added as such to the first equation. We now make
explicit the further specifics regarding the structure of the final two equations, discuss details regarding the
network topology of interest together with the relevant notation, and set up the values of fixed parameters for
the study.

Network inputs
When the variable Vj of a given neuron j crosses a threshold Tr upward, a kick is generated in all of its
postsynaptic neurons. In equation (1.3), the kicks coming from E neurons are represented mathematically by
the Dirac term δ(t− s) in the gEi equation. Accordingly, in equation (1.3), ΓE(i) denotes the set of E neurons
that are presynaptic to neuron i. The notation N (j) refers to the set of times at which the neuron j crosses the
threshold Tr upwards. Similar notations hold for the gIi equation. Each E neuron receives kicks with coupling
strength SEE from presynaptic E neurons, and coupling strength SEI from presynaptic I neurons. Each I
neuron receives kicks with coupling strength SIE from E-neurons, and coupling strength SII from I-neurons,
see Figure 1. We also set

EE = 0 and EI = −80,
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Figure 1. Schematic representation of the coupling in the network. Each E neuron receives
kicks with coupling strength SEE from E neurons, coupling strength SEI from I neurons. Each
I neuron receives kicks with coupling strength SIE from E neurons, coupling strength SII from
I neurons.

Table 1. This table summarizes the value of fixed parameters used in numerical simulations
of the network equation (1.3).

N = 500 Ne = 375 Ni = 125 VE = 0 VI = −80 τE = 2 τI = 3

Nee = 50 Nei = 25 Nie = 190 Nii = 25 Sdr = 0.04 ρE = 0.9 ρI = 2.7

which makes kicks coming from presynaptic E neurons have a depolarizing effect on the membrane potential
Vi, while kicks coming from presynaptic I neurons to have hyperpolarizing effect. The value of the threshold
Tr is set to −10.

Poissonian Input
Driving conductances with Poissonian inputs are common in the literature [17, 18, 28, 33]. Accordingly, we have
added a drive to the gEi evolution equation by way of Poisson inputs of parameter ρE = 0.9 for E-neurons and
parameter ρI = 2.7 for I neurons. Assuming that the time unit is ms, this implies that the mean value between
two stochastically driven inputs is about 1

0.9 ms for E-neurons and 1
2.7 ms for I-neurons. Analogous notations

to those used for the kicks coming from the network are used for the stochastic input drive: D(i) refers to the
set of times at which the neuron i receives kicks corresponding to the input drive. Finally, note that the kicks

have an amplitude given by the parameter Sdr

τE
= 0.04/2 = 0.02.

Network Topology
We consider a network of N = 500 neurons with Ne = 375 E neurons and Ni = 125 I neurons. The network is
constructed as follows: each neuron is randomly assigned a subcollection of the network as presynaptic, accord-
ing to the constraint that N·e are drawn from the E population, and N·i come from the I population. The ·
should be replaced with E or I, in accordance with the nature of the neuron in question. Once the selections
are made for each network constituent, they remain fixed throughout the study. The values of these constants
for the specific network are Nee = 50, Nei = 25, Nie = 190, and Nii = 25. The network so constructed stands
as an example of an inhomogeneous random oriented graph, wherein the probability of network connections
depends on cell type – I neurons have proportionally more presynaptic E neurons, as compared to the other
three connection numbers. Figure 2 provides an illustration of the network. Note that this topology is inspired
by the ratio implemented in [18].

Value of parameters
Table 1 summarizes the values of the fixed parameters SII , SEE , SIE , SEI and Sdr. The dynamical effects of
these parameters will be discussed in the sections to follow.
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Figure 2. Illustration of a network with fifteen E neurons and five I neurons with a similar
topology than the network considered in the article (the network considered in the article is 25
times larger than the network represented here).

2. Analysis of the HH equation

In this section, we provide a brief expository overview of the single-cell model with an emphasis on properties
of solutions to equation (1.1) that are critical for the network analysis to follow (c.f., [4, 15, 21, 25, 31])

C
dV

dt
= I + gNam

3h(ENa − V ) + gKn4(EK − V ) + gL(EL − V ),

dn

dt
= αn(V )(1− n)− βn(V )n,

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h,

with the declared values for the parameters. A simple analysis shows that the following theorem holds.

Proposition 2.1. There exists Vm, VM ∈ R such that the compact set

K = [Vm, VM ]× [0, 1]3

is positively invariant for system (1.1).

Proof. First note that the α· and β· functions are positive. For instance, this guarantees that the time-derivative
of n is negative above 1 and positive below zero, indicating that the unit interval is a trapping region; this
observation translates to m and h as well, altogether implying that [0, 1]3 is positively invariant for n,m and h.
As a consequence, from the first equation, Vt becomes negative for V large enough. It becomes positive for −V
large enough. This implies the result.

The next proposition follows from simple computations.

Proposition 2.2. The stationary solutions of (1.1) satisfy:
f(V ) = 0

n = αn(V )
αn(V )+βn(V ) ,

m = αm(V )
αm(V )+βm(V ) ,

n = αm(V )
αm(V )+βm(V ) ,

(2.1)
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Figure 3. Illustrations of f(V ) for I = 0. Left: V ∈ [−80, 50], Right:V ∈ [−80,−60]. Equation
f(V ) = 0 is satisfied for V ≃ −65 which corresponds to the stationary solution.

with

f(V ) = I + gNa

(
gm(V )

)3
gh(V )(ENa − V ) + gK

(
(gn(V )

)4
(EK − V ) + gL(EL − V )

and

gκ(V ) =
ακ(V )

ακ(V ) + βκ(V )
, κ ∈ {n,m, h}

Furthermore,

lim
V→−∞

f(V ) = +∞ lim
V→+∞

f(V ) = −∞.

Numerical simulations provide evidence that f is decreasing. Figure 3 illustrates the case I = 0, which gives
a unique stationary solution with V ≃ −65.

In the network model, the terms contributing to the voltage equation give rise to effects similar to variation
of the injected current I in the single-cell model. It is known, from numerical simulations [10, 34–36, 45] and
references therein, that for an interval of values for I, the system (1.1) exhibits a cascade of bifurcations giving
rise to unstable and stable limit cycles, with persistence of the stable stationary point. At a certain critical value
within this interval, the stationary point eventually becomes unstable trough a subcritical Hopf bifurcation.
(Fig. 4, taken from [10] summarizes these facts.) The network model does not incorporate an explicit current
injection; however, when in-network, the cells find themselves with contributions to the voltage equation that
mimic a current injection in the appropriate range and may undergo some of the bifurcation transitions observed
in the single cell.

To this point, we provide a qualitative analysis of the single-cell dynamics in a specific narrow range of the
parameter I that is both dynamically interesting and relevant for its interpretation by way of the coupling
contributions in the network paradigm. Figures 5–11 serve as graphical illustrations of the phenomenology we
review in the rest of this section, for a pair of initial conditions and various values of the parameter I.

In Figure 5, we have drawn the bifurcation diagram for two initial conditions. It shows the coexistence of
a stable limit cycle and a stable stationary solution for an interval containing [6.4, 7.5]. In particular, Figure 6
illustrates this phenomenon with trajectories for I = 7.
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Figure 4. Bifurcation Diagrams as the parameter I is varied, reproduced as in [10], with
permission of the authors. The figure at left indicates two bifurcating regions. One around I=10
and another around I=150. The latter one corresponds to a super-critical Hopf Bifurcation. The
bifurcation around 10 is more complicated. A zoom is illustrated in the right figure. One can
observe a sub-critical Hopf bifurcation around I=9.5, and bifurcation of cycles downwards. In
particular, one can observe coexistence of a stationary stable point and a stable limit cycle for
I approximately in the interval [6.3,9.5].

Figure 5. Bifurcation Diagrams. Both figures plot lim sup
t→+∞

V (t) and lim inf
t→+∞

V (t) as a function of

I for fixed initial conditions. Left:(V, n,m, h)(0) = (−50, 0.5, 0.5, 0.5). Right: (V, n,m, h)(0) =
(−65, 0.1, 0.1, 0.1). There is numerical evidence of coexistence of attractive limit cycle and
stationary stable point for a region of I.

Figures 7 and 8 illustrate the temporal evolution of the variables and highlight that the dynamics is of slow-
fast type. Note that this property is remarkable especially because separation of timescales is not explicitly
incorporated in the equation (no classical small parameter is present).

Figure 9 illustrates phase space dynamics together with nullclines. Together with Figure 8, the panels provide
both dynamical and biological interpretation for the coevolution of the gating variables with V , over the same
interval of V values [−80, 40]mV. We observe several distinct dynamic phases that alternate in rhythmic fashion
and paint a collective picture for the evolution of the limit cycle – this picture is an important takeaway for
understanding the dynamics at the network level. To start, one notes the proximity between the shapes of V
and m as functions of time (see Fig. 8). The initial condition studied here leads to a very short transient prior
to reaching the asymptotic regime, in this case, the stable limit cycle. For a more detailed description, we start
at a time where V is at its maximum, for example t ≃ 18. This point corresponds roughly to a time at which m
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Figure 6. Coexistence of attractive limit cycles and stationary point for I = 7. Left:
V (t) for two initial conditions, (V, n,m, h)(0) = (−65, 0.1, 0.1, 0.1) in red, (V, n,m, h)(0) =
(−50, 0.5, 0.5, 0.5) in blue. Right: analog representations in the (n, V ) projection plane.

Figure 7. Temporal evolution for I = 7 and IC (V, n,m, h)(0) = (−65, 0.1, 0.1, 0.1). Left:
n,m, h as functions of time, respectively in red, green and blue. Right: V as a function of
time. These figures represent an action potential or spike. It is followed by a return to the
stationary state.

Figure 8. Temporal evolution for I = 7 and IC (V, n,m, h)(0) = (−50, 0.5, 0.5, 0.5). Left:
n,m, h as functions of time. Right: V as a function of time. We observe a train of spikes.
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Figure 9. Dynamics for I = 7 and IC (V, n,m, h)(0) = (−50, 0.5, 0.5, 0.5), which leads to
evolution towards a limit cycle. Top left panel: figure provides the nullclines of n (red), m
(green) and h (blue) as a function of V . One may rely on them to explain the dynamics. The
three others pictures, illustrate respectively the dynamics of (V, n), (V,m) and (V, h), with their
nullclines. These pictures highlight the dynamics of the HH model.

Figure 10. Dynamics in the 3-dimensional phase space (V, n, h) for I = 7, for different IC.
Blue curves correspond to IC (V, n,m, h)(0) = (−50, 0.5, 0.5, 0.5). Red curves correspond to
(V, n,m, h)(0) = (−65, 0.1, 0.1, 0.1). There is numerical evidence of coexistence of attractive
limit cycle and stationary stable point for a region of I.
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Figure 11. This figure illustrates the basin of attraction for I = 7, of the stationary solution
and the limit-cycle. It is a projection in the V, n, h plan. In red, we plot IC which evolve to the
stationary point. In blue, we plot IC which evolve to the limit cycle.

(in green in Fig. 8) reaches also its maximum. On the other hand, a more attentive look at Figure 9, bottom-left
(BL), shows that V reaches its maximum a little before m. Indeed, when V is at its maximum, m is increasing,
n is increasing, and h is decreasing. Those dynamics are fast. The variable V decreases quickly. At t ≃ 20, V is
at its minimum, and so is m (see Figs. 8 and 9 BL). Note the remarkable change in the dynamics of m and V
for the period directly following this minimal point. At this time, one can distinguish the beginning of a slow
phase during which the dynamics follows the m-V -projection of the nullcline. The variables V,m, h (h appears
in blue in Fig. 8) increase (precipitating an increase to the sodium conductance), while n (in red in Fig. 8)
decreases (and this leads to a decrease in the potassium conductance). At that point, the dynamics is still
slow. Around t = 27, the dynamics of n and h changes again: n starts to decrease while h begins an increase.
The dynamics are still slow until t ≃ 34, at which point we observe that V enters a fast dynamical phase that
translates to the other variables as well. We observe a drastic increase in V (which means that the sodium flux
dominates, recall that the ENa = 50). The variables m and n increase while h decreases. During this additional
(increasing) fast phase, V reaches its maximum anew, and the loop is complete. It is worth noting that V has
a fast increase followed by a fast decrease, which means that Vt crosses 0 downwards in an abrupt fashion.
Denoting by F (V, n,m, h) the first component of the right-hand side of (1.1), this turning point corresponds to

DF (VM , nM ,mM , hM ).


0
δn
0
δh

 << 0

where (VM , nM ,mM , hM ) is taken at the instant for which V is at its maximum and with δn > 0, δh < 0. The
potassium channel plays an important role in repolarization. Analogously,

DF (Vm, nm,mm, hm).


0
δn
0
δh

 >> 0

corresponds to (Vm, nm,mm, hm) at the instant for which V is at its mimimum, and with δn < 0, δh > 0. It is

worth noting how the trajectory in the (V,m)-plane follows the manifold n = α(V )
α(V )+β(V ) (Fig. 9 BL).

Biological interpretation. According to the model, the variable n regulates the flux of potassium, while the
variables m and h regulate the sodium flux. The spike in V occurs when it is pushed trough the sodium gradient
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induced by the value (ENa = 50), and corresponds to the depolarization of the membrane. Repolarization and
hyperpolarization result from the potassium gradient (corresponding to EK = −77). According to the original
paper by Hodgkin and Huxley, high values for m and n correspond to the activation of potassium and sodium
gates, respectively. A low value of h corresponds to the inactivation of the sodium gate.

Action Potential and Excitability. The original HH paper was successful in part because it proposed a
physiologically based mechanism for the generation of action potentials / spikes. From a dynamical modeling
point of view, an action potential corresponds to a large and fast excursion in the phase space, especially in
the V variable and away from the stationary stable point. This ability of the system (1.1) to go from rest into
a spiking regime is known as excitability; we illustrate it for instance in Figures 7 and 8. Excitability is of
fundamental importance for subsequent sections herein, since perturbations above threshold will induce a spike.

In this section, we have revisited the dynamics of the HH equation. The key point for subsequent sections
is that by varying the parameter I, or alternatively, by changing the initial conditions, the HH system is able
to produce spikes. This ends up being critically important for the network analysis because the N -dimensional
temporal spiking sequence is the crude observable by which the behavior of the network is tracked.

3. One driven neuron

In this section, we focus on the dynamics of one driven neuron. We assume that I = 0. As discussed in
paragraph 1, this implies that if there are no drive inputs the system evolves toward the steady state. The
equation in this case writes as

Vt = gNam
3h(ENa − V ) + gKn4(EK − V ) + gL(EL − V )

+gE(EE − V )
nt = αn(V )(1− n)− βn(V )n
mt = αm(V )(1−m)− βm(V )m
ht = αh(V )(1− h)− βh(V )h

τEgEt = −gE + Sdr
∑

s∈D δ(t− s)

(3.1)

where D refers to the set of times at which the neuron receives kicks from the stochastic drive. In comparison
with system (1.1), we have added one equation to account for the external drive contribution. Mathematically,

we assume that the temporal evolution of gE incorporates jumps of amplitude Sdr

τE
that occur according to a

Poisson process of rate λ. We order the event times in the Poisson process according to increasing value and
assume the notation

D = (si)i∈N.

Recall that the Poisson sequence amounts to a realization of exponential laws with parameter λ, which provides
the widths (si+1 − si) of the interspike intervals.

Biological interpretation. A central question of neuroscience focuses on the mechanisms that shape the
neural response in the presence of stimuli from the external environment. The cell spiking paradigm chosen in the
present model reflects the interplay between external drive incorporated via Poisson kicks and recurrent inputs
coming from the network coupling. We see here a direct relationship between the mathematical study (complex
network science – issues of network topology, external drive, and the local node dynamics) and this fundamental
biological question. The present section is aimed at understanding the effects of the external drive on a single cell.

The driven single-cell model is mathematically well defined. It features deterministic dynamics interrupted
every so often by the events of a stochastic point process. The subdivision {t0, t1, ...} of the interval [0, T ] plays
a critical role in the mathematical formulation. Note that the derivative gEt has to be taken in the sense of
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distributions. A classical computation leads to

gE(t) = gE(ti)e
− 1

τE
(t−ti)

on the time interval [ti, ti+1), then at time ti+1 a kick arrives and,

gE(ti+1) = gE(ti)e
− 1

τE
(ti+1−ti) +

Sdr

τE

Therefore gE(t) is a discontinuous function with jumps, and is locally bounded.
In the discussion to follow, given the input drive, we study the behavior resulting from an increase in the

parameter Sdr. To start, we discuss theoretical results that bear relation to the cell’s response to changes in
this parameter. We follow this with some numerical investigations of the effects of such changes.

3.1. Some analytical results

Proposition 3.1 stands as an analogue to Proposition 2.1 and clarifies the mathematical well-definition of
equation 3.1.

Proposition 3.1. The trajectories of the stochastic process generated by equation (3.1) are defined on (0,+∞)
and piecewise-C1; Furthermore, V is continuous, n,m, h are C1, gE has jumps. Furthermore, the set

(EK , ENa)× (0, 1)3 is positively invariant for (V, n,m, h).

Proof. Existence and uniqueness on each interval [ti, ti+1) follows from the Cauchy theorem. At time ti+1 a
jump occurs, which determines the value of gE in the next time interval. It follows that the solution gE is C∞ in
each interval (ti, ti+1). Next, we deal with the boundedness of trajectories. The proof of Proposition 2.1 remains
valid, with the specific assumption that I = 0. There are jumps on Vt but V is continuous. The derivative Vt is
negative if V is above ENa and positive if V is below EK . This implies the result.

Remark 3.2. Note that the value of gE after the jump is therefore given by the following recurrence equation.

gE(ti+1) = gE(ti) exp(−
ti+1 − ti

τE
) +

Sdr

τE
.

The following proposition follows from the above recurrence equation.

Proposition 3.3. We assume gE(0) = 0. Then, for t ∈ [ti, ti+1), gE is given by the following expression:

gE(t) =
Sdr

τE

i∑
k=1

exp(
t− tk
τE

)

Since the tk+1 − tk are governed by independent exponential laws, we can compute the value of the mean
E[gE(ti)] just before a kick input. Computations lead to the following proposition.

Proposition 3.4. Under the above assumptions, the following expression holds:

E(gE(ti)) =
Sdr

τE

i−1∑
k=1

(λτE)
k

(λτE + 1)k
=

Sdr

τE

r − ri

1− r
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where

r =
λτE

1 + λτE
.

And,

lim
i→+∞

E[gE(ti)] = Sdrλ (3.2)

Biological interpretation. Note that equation (3.2) gives simple quantitative information about the drive.
Roughly speaking, it says that the mean value of gE after kicks and exponential decay is the product of the
amplitude Sdr and the input frequency λ (measured per ms).

3.2. Varying Sdr

Next, we set values of λ = 0.9 and τE = 2 and vary Sdr. When increasing Sdr, we reach a threshold at
which the driven neuron starts to spike. Increasing Sdr further leads to an increase in the spiking rate. This
is illustrated in Figure 12. This numerical analysis serves as a basis for the study of the network for which we
set ρE = 0.9, ρI = 2.7, τE = 2, and Sdr = 0.04. For theses values, one single driven neuron exhibits multiple
spikes. It is worth noting that for the last two columns, neurons exhibit a frequencies of approximately 60 and
85Hz, respectively. These are precisely the values of parameters that will be set for the E and I-neurons; they
characterize the stochastic drive, which is one of the three main elements of the network dynamics. We now
turn to studying dynamics at the network level that reflect the balance between the stochastic drive and the
effects of recurring inputs coming from the network coupling.

4. Emergent properties in a stochastically driven network

The following theorem provides a theoretical framework prior to a detailed numerical analysis. The proof is
analogous to that of Proposition 3.1 and is therefore omitted.

Theorem 4.1. The trajectories of the stochastic process generated by equation (1.3) are defined on (0,+∞)
and piecewise-C1; for every i ∈ {1, ..., N}, Vi is continuous, ni,mi, hi are C1; gEi, gIi have jump discontinuities.
Furthermore, the set (EK , ENa)× (0, 1)3 is positively invariant for (Vi, ni,mi, hi).

In this section, our aim is to illustrate how variation of the model parameters leads to emergent properties
in the network. We present results from numerical simulations that explore the parameter space around

SEI = SIE = SII = SEE = 0.01,

where we take turns varying each of these parameters separately within the range [0.002; 0.03]. Among these
four parameters, SEE appears to be the most effective for establishing a path from stochastic homogeneity
to synchronization in the network. We have structured the presentation of the results so as to highlight the
following emergent phenomena:

� a path from homogeneity to partial synchronization and synchronization;
� the increase in correlation between gE and gI ;
� emergence of the Gamma rhythm – at some point the network has its own rhythm of oscillation consistent
with the so called gamma frequency, which may be different from individual neuronal rhythms;

� variations in the mean spiking rates of E and I neurons that result from changes to the parameters.

Figures 17 and 18 capture a significant proportion of the information content discussed in the rest of this
section.
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Figure 12. Simulations of equation (3.1) for Sdr ∈ {0.006, 0.007, 0.008, 0.04} are illustrated;
different columns correspond to different values of Sdr in increasing order from left to right,
except that the final two columns involve the highest value of this parameter but for two distinct
values of λ. We observe a bifurcation between the spike-free and spiking regime. The first row
represents V (t), the second row −gEV (t) which corresponds to I(t) for (1.1). The last row
illustrates the projection in the n − V plane. The first spiking regime occurs for Sdr = 0.007
(mean of −V gE ≃ 1.5). The value for λ is 0.9. For Sdr = 0.006 (mean of−V gE ≃ 1.3), there
are no spikes, while for Sdr = 0.008, we obtain 6 spikes per second. Note that each spike for
V occurs after an increase signal in −gEV . For Sdr = 0.04 (mean of −V gE ≃ 7.4), there is 60
spikes per second (for comparison, for I = 7 in the deterministic case, i .e. for equation (1.1), we
had 60 spikes per second). The last column corresponds to Sdr = 0.04 and λ = 2.7. We observe
a frequency of 84 spikes per second (mean of −V gE ≃ 22). The values of the parameters for
the two last columns are those set to the input drive for E and I-neurons.

4.1. A path from random homogeneity toward partial synchronization and
synchronization

We fix SEI = SIE = SII = 0.01 and vary SEE ∈ [0.01, 0.03]. We then illustrate the dynamical behavior of
the network for three distinct values of SEE at which the three typical states are observed. The main tool used
to characterize these states is the rasterplot: for each time, we plot the neurons that are in a spiking state. The
rasterplots relevant for this section are presented in the first row of Figure 17. Additionally, the reader should
refer to Figures 13 and 14 indicating the statistics of interspike intervals as SEE is increased, as indicative of
the transition toward organized behavior for the network. The latter will be discussed further in Section 4.6.

4.1.1. Random homogeneity

We start with the parameter value SEE = 0.01. The network exhibits a behavior for which no specific pattern
seems to emerge; to the naked eye, it looks as though the picture could equivalently be generated by a uniform
random process, see top left panel of Figure 17. For this reason, we refer to this state as randomly homogeneous.
This observation is further enhanced by a side-by-side comparison of the network behavior to the simulation of
a random process constructed by way of choosing HH-shaped spikes randomly and independently. Note that the
mean value of spikes per second is around 11.49 for E-neurons and 48.48 for I neurons, see Table 3. A simple
and relevant indicator of the total excitability of the network is given by the mean value of V across the network
over time. In the left panel of Figure 16, we have plotted the mean value of V over all neurons as a function of



16 M. MAAMA ET AL.

Figure 13. Distribution of the interspike interval lengths across the excitatory subpopulation
(EIS), for the values of SEE described in paragraph 4.1. Panel A: SEE = 0.01 (random homo-
geneity); Panel B: SEE = 0.017 (partial synchronization); Panel C, resp., D: SEE = 0.02, resp.,
SEE = 0.03 (synchronization).

Figure 14. Distribution of the interspike interval lengths across the inhibitory subpopulation
(IIS), for the values of SEE described in paragraph 4.1. Panel A: SEE = 0.01 (random homo-
geneity); Panel B: SEE = 0.017 (partial synchronization); Panel C, resp., D: SEE = 0.02, resp.,
SEE = 0.03 (synchronization).
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Figure 15. Time Evolution of the Voltage Distribution of E neurons. Panel A: SEE = 0.01
(random homogeneity). In this case, the distribution has very limited variations as this is
illustrated by the almost superposition of the three distributions corresponding to times t =
420, 429, and 433. Panel B: SEE = 0.03 (synchronization). In this case, one can observe a clear
periodicity, for which each period contains a refractory phase (when the peak of the distribution
is moved to the left, this corresponds to t = 420 in dashed green), a resting state (when the
peak of the distribution is around -65 mV, this corresponds to t = 429 in red) and excitation
when the distribution stretches clearly to the right (this corresponds to t = 433 in dashed blue).

Figure 16. Left panel: simulation of equation (1.3) for SII = SEI = SIE = SEE = 0.01. This
plot shows the evolution of the mean value over (Vi)i∈{1,..,N} as a function of time. Right panel:
this comparison signal was generated randomly with a mean of 10.375 spikes per ms; spikes are
“generated” as follows: when appropriate, a temporal signal roughly mimicking the HH action
potential over 10 ms is incorporated into voltage dynamics. This gives in mean, 10375 spikes
over one second. This choice was made to approximate the 11.5 × 375 + 48.5 × 125 = 10375
spikes occurring in the network, see Table 3. Then, the signal was divided by 500 (to obtain a
mean per neuron), and plotted.

time. The right panel of this figure features the following content: at each time step (here the time step is set
as dt = 0.01 ms), a spike shaped by analogy with the typical HH-V spike is generated with a probability of p.
We choose p so that

1

dt
× 100× p ≃ 11.48× 375 + 48.48× 125,

which means that the mean number of spikes generated by the simple stochastic iterative process is equal to
the average number of spikes in the network. The signal is then divided by N = 500, so as to obtain the mean
value per neuron. Note that the two plots are qualitatively similar; in particular, and especially relevant to the
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Figure 17. Simulation of system (1.3). This figure illustrates a path from random homogeneity
to synchronization as the parameter SEE is increased. In this picture, the parameters SII =
SEI = SIE = 0.01 are set and each column from left to right corresponds to a specific value of
SEE . Respectively: SEE = 0.01, 0.017, 0.02 and 0.03. The first row represent the rasterplot: at
each time the spiking neurons are represented by a point. On the top of the figure, in green, the
I-neurons are plotted. E-neurons are plotted in red below. At left, the rasterplot illustrates a
state where any event appears to be distinguishable. We call it random homogeneous activity.
Increasing SEE induces synchronization. The second row represents the potential V1 of neuron
#1 as a function of a time. The third row, the E-conductance gE in red and the I-conductance
gI in blue for the same neuron. The fourth row, the E-current denoted by IE in red and the
I-current denoted by II in blue. The fifth row, the sum of E and I currents which plays the
role of I(t) in a single HH equation. The last row illustrates the projection of the trajectory of
neuron #1 in the (V, n) phase space.
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Figure 18. Simulation of system (1.3). This figure illustrates a path from random homogeneity
to synchronization as the parameter SEE is increased. In this picture, the parameters SII =
SEI = SIE = 0.01 are fixed and each column from left to right corresponds to a specific value
of SEE . Respectively: SEE = 0.01, 0.017, 0.02 and 0.03. The first row represents the number
of E and I-spikes occurring during an identified event. The rows 2 to 6 are analog to those of
Figure 14, but for a I-neuron.
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present discussion, note that the scale of variation is the same for the two plots. An even more precise measure
of asynchrony is the distribution of V across the network, as shown in panel A of Figure 15 and as discussed
in Section 4.6. The statistics of the interspike intervals in this regime further support the characterization of
random homogeneity; these measures are discussed in detail in Section 4.6 together with accompanying visual
representations shown in Figures 13 and 14.

Biological interpretation
From a Neuroscience point of view, this behavior is consistent with the concept of background activity see [18, 19]
and references therein cited. and Note that the coupling has dramatically decreased the number of spikes per
neuron, in comparison with simulations done in the previous section with neurons stimulated only by Poissonian
drives. This emphasizes the inhibitory effect of I-neurons in the network dynamics: for the parameters considered
here, the recurrent inputs have a global inhibitory effect.

4.1.2. Partial synchronization

As SEE is increased the synchronization phenomenon emerges. In this context, synchronization refers to a
state of the network where all of the neurons fire within short time intervals of each other; see rasterplot in
Figure 17, first row and last column. Between the random-homogeneous state and synchronization, a partial
synchronization is observable, i.e., a state in which only a portion of the population will fire as part of an
identifiable event. A prototypical example of this observed state occurs for the parameter values

SEI = SIE = SII = 0.01 and SEE = 0.017.

The rasterplot for these parameters is reported in Figure 17, in the first row, second column. An examination
of this rasterplot should be combined with a side-by-side review of all accompanying figures for these values of
the parameters.

In Figure 18, second row, second column, we report the number of E and I spikes occurring in the time interval
[425, 450], which corresponds to an identified event. We observe that only around 190 spikes from E−neurons
have been recorded during this interval. Around 190 spikes from I−neurons have also been recorded during
the interval in question (some I−neurons have therefore spiked several times). Furthermore, the panel in the
second row, second column of Figure 17, shows the time evolution of the potential V of a given E-neuron. More
specifically, it shows 2 spikes over the interval [400,500], even though 4 events are identified in the network
dynamics. The panel in the second row, second column of Figure 18, shows a specific I−neuron, which spikes
6 times during the same interval.

4.1.3. Synchronization

Synchronization occurs when SEE is further increased. We refer to columns 3 and 4 of Figures 17 and 18,
for observation of this state. These columns correspond respectively to the following values of the parameters:

SEI = SIE = SII = 0.01 and SEE = 0.02

and

SEI = SIE = SII = 0.01 and SEE = 0.03.

Rasterplots are the most illustrative representation for the aforementioned activity and are reported in the first
row of Figure 17. The first row of Figure 18, illustrates that in this case all of the neurons will spike during a
given event. See also the second row of Figure 17, which illustrates a E-neuron (the specific cell indexed by 1)
that spikes at each event. Synchronization in this context can be compared to excitation waves spreading over
the whole network in short time intervals.
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Table 2. Variation of SEE and its effect on the Pearson correlation coefficient between of gE
and gI for one given excitatory neuron.

SEE 0.01 0.017 0.02 0.03

σxy 0.15 0.28 0.61 0.75

Table 3. Variation of SEE and its effect on the mean value of E and I-spikes per second per
neuron.

SEE Ess Iss

0.001 10.35 48
0.01 11.4933 48.48
0.02 36.51 49.12
0.03 40.11 48.56

4.2. gE and gI correlation

The values of gE and gI clearly appear to be correlated. This can be observed in rows 3 of both Figures 17
and 18. Recall that, according to the equations, for a given neuron, gE results from the number of presynaptic
E-spikes received, while gI results from the number of such I-spikes received. For a specific neuron, tempo-
ral correlations in gE and gI reflect concomitant augmentations to the spiking rates of its presynaptic E and
I-neurons. This sort of correlation is typical during synchronization. It is also observed during partial synchro-
nization, see Figure 18, row 3, column 2. Table 2 illustrates the evolution of the Pearson coefficient correlation as
SEE increases. It shows a clear increase from 0.15 to 0.75. In our network, this suggests a strategy for detecting
partial synchronization. Note that this type of correlation has been used in [7] to build a two-dimensional model
that is able to produce various typical wandering brain rhythms. Such evidence of gE and gI correlation has
been investigated thoroughly in experiments, see for example [9, 41, 46, 49].

4.3. Gamma rhythm and neuronal frequencies

When partial synchronization and synchronization occur, events arise in the network at a frequency of 40
Hz; see the first row in Figure 17, which documents a typical oscillation in the Gamma regime. Note that in the
state of partial synchronization, the frequency of the network is different from the frequency of individual E and
I neurons. Note also that adjustments to SEE have a strong effect on the frequency of individual E-neurons,
but limited effect on the frequency of I-neurons; see Table 3 and the third rows of Figures 17 and 18. We must
also recall here that in isolation, neurons would have higher frequencies: 60 Hz for E-neurons and 84 Hz for
I-neurons. For the case considered here, the network activity downshifts the spiking activity of each neuron; in
some regimes, a Gamma rhythm oscillation emerges within the network.

4.4. Waves of excitation

During partial or complete synchronization, spikes do not occur simultaneously but instead spread through
the network in a spatio-temporal fashion governed by the inter-neuronal connections. It would be of dynamical
interest to follow these waves of excitation through the network, for the specific topology considered here. For
example, see [3, 6] in order to compare with other topologies or continuous equations.
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Table 4. Variation of SIE .

SIE Ess Iss

0.005 11.12 44.72
0.01 11.4933 48.48
0.02 11.7867 52.56
0.03 11.7333 60.88

Table 5. Variation of SEI .

SEI Ess Iss

0.001 13.84 48.64
0.01 11.4933 48.48
0.02 10.2933 47.28
0.03 9.6 43.6

Table 6. Variation of SII .

SII Ess Iss

0.005 11.7067 47.68
0.01 11.4933 48.48
0.02 11.9467 45.84
0.03 11.5733 44.16

4.5. I(t) and spikes

As discussed in Section 2, the spiking activity of a specific neuron depends on the value of the current I.
In the network model (1.3), the parameter I corresponds to the currents induced by excitation and inhibition
fluxes. This means that the dynamics of a specific neuron in the network are the same as the dynamics of a
single neuron modeled by equation (1.1) with a corresponding I(t) equal to the sum of excitatory and inhibitory
fluxes. Analogously, we denote by I(t) the expression

gE(t)(VE − V ) + gI(t)(VI − V ).

This quantity is plotted in Figures 17 and 18, row 5. Some qualitative properties of individual neurons are
remarkable and result from the corresponding I(t). For example, we observe that individual neurons may
exhibit a kind of mixed mode oscillations (see Figs. 17 and 18, rows 3 and 6). We note also that if I(t) is
varied while the neuron has already started to spike, it has a limited effect on the dynamics; see column 3 of
Figure 17 – just after the second spike of the E-neuron, the current I(t) is high, but this does not generate
another spike. Lastly, note that every spike has roughly the same shape, suggesting that a study of the attractor
of the non-autonomous HH single equation would be of interest.

4.6. Statistics of spikes

We first report on the activity of the network by way of tracking the mean values of E and I spikes per second
per neuron. We denote these outputs respectively by Ess and Iss. We have documented them in Tables 3–6. We
observe that for the network and range of parameters considered here,

� increasing SEE has a strong effect on Ess but little effect on Iss.
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Table 7. Mean and standard deviation of EIS as SEE is increased.

SEE Mean S.Dev.

0.01 77.6 29
0.017 52.4 12.3
0.02 27.6 1.6
0.03 23.2 0.3

Table 8. Mean and standard deviation of IIS as SEE is increased.

SEE Mean S. Dev.

0.01 21.8 5.3
0.017 21.2 3.3
0.02 19.1 1.5
0.03 18.7 1.1

� increasing SEI has a notable effects both on Iss and Ess.
� increasing SII has a strong effect on Iss but little effect on Ess.
� increasing SIE has a strong effect on Iss but little effect on Ess.

Next, we consider the statistics of interspike interval lengths for the four states described in Section 4.1.
For E neurons, those statistics indicate that as SEE is increased, the distribution of the excitatory interspike
interval lengths narrows (see Fig. 13). The mean and standard deviation of these distributions are reported in
Table 7; note in particular the drastic decrease in the mean and the even more drastic decrease in the standard
deviation. For I neurons, we observe also a remarkable change in the distribution of the inhibitory interspike
interval lengths (see Fig. 14) as SEE is increased. There is a narrowing and a displacement of the distribution
to the left. The mean and standard deviation of these distributions are reported in Table 8; we observe a slight
decrease in the mean and a significant decrease in the standard deviation.

Finally, we consider the evolution of the distribution of E neurons in the voltage variable range. This is
a natural analogy with meanfield and Boltzmann equations in statistical physics. This evolution provides an
efficient characterization of the four states described above. In Figure 15, we represent the distribution for three
specific times. In panel A, we consider SEE = 0.01 and in panel B, SEE = 0.03. This figure illustrates that
in stochastic homogeneity, the distribution has very limited variations. In contrast, for SEE = 0.03, one can
observe a clear periodicity, for which each period contains a refractory phase (when the peak of the distribution
is moved to the left), a resting state (when the peak of the distribution is around -65) and excitation when the
distribution extends significantly to the right.

Remark 4.2. The main goal of this article is to provide an analysis of the network. All the numerics presented
here correspond to a unique specific random given topology. It is legitimate to wonder if the results presented
persist under another realizations of the random network. To answer this question we have simulated 50 different
realizations of the network. The four states were observed for the same values of parameters of SEE : the results
presented persist with different realizations of the network.

5. Conclusion

In this article, we have considered a network of inhibitory and excitatory neurons, where each cell was mod-
eled by the HH equations. The topology chosen for the network was inspired by prior work on the visual cortex
V 1. After reviewing and revisiting the dynamics of a single HH model, we have considered a single HH cell
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driven by an external Poissonian input. Our theoretical results and preliminary numerical calculations suggested
a framework for studying the network by way of appropriate values for the parameters in the model. Continuing
with this approach, we analyzed numerically the network by varying the coupling parameters Sab, a, b ∈ {I, E}.
From there, we identified SEE as the most effective parameter (in the range of parameters considered) for
reaching synchronization, and illuminated the transition from random homogeneity towards partial synchro-
nization and synchronization. We also illustrated emergent phenomena such as: gE and gI correlation and
Gamma-oscillations. A striking point of our study is that rhythms emerge as a property of the network activity
itself: for example, in the synchronization regime, the network is oscillating at a Gamma rhythm of 40 hz, even
though each individual cell features a natural oscillation frequency of 60 (for E-neurons) and 80 Hz (for I) in
isolation. Finally, we would like to discuss a few two-dimensional models of interest with respect to some aspects
treated in the paper. In the homogeneous stochastic regime, every neuron within its class, plays the same role
and any synchronized effect in time emerges. Therefore, the dynamics could be described by two units: one E
neuron and one I neuron. To fit the network outputs, these two neurons should be fed with stochastic inputs
corresponding to the one observed in the network and the outputs should match the inputs: this is a kind of
fixed point problem. In the synchronized regime, the E and I conductances are highly correlated. In this case
the idea would be to construct coupled equations which match inputs, outputs with strong interaction between
the E and I conductances (in contrast with the previous case). We refer to [7], for a two dimensional model of
conductances (without membrane potential and ionic fluxes) related to this case. The partial synchronization
regime would be modeled as the latter, with different input/outputs to match.
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