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DECOMPOUNDING WITH UNKNOWN NOISE THROUGH SEVERAL
INDEPENDENT CHANNELS AND MULTIPLICATIVE

DECOMPOUNDING

GUILLAUME GARNIER

Abstract. In this article, we consider two different statistical models. First, we focus
on the estimation of the jump intensity of a compound Poisson process in the presence
of unknown noise. This problem combines both the deconvolution problem and the
decompounding problem. More specifically, we observe several independent compound
Poisson processes but we assume that all these observations are noisy due to measurement
noise. We construct an Fourier estimator of the jump density and we study its mean
integrated squared error. Then, we propose an adaptive method to correctly select the
cut-off of the estimator and we illustrate the efficiency of the method with numerical
results.
Secondly, we introduce in this paper the multiplicative decompounding problem. We
study this problem with Mellin density estimators. We develop an adaptive procedure
to select the optimal cutoff parameter.

Keywords: adaptive density estimation, Fourier estimator, inverse problem, nonparametric
statistical inference, deconvolution, decompounding, multiplicative decompounding, Mellin
transform, empirical processes.
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1. Introduction

1.1. Motivation. In the domain of non-parametric statistics, the deconvolution problem
and the decompounding problem are classical problems that have been widely studied in
the scientific literature.

Deconvolution has applications in many fields, such as image processing [25], microscopy
[40], astronomy [38, 31] , seismology [41, 35] and medicine [26, 32].
Let X and ε be two independent random variables with density fX and fε. In its simplest
form, the deconvolution problem consists in estimating fX from a i.i.d. sample of Y =
X + ε, i.e. from noisy observations

Yi = Xi + εi , i = 1, . . . , n ,

where (Xi)
n
i=1 is a family of i.i.d. random variables with density fX , (εi)

n
i=1 is a family of

random noise, i.i.d. , with density fε and independent of (Xi)
n
i=1.

This problem have been extensively studied in the literature. The most popular approach
estimates fX with Fourier estimators [8, 13, 39, 29]. Other approaches have also been
developed, for instance by using spline-based methods [2], wavelet decomposition [24, 37]
and penalization methods [12, 11]. In most studies, the author assume that the noise
density fε is known, however this assumption is not necessary if an additional error sample
is available. [23, 10]. Many adaptive methods have been developed [18].

In the literature, the term decompounding first appeared in the article of Buchmann and
Grübel [6]. Decompounding has many applications in financial mathematics [19] and
queuing theory [3, 22].
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Let (Xk)k∈N be a family of i.i.d. random variable with density fX and N be a homogeneous
Poisson process with intensity λ ∈ (0,∞). Define Y = (Yt)t≥0 as the compound Poisson
process

Yt =

Nt∑
k=1

Xk , t ≥ 0 .

The decompounding problem consists in estimate fX from observations (Yi∆)ni=1 of the
trajectory of Y over [0, T ] at a sampling rate ∆ > 0, i.e. at time points (i∆)ni=1. The
decompounding problem have been the subject of many articles, see e.g. [5, 7, 43]. Most
of the time, fX is estimated using its characteristic function and Fourier estimators [].
The available data can be observed at high frequencies or at low frequencies [18, 9]. The
decompounding problem is part of the more general framework of Levy processes that have
been widely developed in recent years [33, 30, 1]

In this article, we study a model that combines both the deconvolution problem and the
decompounding problem. In particular, we assume that we observe several compound
Poisson processes but that all these observations are noisy due to measurement noise.
More precisely, we consider a family of processes

Zjt =

( Nj
t∑

k=1

Xj
k

)
+ εjt , t ≥ 0 , j ∈ {1, . . . , J} .

We want to construct an estimator of the jump density of the process.

Our motivation to study this type of model comes from evolutionary biology. Many studies
try to estimate the distribution of fitness effects (DFE) of cell. This probability density
represents the effect of a new mutation on the fitness of a cell. An accurate determination
of the DFE within a population would provide a better understanding of the evolutionary
trajectory of the population [20].

In 2018, Robert et al. [34] developed new experimental methods and a probabilistic model
to study the DFE in a population of Escherichia coli (E. coli) .
The effect of each mutation on the fitness of a cell is assumed to be drawn according to a
random variable X of density fX where fX represents the DFE of the cell. The authors
conclude that the number of mutations in a cell follow a point Poisson process and they
estimate the DFE using a method of moment.

More specifically, they observe 1476 cell lines using micro-fluidic methods [46]. For each
lineage j ∈ {1, . . . , 1476}, it is assume that mutations are deleterious and appear according
to a Poisson point process N j = (N j

t )t≥0 with intensity λ > 0. Each of these mutations
modifies the selective value over time (W j

t )t∈R+ of the j–lineage. Let denote tji (i ∈ N) the
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time of occurrence of the {i}−th mutation in lineage j. The quantity

sji =
W j

tji−1

−W j

tji

W j

tji−1

, i > 0 ,

represent the relative effect of the {i}−th mutation on the fitness of the individual.
Assuming further that these mutations have independent and identically distributed (si)
effects, then

W j
t

W j
0

=

Nj
t∏

i=1

(1− sji ) .

By composing by the logarithm, the evolution of each lineage is controlled by a compound
Poisson process, i.e.

Y j
t = lnW j

t =

Nj
t∑

i=1

ln(1− sji ) .

However, the experimental realities in biology do not allow to really observe the process
Y j in continuous time. In reality, lineages can only be observed at a sampling rate ∆ > 0

through discrete observations (Y j
i∆)ni=1. Moreover, these observations are noisy due to

measurement noise (εji )
n
i=1 on the i-th observation. In fact, it is only possible to observe

the different lineages

(1) Zjt =

( Nj
t∑

k=1

Xj
k

)
+ εjt , t ≥ 0 ,

at sampling times (i∆)ni=1, with X
j
k = ln(1− sjk). By abuse of notation, we consider that

the noise εjt exists for all t in each lineage j ∈ {1, . . . , 1476}.
The main goal of this article is to provide a statistical estimator that is adapted to estimate
the probability density fX from the sample of the noisy trajectories.

Such an approach has several advantages. First, it offers a way to study the jump density of
a noisy compound Poisson process when we observe several independent processes, which
has, to our knowledge, been little studied in the literature. Second this method has the
advantage of studying a model very close to the biological situation.

However, using a logarithm on the model to transform it into an ’additive’ model only gives
us information on logX. While it is true that the two models are theoretically equivalent,
the additive form forces us to make assumptions about the logarithm of the density we
want to reconstruct. These assumptions are not very natural.

To overcome this, we use a method similar to the previous one to study the multiplicative
decompounding problem.
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In this setting, we discretely observe one trajectory of a multiplicative compound Poisson
process

Wt =

Nt∏
i=1

(1− si) .

where N is a Poisson process with intensity λ independent of the i.i.d. random variables
(si)i with density f .

The idea of studying ’multiplicative’ models was developed in [45] and [44] where the
authors studied a multiplicative deconvolution problem where the error U is uniformly
distributed on [0, 1]. Such models can be studied using the Mellin transform, which
can be seen as a multiplicative version of the Fourier transform. These estimators have
been successfully used in [27, 28] to study the multiplicative deconvolution problem with
unknown noise.

1.2. Main results and organisation of the article. In Section 2, we recall some basic
definitions and we define the estimator of fX . In Section 2.3, we establish a bound for the
L2–risk. Then we investigate optimal rates of convergence. In Section 2.5, we establish an
adaptive procedure to automatically select the value of the threshold m according to the
data.
In Section 3, we apply the same method to the multiplicative decompounding when there
is no noise on the observations. In Section 3.1, we recall some properties of the Mellin
transform. In Section 3.2, we define the empirical Mellin estimator and we give some of
this properties.In Section 3.3, we introduce the multiplicative decompounding problem. In
Section 3.4, we establish a risk bound. In Section 3.5, we introduce a adaptive procedure to
select the optimal cutoff parameter for the Mellin estimator. this We numerically illustrate
our two methods on several examples in Section 4. The proofs are postponed to the
Section 5.

We define the distinguished logarithm in Appendix A and describe some of its classical
properties. In Appendix B, we recall some useful results about compound Poisson processes
and we present some useful lemmas in Appendix C.

All of our computer code is available and documented on GitHub1 with several examples,
making it easy to use on biological experimental data.

2. Decompounding with unknown noise

2.1. Notations. In this section, we define most of the notations that we use throughout
this article.

1https://github.com/guimgarnier/decompounding-with-noise

https://github.com/guimgarnier/decompounding-with-noise
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2.1.1. The empirical characteristic function. Let µ be a probability measure on the line.
The Fourier transform of µ is the complex-valued function defined for all u ∈ R by

F(µ)(u) =

∫
R
eiux dµ(x) .

Let X be a real-valued random variable. The characteristic function of X is the Fourier
transform of the measure PX . It is defined for all u ∈ R by

ϕX(u) =

∫
R
eiuxPX(dx) = E[eiuX ] .

If X has a density fX ∈ L1(R) ∩ L2(R) w.r.t. the Lebesgue measure dx, then

ϕX(u) =

∫
R
eiuxfX(x) dx , u ∈ R .

We recall the inversion formula

fX(x) =
1

2π

∫
R
ϕX(u)e−iux du , x ∈ R ,

and the Parseval’s identity∫
R
|fX(x)|2 dx =

1

2π

∫
R
|ϕX(u)|2 du .

In all the following, ‖·‖2 represents the usual norm on L2(R), ‖f‖2 =
( ∫

R |f(x)|2 dx
)1/2

.

Let (X1, . . . , XN ) be i.i.d. real-valued random variables with common characteristic function
ϕX(t). The complex-valued function

ϕ̂NX(u) =
1

N

N∑
k=1

eiuXk , u ∈ R ,

is called the empirical characteristic function associated with the sample (X1, . . . , XN ).

It is well known in the statistical literature that the empirical characteristic function is an
unbiased estimator of ϕX i.e. E[ϕ̂NX(u)] = ϕX(u) and that

(2) E[|ϕ̂NX(u)− ϕX(u)|2] =
1

N
(1− |ϕX(u)|2)

For more detailed information on the empirical characteristic function, we refer the reader
to the book of Ushakov. [42]

2.1.2. The distinguished logarithm. In all the following, the notation log represents the
distinguished logarithm that we define in more detail in Appendix A.
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2.2. Statistical settings. Let f ∈ L1(R) ∩ L2(R). Let (Xj
i )i,j≥0 be i.i.d. real-valued

random variables with density f and for some J ∈ N, let (N j
t )j∈J1;JK be a family of i.i.d.

Poisson point process with intensity λ ∈ (0,∞) independent of (Xj
i )i,j≥0.

We consider a family (Y j
t , t ∈ R+)j∈J1;JK of compound Poisson processes with intensity λ

and jump size density f ,

Y j
t =

Nj
t∑

k=1

Xj
k , t ∈ R+ , j ∈ J1; JK .

It is assumed that the observations are not precise and that they are disturbed by a random
noise independent of the observed process, i.e. that we observe a process of the form

Zjt = Y j
t + εjt =

( Nj
t∑

k=1

Xj
k

)
+ εjt , t ≥ 0 ,

where εjt is a measurement error. It is assume that for every i, j = 1, . . . , J , and for every
reals t, s ≥ 0, the random variables εjt and εis are independents.

Also, we set the following assumptions:
(H1) ϕX1 is integrable.
(H2) E(X2

1 ) <∞.
(H3) ∀t ∈ R+ , E[εt] = 0 and E[ε2

t ] <∞.
(H4) ∀m ∈ R+ , ∃cm ∈ (0,∞) : ∀u ∈ [0,m] , |ϕε(u)| ≥ cm.
(H5) ∀u ∈ R , |ϕε(u)| > 0.

For the sake of simplicity, we write ε instead of εjt in the rest of this document.

2.2.1. Construction of the estimator. Rather than trying to construct an estimator of f
directly, we try to estimate the characteristic function ϕX of X. The main idea is to claim
that if we have a good reconstruction of ϕX , by applying the inverse Fourier transform,
we should have a good reconstruction of f .
For all t ∈ R+, the characteristic function of the process on a single channel Zjt is given by

(3) ϕZt(u) = e−λt+λtϕX(u) · ϕε(u) , ∀u ∈ R .

To simplify the notations, we consider in the rest of this article the particular case where
λ = 1.

Consider two different times 0 < t1 < t2, then
ϕZt2
ϕZt1

= e−(t2−t1)+(t2−t1)ϕX(u) , ∀u ∈ R .

Applying the distinguished logarithm, we obtain the explicit formula

ϕX(u) = 1 +
1

t2 − t1

[
logϕZt2 (u)− logϕZt1 (u)

]
, ∀u ∈ R .
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This formula leads us to consider the estimator

∀u ∈ R , ϕ̂ JX(u) = 1 +
1

t2 − t1

[
log ϕ̂ JZt2

(u)− log ϕ̂ JZt1
(u)
]
,

with for all u ∈ R, τ ∈ {t1, t2}

ϕ̂
′J
Zτ (u) =

1

J

J∑
j=1

iZjτe
iuZjτ , ϕ̂ JZτ (u) =

1

J

J∑
j=1

eiuZ
j
τ , log ϕ̂ JZτ (u) =

∫ u

0

ϕ̂
′J
Zτ

(z)

ϕ̂ JZτ (z)
dz .

Since ϕX is a characteristic function, we know that its absolute value is bounded by 1.
Nevertheless, this is not necessarily the case for its estimator ϕ̂ JX . We avoid this explosion
problem by cutting off the annoying frequencies, i.e. we consider the estimator

ϕ̃ JX(u) = 1+
1

t2 − t1

[
log ϕ̂ JZt2

(u)·1| log ϕ̂ JZt2
(u)|≤ln(J)−log ϕ̂ JZt1

(u)·1| log ϕ̂ JZt1
(u)|≤ln(J)

]
, u ∈ R .

To simplify the notations, we note in the following, for any positive real τ > 0 and for all
u ∈ R

log ϕ̃ JZτ (u) = log ϕ̂ JZτ (u) · 1| log ϕ̂ JZτ (u)|≤ln(J) .

In particular, with this notation, we can rewrite

(4) ϕ̃ JX(u) = 1 +
1

t2 − t1

[
log ϕ̃ JZt2

(u)− log ϕ̃ JZt1
(u)
]
, u ∈ R .

Now, we find an estimator of f by performing an inverse Fourier transformation. However,
there is no reason to believe that the quantity ϕ̃ JX is integrable. To get around this problem,
we eliminate frequencies above a threshold m before applying an inverse Fourier transform.

(5) f̂m,J(x) =
1

2π

∫ m

−m
e−iuxϕ̃ JX(u) du , x ∈ R , m ∈ (0,∞) .

In the same way, we perform an truncated inverse Fourier transformation from the true
characteristic function of X.

fm(x) =
1

2π

∫ m

−m
e−iuxϕX(u) du , x ∈ R , m ∈ (0,∞) .

2.3. Risk bounds. In this section, we study the mean integrated squared error (MISE)
of the estimator f̂m,J .

For any 0 < t1 < t2, we define

(6) CJt1,t2 = min
{
m ≥ 0

∣∣∣ 3t2 − t1 + sup
[−m,m]

| logϕε(·)| > ln(J)
}
.

Theorem 1. Suppose that the assumptions (H1) – (H5) holds. Let 0 < t1 < t2 be two
reals. We suppose that J is enough large, i.e. that for all i = 1, 2 :

(1) ti < 1
4 log(Jti),

(2)
√

log(Jti)(Jti)
2δi−1/2 < 1 with δi = ti/ log(Jti).
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Then for any m < CJt1,t2 with CJt1,t2 defined by (6) , the following inequality holds

E
(
‖f̂m,J − f‖22

)
≤ ‖fm − f‖22 +

2∑
i=1

4e4ti

J(t2 − t1)2

∫ m

−m

du

|ϕε(u)|2

+
4KJ,t1,t2

(t2 − t1)2
·
(
E[X2

i ]

Jti
+

E[ε2]

Jt2i
+ 4

m

(Jti)2

)
.

where KJ,t1,t2 = m ln2(J) + 8mt22 +
m∫
−m
| logϕε(u)|2 du.

Remark 2. Theorem 1 is asymptotic and ensures that the variance term vanishes when
J →∞. The upper bound obtained is both the sum of a bias term and of a variance term.
In the variance, there is a term V ∼ 4e4ti

J(t2−t1)2 . On one side, the presence of e4ti means that
the estimator is more and more imprecise as we look the sample at a very large time t2.
On the other side, the presence of (t2 − t1) at the numerator means that we cannot take
t1 and t2 too close to each other. We illustrate this trade-off in Section 4 with numerical
simulations.

2.4. Speed of convergence. In this Section, we study the optimal choice of m based
on the regularity of the jump density and regularity of the noise density, i.e. that when
J → ∞, we look at the asymptotic behavior of m when it minimizes the upper term in
Theorem in 1. We organize the discussion according to different regularities of f and fε.
More specifically, we consider two different type of regularity :

• Ordinary smooth densities : The characteristic function decays as |u|−2a (as Gamma
Law)
• Super smooth densities : The characteristic function decays as e−|u|s (as Cauchy
Law)

2.4.1. When f is ordinary smooth, fε is ordinary smooth. In this case, we assume that
f ∈ S(β, L) for some reals β > 0, L > 0, i.e.

f ∈ S(β, L) =
{
f ∈ L2(R)

∣∣∣ ∫
R

(1 + |u|2)β|ϕX(u)|2du ≤ L
}
.

We also assume that fε is ordinary smooth, i.e. there exists two reals a > 1
2 and d > 0,

such that
∀u ∈ R , d ≤ (1 + u2)a|ϕε(u)|2 ≤ 1

d
.

It follows that ‖f − fm‖22 � m−2β and that the variance term 1
J

∫m
−m

du
|ϕε(u)|2 is of order

1
Jm

2a+1.

Moreover, the variance term 4KJ,t1,t2
(t2−t1)2 ·

(
E[X2

i ]
Jti

+ E[ε2]
(Jti)3 + 4 m

(Jti)2

)
is of order 4m

(t2−t1)2 · ln2(J) ·
E[X2

i ]
Jt1

.
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Therefore, if the Assumptions of Theorem 1 holds, then there exist two constants A,B > 0
that depends on t1 and t2 such that

(7) E
[
‖f̂m,J − f‖22

]
≤ m−2β +

A

J
m2a+1 +Bm · ln2(J)

J
.

To obtain a value m? that reaches the biais-variance compromise, we minimize the upper
bound of Equation (7) by differentiating with respect to m. It follows that m? is the
solution of the equation

−2βm−2β−1 + (2a+ 1)
A

J
m2a +B · ln2(J)

J
= 0 .

Then, m? is the solution of the equation

m2a+2β+1 + C · ln2(J)m2β+1 = D · J .

for some constants C,D > 0 well defined.

It follows that m? ∼ J
1

2a+2β+1 when J →∞ and that

E
[
‖f̂m,J − f‖22

]
= O

(
J

−2β
2β+2a+1

)
, J →∞ .

m? ∼ J
1

2a+2β+1

E‖f̂m,J − f‖22 = O
(
J

−2β
2β+2a+1

)
2.4.2. When f is ordinary smooth, fε is super smooth smooth. In this case, we assume that
f ∈ S(β, L) for some reals β > 0, L > 0, i.e.

f ∈ S(β, L) =
{
f ∈ L2(R)

∣∣∣ ∫
R

(1 + |u|2)β|ϕX(u)|2du ≤ L
}
.

We also assume that fε is super smooth, i.e. there exists a > 0, s > 0 and d1, d2 > 0 such
that

∀u ∈ R , d1 ≤ exp
(
b · |u|s

)
· |ϕε(u)|2 ≤ d2 .

It follows that ‖f − fm‖22 � m−2β and that the variance term 1
J

∫m
−m

du
|ϕε(u)|2 is of order

1
Jm · e

b·ms .

Moreover, the variance term 4KJ,t1,t2
(t2−t1)2 ·

(
E[X2

i ]
Jti

+ E[ε2]
(Jti)3 + 4 m

(Jti)2

)
is of order 4m

(t2−t1)2 · ln2(J) ·
E[X2

i ]
Jt1

.

Therefore, if the Assumptions of Theorem 1 holds, then there exist two constants A,B > 0
that depends on t1 and t2 such that

(8) E‖f̂m,J − f‖22 ≤ m−2β +
A

J
m · eb·ms +Bm · ln2(J)

J
.

To obtain a value m? that reaches the biais-variance compromise, we minimize the upper
bound of Equation (8) by differentiating with respect to m. It follows that m? is the
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f/fε ordinary smooth : fε ∈ S(a, L) super smooth : fε ∈ Ab,s(L)

ordinary smooth : f ∈ S(β, L)
m? ∼ J

1
2a+2β+1

E‖f̂m,J − f‖22 = O
(
J

−2β
2β+2a+1

) m? ∼ ln(J)
b

E‖f̂m,J − f‖22 = O

((
ln(J)
b

)−2β
s

)
super smooth f ∈ Ac,s(L) m? ∼

(
ln(J)
c

) 1
s

E‖f̂m,J − f‖22 = O(J−1)

m? ∼
(

ln(J)
b+c

) 1
s

E‖f̂m,J − f‖22 = O
(
J
−c
b+c

)
Table 1. Speed of the optimal upper bound with respect to the regularity
of fX and fε.

solution of the equation

−2βm−2β−1 +
A

J
(1 + sb ·ms) · eb·ms +B · ln2(J)

J
= 0 .

Then, m? is the solution of the equation

(1 + sb ·ms)m2β+1 · eb·ms +B · ln2(J)m2β+1 = D · J .

for some constants C,D > 0 well defined.

It follows that m? ∼
( ln(J)

b

)1/s when J →∞ and that

E‖f̂m,J − f‖22 = O

(( ln(J)

b

)−2β
s

)
.

2.4.3. When f is super smooth. In this section, we assume that f belongs to the class of
super smooth densities,

Ac,s(L) =
{
f ∈ L2(R)

∣∣∣ ∫
R

exp(c · |u|s)|ϕX(u)|2du ≤ L
}
.

It follows that ‖f − fm‖22 � exp(−c · |m|s).

We apply the same strategy that in Section 2.4.1 and Section 2.4.2 to compute m? when fε
is ordinary smooth or super smooth. Table 1 resumes the different results that we obtained
with respect to the regularity of fX and fε.

2.5. The adaptive procedure. In Section 2.3, we have constructed a statistical estimator
f̂m,J to estimate the jump size density f . However, as this estimator strongly depends on
the choice of the parameter m, we would like to be able to select a value of m that depends
only on the available data, without a priory knowledge on the regularity of the density f .

To do this, the main idea is to select the parameter m that minimizes the bound obtained
in the theorem 1.
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For this, we need to make some further regularity assumptions on the measurement noise,
which is to say that there is a function g ∈ L1(R) and a real d > 0 such that

∀u ∈ R , d · g(u) < |ϕε(u)|2 < g(u)

d
.

This assumption of regularity of the noise cannot be relaxed. In fact, it can even be shown
that if one does not have the noise level, then it is impossible to obtain a convergent method
[4].

In the rest of this section, we assume that the noise is ordinary smooth, i.e. there exists
two reals a > 1

2 and d ∈ (0, 1), such that

∀u ∈ R , d ≤ (1 + u2)a · |ϕε(u)|2 ≤ 1

d
.

Nevertheless, the methods used can be adapted for any function g.

In the following, we simplify the computations by considering the particular case a = 1,
i.e. we assume that

∀u ∈ R , d ≤ (1 + u2) · |ϕε(u)|2 ≤ 1

d
.

2.5.1. How to select m̂J,t2,t1. As we said above, we want to select m so as to minimize the
bound obtained in the theorem 1.

The dominant terms in this bound are the biais term
∫
u∈[−m,m] |ϕX(u)|2 du and the variance

term 4e4t2
J(t2−t1)2

∫m
−m

du
|ϕε(u)|2 . Through differentation, the optimal mJ satisfies

|ϕX(mJ)|2 =
4ae4t2

J(t2 − t1)2
(1 +mJ

2) .

then ∣∣∣∣ ϕX(mJ)√
(1 +mJ

2)

∣∣∣∣2 =
4ae4t2

J(t2 − t1)2
.

However we do not know ϕX , so it is impossible to calculate directly mJ . Following the
strategy developed by Duval and Kappus [18], we consider

ϕJX(u) = ϕ̃JX(u) · 1∣∣ ϕ̃JX (u)√
1+u2

∣∣≥ κJ,t1,t2√
J(t2−t1)

where κJ,t1,t2 = 2e2t2 + κ
√

ln(J(t2 − t1)2), κ > 0.

It leads us to define the empirical cutoff parameter

m̂J = max

{
u ≥ 0 :

∣∣∣ ϕX(u)√
1 + u2

∣∣∣ ≥ κJ,t1,t2√
J(t2 − t1)

}
∧
(
J(t2 − t1)2

)α
, α ∈ (0, 1)

For simplicity, we notemmax =
(
J(t2−t1)2

)
, keeping in mind that it depends on J, t1 and t2.
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We define a new estimator

fm,J(x) =
1

2π

∫ m

−m
e−iuxϕ JX(u) du , x ∈ R .

Theorem 3. Assume (H1)–(H4). For all reals 0 < t1 < t2 such that t2 ≤ 1
4 log(Jt2) and

(mmax)α < CJt1,t2, Jt1 →∞ , Jt2 →∞ as J →∞. Then,

E
[
‖f m̂J − f‖

2
2

]
≤ inf

m∈[0,(mmax)α]

{
‖fm − f‖22 + C

ln(J(t2 − t1)2) ·m · (1 +m2)

J(t2 − t1)2
+ C̃A

}
+
(

2 +
2 log(J)

(t2 − t1)

)2
· TJ

where

A =

2∑
i=1

4e4ti

J(t2 − t1)2

∫ m

−m

du

|ϕε(u)|2
+

4KJ,t1,t2

(t2 − t1)2
·
(
E[X2

i ]

Jti
+

E[ε2]

rJt2i
+ 4

m

(Jti)2

)
and

(9) TJ ≤ C0(J(t2 − t1)2)α−c(θ)
2

+
C1

J(t2 − t1)2
+

C2

J(t2 − t1)4

and c(θ) = κ(t2 − t1)e2t2 · d√
1+(mmax)2

and where C0, C1 and C2 depends on E[X2
1 ],E[ε2]

and where C and C̃ are two constants.

3. Multiplicative decompounding

3.1. Preliminaries on Mellin transform. In this section, we first recall some classical
results on Mellin transform. We define the multiplicative decompounding problem and we
define a good non-parametric estimator.
Let µ be a probability measure on (0,∞). Its Mellin transform is the complex-valued
function defined by

(10) M[µ](s) =

∫ ∞
0

xs−1µ( dx) , s ∈ C ,

for those values of s for which this integral is well-defined.

Remark 4. IfM[µ](u) is well-defined for some u ∈ R, thenM[µ] converges on the vertical
line u + iR. Furthermore, if the integral exists for u and v in R (u < v) , then M[µ](w)
exists for w ∈ (u, v). It follows that the Mellin transform of a probability measure is
well-defined on a vertical band Ξµ of the complex plane. The region Ξµ is called the
fundamental strip ofM[µ].

Assume that µ has a density f ∈ L1
loc(R+) w.r.t. to the Lebesgue measure dx, then we

denote

M[f ](s) :=M[f dx](s) =

∫ ∞
0

xs−1f(x) dx , s ∈ C ,
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for those values of s for which this integral is well-defined. We denote Ξf the fundamental
strip ofM[f dx]

Let f ∈ L1
loc(R+) and c ∈ R that belongs to Ξf . Then we define

Mc[f ](t) :=M[f ](c+ it) =

∫ ∞
0

xc−1+itf(x) dx , t ∈ R .

We observe that the function x 7→ xc−1f(x) belongs to L1(R+).

We define the norm

‖f‖ωc =
(∫ ∞

0
|f(x)|2x2c−1 dx

)1/2
.

Let f , g ∈ L1
loc(R+). The multiplicative convolution of f and g is the real-valued function

defined by

f ? g(x) =

∫ ∞
0

f(y)g
(x
y

)
dy , x ∈ [0,∞) .

Proposition 5 (Multiplicative convolution and Mellin transform). Let µ and ν be two
probability measures on R+. We have

M[µ ? ν](s) =M[µ](s)M[ν](s) , s ∈ C ,

whenever this integral is well-defined.

Proposition 6 (Parseval’s theorem for Mellin transform).

(11)
∫ ∞

0

|f(x)|2

x
dx =

1

2π

∫ ∞
0
M[f ](it) dt .

Proposition 7. (Inversion formula) Let f ∈ L1(R+) and c ∈ Ξf . Then

f(x) =M−1M[f ](x) =
1

2πi

∫ ν+i∞

ν−i∞
x−sM[f ](s) ds , x ∈ R+ .

3.2. The Mellin estimator. Let f ∈ L2
R+

(ωc) be a probability distribution. Let us
assume that we have a sampleX1, ..., XN independent and identically distributed according
to f dx.

We define the Mellin estimator of f

M̂c(t) =
1

n

N∑
k=1

Xc−1+it
k , t ∈ R .

We use Proposition 7 to define the estimator.

f̂m(x) =
1

2π

∫ m

−m
x−c−itM̂c(t) dt ,
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which is an estimator of

fm(x) =
1

2π

∫ m

−m
x−c−itM1(t) dt .

The next proposition give a bound of the L2
R+

(ωc)-risk of f̂k.

Proposition 8 (Miguel et al. [27] Proposition 2.1). If f ∈ L2
R+

(ωc) and σ2
c := Ef (X2(c−1)) <

∞, then for all k ∈ R+,

Ef (‖f − f̂k‖2ωc) ≤ ‖f − fk‖
2
ωc +

σ2
ck

πn
.

By choosing k = kn such that n−1kn → 0 and kn →∞, f̂nk is a consistent estimator of f .

If X and Y are two independant random variables, then

M[X · Y ](s) =M[X](s) · M[Y ](s) , s ∈ R .

3.3. Statistical setting: estimation procedure. Consider the multiplicative compound
process

(12) Yt =

Nt∏
i=1

Xi ,

where (Nt, t ∈ R+) is a Poisson process with constant intensity λ > 0, independent of the
i.i.d. random variables (Xj)j∈N with common density f ∈ L1(R+) ∩ L2(R+).

We suppose that we observe one trajectory of (Yt) over [0, T ] at equidistant time ∆, 2∆, . . . , n∆,
T = n∆. We denote Zk∆ = Yk∆

Y(k−1)∆
the k − th increment of Y .

Let c ∈ ΞX ∩ Ξ∆. We have 1 ∈ ΞX ∩ Ξ∆. LetM1[f ] be the Mellin transform of X1 and
M1[∆] be the Mellin transform of Z∆ .

Lemma 9. For any s ∈ C, M1[∆](s) = exp
(
∆λ(M1[f ](s)− 1)

)
.

From Lemma 9, we have

M1[f ](s) = 1 +
1

λ∆
logM1[∆](s) ,

where logM1[∆] is the distinguished logarithm ofM1[∆] that we define in Appendix A.
This last equation leads us to define the estimator

M̂1[f ](s) = 1 +
1

λ∆
̂logM1[∆](s) , s ∈ R .

where

M̂1[∆](t) =
1

n

n∑
k=1

Zc−1+it
k∆ , M̂′c[∆](t) =

1

n

n∑
k=1

i log(Zk∆)Zc−1+it
k∆ and ̂logM1[∆](s) =

∫ u

0

M̂′c[∆](t)

M̂1[∆](t)
ds .
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However, the quantity ̂logM1[∆](s) may explode. Then we define

M̃1[f ](s) = M̂1[f ](s) · 1|M̂1[f ](s)|≤4
, s ∈ R .

Finally, we apply a Mellin inversion

(13) f̂m,∆(x) =
1

2π

∫ m

−m
x−c−itM̃1[f ](s) dt, x ∈ (0,∞) ,

3.4. Risk bounds.

Theorem 10. Assume that E[X2
1 ] < ∞, δ ≤ 1

4 log(J∆) and J∆ → ∞ as J → ∞. Then,
for any m ≥ 0, it holds
(14)

E
[
‖f̂m,∆−f‖2ω1

]
≤ ‖fm−f‖2ω1

+
1

2πn∆2

∫ m

−m

1

|M1[∆](s)|2
ds+

25

π

(E[ln(X1)2]

∆n
+4

m

(n∆)2

)
.

We prove this result in Appendix 5.3. In the demonstration, we need the two following
lemmas.

Lemma 11. Let m > 0 and ζ > 0. We consider the event

Ωζ,∆(m) =

{
∀u ∈ [−m,m], |M̂1[∆](u)−M1[∆](u)| ≤ ζ

√
log(n∆)

n∆

}
.

If E[ln(X1)2] <∞, then

P(Ωc
ζ,t(m)) ≤ E[ln(X1)2]

∆n
+ 4

m

(n∆)η

Proof. Let c, h, τ ∈ R+ be some positive reals. We define the events

A(c) =

{∣∣∣∣ 1n
n∑
k=1

| ln(Zk∆)| − E| ln(Z∆)|
∣∣∣∣ ≤ c

}
,

Bh,τ(m) =

{
∀|k| ≤

⌈
m

h

⌉
, |M̂1[∆](kh)−M1[∆](kh)| ≤ τ

√
log(n∆)

n∆

}
.
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As we know that the function u 7→ eiux is 1-Lipschitz, then for all u ∈ R and for all h ∈ R+

we have∣∣M̂1[∆](u+ h)− M̂1[∆](u)
∣∣ =

∣∣∣ 1
n

n∑
k=1

Z
i(u+h)
k∆ − 1

n

n∑
k=1

Zc−1+iu
k∆

∣∣∣
=

1

n

n∑
k=1

·
∣∣∣Zi(u+h)

k∆ − Ziuk∆

∣∣∣
=

1

n

n∑
k=1

·
∣∣∣ei(u+h) ln(Zk∆) − eiu ln(Zk∆)

∣∣∣
≤ h

n

n∑
k=1

·
∣∣∣ ln(Zk∆)

∣∣∣
= h

( 1

n

n∑
k=1

[
| ln(Zk∆)| − E[| ln(Z∆)|]

]
+ E[| ln(Z∆)|

)
The definition of A(c) ensures that
(16)
∀u ∈ R , h > 0 ,

∣∣M̂1[∆](u+h)−M̂1[∆](u)
∣∣1A(c) ≤ h

(
c+E[| ln(Z∆)|

)
≤ h

(
c+∆E[| ln(X1)|

)
.

If E[ln(X1)2] is finite, the Markov inequality leads to

(17) P(A(c)c) ≤ ∆E[ln(X1)2]

c2n
.

Moreover we have

P(Bc
h,τ(m)) = P

(
∃|k| ≤

⌈
m

h

⌉
,
∣∣∣M̂1[∆](kh)−M1[∆](kh)

∣∣∣ > τ

√
log(n∆)

n∆

)

≤

⌈
m
h

⌉∑
k=−

⌈
m
h

⌉P
(∣∣∣M̂1[∆](kh)−M1[∆](kh)

∣∣∣ > τ

√
log(n∆)

n∆

)

≤

⌈
m
h

⌉∑
k=−

⌈
m
h

⌉P
(∣∣∣ n∑

k=1

Z
i(kh)
k∆ − E[Z

i(kh)
∆ ]

∣∣∣ > τ

√
n log(n∆)

∆

)

As |Zi(kh)
∆ | ≤ 1 almost surely , Hoeffding’s inequality ensures that

P(Bc
h,τ(m)) ≤

⌈
m
h

⌉∑
k=−

⌈
m
h

⌉ 2 exp
(
− τ2 log(n∆)

2t

)
= 4
⌈m
h

⌉
(n∆)−τ

2/(2∆)
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Let |u| ≤ m. There exists k a positive integer such that u ∈ [kh − h
2 , kh + h

2 ]. It follows
that

1A(c)∩Bh,τ (m)|M̂1[∆](u)−M1[∆](u)| ≤ 1A(c)∩Bh,τ (m)

(∣∣M̂1[∆](u)− |M̂1[∆](kh)
∣∣

+
∣∣M̂1[∆](kh)−M1[∆](kh)

∣∣+
∣∣M1[∆](kh)−M1[∆](u)

∣∣)
We bound the three right terms by using respectively the Equation (30), the definition of
Bh,τ and the fact that u→ eiux is 1-Lipschitz. It follows that

1A(c)∩Bh,τ (m)|M̂1[∆](u)−M1[∆](u)| = 2h∆E[| ln(X1)|] + hc+ τ

√
log(n∆)

n∆
.

By fixing c = ∆, h = o
(√

log(n∆)
n∆

)
such that h > 1√

n∆
and ζ > τ , it follows that

A(c) ∩Bh,τ(m) ⊂ Ωζ,∆(m) .

In addition, h > 1√
n∆

, (30), we prove that for all η > 0,

P(Ωc
ζ,t(m)) = P(A(c)c) + P(Bc

h,τ(m)) ≤
E[ln(X1)2]

∆n
+ 4
⌈m
h

⌉
(n∆)−τ

2/(2∆)

≤ E[ln(X1)2]

∆n
+ 4m(n∆)−

t−τ2

2t

We obtain the result by taking τ2 = t(1 + 2η). �

Lemma 12. (Duval, Kappus [18] Lemma 5.2) Let γ ∈ R+ and consider

M
(γ∆)
n,∆ = min

{
u ≥ 0 : |M1[∆](u)| = γcm

√
log(Jt)/(Jt)

}
,

with the convention inf{∅} = +∞.
Let ζ ∈ R+ be a positive real s.t. 0 < ζ < γ. Then

1|u|≤Mγ
J,t∧m,Ωζ,t(m)·

∣∣ ̂logM1[∆](s)−logM1[∆](s)
∣∣ ≤ γ

ζ
log
( γ

γ − ζ

) |M̂1[∆](s)−M1[∆](s)|
|M1[∆](s)|

3.5. The adaptative procedure. We want to minimize the right side term in Theorem 13.
The optimal cutoff mn is defined by

mn ∈ arg min
m>0

(
‖fm − f‖2ω1

+
1

2πn∆2

∫ m

−m

1

|M1[∆](s)|2
ds+

25

π

(E[ln(X1)2]

∆n
+ 4

m

(n∆)2

))
In the variance term, the leading term is in me4∆

n∆ . Therefore, the optimal cutoff is such
that

|M1[f ](mn)|2 =
e4∆

n∆
We can define the empirical optimal cutoff by

|M1[f ](mn)|2 =
e4∆

n∆
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where
M1[f ](s) = M̃1[f ](s)1

|M̃1[f ](s)|≥κn,∆/
√
n∆

.

with
κn,∆ = (e2∆+κ

√
log(n∆)), κ > 0 .

We consider the empirical cutoff

m̂n = max
{
m ≥ 0 : |M1[f ](m)| = κn,∆/

√
n∆
}
∧ (n∆)α .

Theorem 13 (Adaptative method). Assume that E[X2
1 ] <∞, δ ≤ 1

4 log(J∆) and J∆→
∞ as J → ∞. Then, there exist two positive constants A and B depending on κ and
E[ln(X1)2] such that

E
[
‖fm̂n,∆ − f‖

2
ω1

]
≤ A

(
‖fm − f‖2ω1

+
log(n∆)m

n∆
+

1

n∆2

m∫
−m

1

|M1[∆](s)|2
ds+ 4

m2

(n∆)2

)
+B

(
(n∆)α−c(∆)2

+
1

n∆

)
.

4. Numerical experiments

4.1. Decompounding with noise.

4.1.1. Implementation details. For a given estimator f̂m,J of f , we numerically evaluate the
efficiency of f̂m,J . More specifically, we compute the L2-risks E

(
‖f̂m,J − f‖22

)
by averaging

the result obtained for 1000 independent simulations.

We test our method for three different jump distribution densities fX :
• the mixture density 0.3N (−3.5, 1) + 0.7N (3.5, 1).
• the Gamma density Γ(2).
• the Cauchy density C(0, 1).

and the noise density N (0, 1).

4.1.2. Efficiency of the estimation. The estimator is expected to be progressively more
accurate as J increases. We compute the estimator for different values of J for mixed
density (Figure 1) and Gamma density (Figure 2).

4.1.3. Dependence of the L2-risk to the cut-off m and efficiency of the adaptive procedure.
The value of m has a strong impact on the quality of the estimator f̂m,J . When m is too
low or too high, we expect that the estimator should deteriorate. The adaptive procedure
gives an automatic way to select a "good" m based on observations.

We illustrate the efficiency of the adaptive procedure for the mixture density (Figure 3),
Gamma density (Figure 4) and the Cauchy density (Figure 5).
The results of the simulations are satisfactory, as we can see that the value of m chosen
seems to minimize our error.
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Figure 1. Illustration of the estimator.
Input : Jump distribution X ∼ 0.3N (−3.5, 1) + 0.7N (3.5, 1). Observations
are corrupted by a Gaussian noise N (0, 1). t1 = 0.5, t2 = 1, J = 105.

Figure 2. Illustration of the estimator.
Input : Jump distribution X ∼ Γ(3). Observations are corrupted by a
Gaussian noise N (0, 1). t1 = 0.5, t2 = 1, J = 105.

4.1.4. How to select an optimal time t2. To define our estimator, we have chosen two times
t1 and t2 in a totally arbitrary way. Therefore, we would like to know how to select them
in an optimal way, or at least have an intuition of the right way to choose them.

Theorem 1 states that t2 must be neither too large nor too close to t1, which we can
illustrate with numerical simulation.

Figure 6 shows the value of the L2-risks E
(
‖f̂m,J−f‖22

)
of the estimator for different values

of t2. Each of these values is the average of the results of 1000 different simulations.

Here, it seems that the estimate is better when t2 is between 1 and 1.5, which seems to
correspond roughly to the intensity of the jump number.
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Figure 3. Computations of the L2-risks E
(
‖f̂m,J − f‖22

)
(y axis) for

different values of m (x axis). The vertical line represents the value of
m̂ chosen automatically by the adaptive procedure.
Input : Jump distribution X ∼ 0.3N (−2, 1) + 0.7N (2, 1). Observations are
corrupted by a Gaussian noise N (0, 1). t1 = 0.5, t2 = 1, J = 105.

Figure 4. Computations of the L2-risks E
(
‖f̂m,J − f‖22

)
(y axis) for

different values of m (x axis). The vertical line represents the value of
m̂ chosen automatically by the adaptive procedure.
Input : Jump distribution X ∼ Γ(2). Observations are corrupted by a
Gaussian noise N (0, 1). t1 = 0.5, t2 = 1, J = 105.
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Figure 5. Computations of the L2-risks E
(
‖f̂m,J − f‖22

)
(y axis) for

different values of m (x axis). The vertical line represents the value of
m̂ chosen automatically by the adaptive procedure.
Input : Jump distribution X ∼ C(0, 1). Observations are corrupted by a
Gaussian noise N (0, 1). t1 = 0.5, t2 = 1, J = 105.

Figure 6. Computations of the L2-risks E
(
‖f̂m,J − f‖22

)
(y axis) for

different values of t2 (x axis).
Input : Jump distribution X ∼ 0.3N (−2, 1) + 0.7N (2, 1). Observations are
corrupted by a Gaussian noise N (0, 1). t1 = 0.2, m = 2, J = 105.
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4.2. Multiplicative decompounding. In this section, we illustrate the efficiency of the
Mellin estimator we built in Section 3.2 on a simulated sample of size n = 5000.
Here, we assume that the jump distribution densities fX is the Beta law β(200, 30). The
bandwidth m = 83.7 was selected by the adaptive procedure described in Section 3.5. The
resulting estimate is plotted in Fig. 7.

Figure 7. Top: Estimation of the Beta density β(200, 30) for 5000
observations. The real density is the black dotted-line and the estimator is
plotted in red. Bottom: Illustration of the adaptive procedure

.

5. Proofs

5.1. Proof of Theorem 1. This proof is an adaptation of the proof of Theorem 3.1 of
Duval and Kappus [18]. Nevertheless, we have in addition a noise term that must be taken
into account in our majorations.

From the triangular inequality and Parseval’s equality we have

‖f̂m,J − f‖22 ≤ ‖fm − f‖22 + ‖f̂m,J − fm‖22

= ‖fm − f‖22 +
1

2π

∫ m

−m
|ϕ̃JX(u)− ϕX(u)|2 du .
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By recalling that for any reals (a, b) ∈ R2, |a+ b|2 ≤ 2(a2 + b2), and by using Definition 5
and Definition 4, then we have

∫ m

−m
|ϕ̃JX − ϕX(u)|2 du

=
1

(t2 − t1)2

m∫
−m

| log ϕ̃ JZt2
(u)− log ϕ̃ JZt1

(u)− logϕZt2 (u) + logϕZt1 (u)|2 du

≤ 2

(t2 − t1)2

m∫
−m

| log ϕ̃ JZt1
(u)− logϕZt1 (u)|2 du+

2

(t2 − t1)2

m∫
−m

| log ϕ̃ JZt2
(u)− logϕZt2 (u)|2 du .

In the rest of the proof we establish a majorization of the two terms on the right.

Let τ ∈ {t1, t2} and Iτ,J,m denote the quantity

Iτ,J,m =
1

(t2 − t1)2

m∫
−m

| log ϕ̃ JZτ (u)− logϕZτ (u)|2 du .

Let (γ, ζ) ∈ (0,∞)2 be two positive reals such that γcm > ζ.
In particular, we take γ such that γcm = 2ζ

1∧(t2−t1) > ζ.

Consider the events

Ωζ,τ (m) =

{
∀u ∈ [−m,m], |ϕ̂JZτ (u)− ϕZτ (u)| ≤ ζ

√
log(Jτ)

Jτ

}
.

and

M
(γcm)
J,t = min

{
u ≥ 0 : |ϕZt(u)| = γcm

√
log(Jt)/(Jt)

}
,

as defined in Lemma 22 and Lemma 23.
As the events

{|u| ≤ m ∧M (γcm)
J,τ } ∩ Ωζ,τ (m) , {|u| ∈ [M

(γcm)
J,τ ,m]} ∩ Ωζ,τ (m) and Ωζ,τ (m)c
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form a partition of the sample set Ω, we only need to control Iτ,J,m on each of them. This
leads us to define the quantities

I
(1)
τ,J,m =

1

(t2 − t1)2

m∧M(γcm)
J,τ∫

−m∧M(γcm)
J,τ

1Ωζ,τ (m)| log ϕ̃ JZτ (u)− logϕZτ (u)|2 du ,

I
(2)
τ,J,m =

1

(t2 − t1)2
1
m>M

(γcm)
J,τ

· 1Ωζ,τ (m)

∫
|u|∈[M

(γcm)
J,τ ,m]

| log ϕ̃ JZτ (u)− logϕZτ (u)|2 du ,

I
(3)
τ,J,m =

1

(t2 − t1)2
1Ωζ,τ (m)c

m∫
−m

| log ϕ̃ JZτ (u)− logϕZτ (u)|2 du .

Obviously, we have the decomposition

Iτ,J,m = I
(1)
τ,J,m + I

(2)
τ,J,m + I

(3)
τ,J,m .

Step 1 – Control I(1)
τ,J,m.. Let us focus on the event A = {|u| ≤ m ∧M (γcm)

J,τ } ∩ Ωζ,τ (m).
The triangular inequality ensures that

| log ϕ̂ JZτ (u)| ≤ | log ϕ̂ JZτ (u)− logϕZτ (u)|+ | logϕZτ (u)| .

Then Lemma 23 applied to ζ < γcm ensures that

| log ϕ̂ JZτ (u)| ≤ γcm
ζ

log
( γcm
γcm − ζ

) |ϕ̂JZτ (u)− ϕZτ (u)|
|ϕZτ (u)|

+ | logϕZτ (u)| .

Then we have by definition of Ωζ,τ (m),

| log ϕ̂ JZτ (u)| ≤ γcm
ζ

log
( γcm
γcm − ζ

) 1

|ϕZτ (u)|
ζ

√
log(Jτ)

Jτ
+ | logϕZτ (u)| .

For Jτ large enough, we have γcm
√

log(Jτ)
Jτ < 1, hence on A the definition of M (γcm)

J,τ

ensures that
1

|ϕZτ (u)|
≤ 1

γcm

√
log(Jτ)
Jτ

.

It follows that

| log ϕ̂ JZτ (u)| ≤ γcm
ζ

log
( γcm
γcm − ζ

) 1

γcm

√
log(Jτ)
Jτ

ζ

√
log(Jτ)

Jτ
+ | logϕZτ (u)| ,

≤ log
( γcm
γcm − ζ

)
+ | logϕZτ (u)| .

By definition, this means (see also Proposition 17)

| log ϕ̂ JZτ (u)| ≤ log
( γcm
γcm − ζ

)
+ | logϕYτ (u) + logϕε(u)| ,
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However, we know that for all u ∈ R

ϕX(u) = 1 +
1

τ
logϕYτ (u) .

It follows that

| log ϕ̂ JZτ (u)| ≤ log
( γcm
γcm − ζ

)
+ |τ(ϕX(u) + 1) + logϕε(u)|

≤ log
( γcm
γcm − ζ

)
+ 2τ + | logϕε(u)| ,

≤ log
( γcm
γcm − ζ

)
+ 2τ + sup

[−m,m]
| logϕε(·)| .

Therefore,∣∣∣∣ log ϕ̂ JZτ (u)

t2 − t1

∣∣∣∣ ≤ 1

t2 − t1
log
( γcm
γcm − ζ

)
+

2τ

t2 − t1
+

sup[−m,m] | logϕε(·)|
t2 − t1

There are two different cases.
• If t2 − t1 ≥ 1, then γcm = 2ζ

1∧(t2−t1) = 2ζ. It follows that

1

t2 − t1
log
( γcm
γcm − ζ

)
=

1

t2 − t1
log(2) < 1 .

• If t2 − t1 < 1, then γcm = 2ζ
1∧(t2−t1) = 2ζ

t2−t1 . It follows that

1

t2 − t1
log
( γcm
γcm − ζ

)
=

1

t2 − t1
log

(
2ζ

t2−t1
2ζ

t2−t1 −
ζ(t2−t1)
t2−t1

)

=
1

t2 − t1
log

(
2

2− (t2 − t1)

)
≤ 1 ,

because for any real x ∈ (0, 1) we have

0 <
1

x
log
( 2

2− x

)
< 1 .

It leads to ∣∣∣∣ log ϕ̂ JZτ (u)

t2 − t1

∣∣∣∣ ≤ 1 +
2τ

t2 − t1
+

sup[−m,m] | logϕε(·)|
t2 − t1

≤ 1 +
2t2

t2 − t1
+

sup[−m,m] | logϕε(·)|
t2 − t1

.(25)

Since we consider 0 ≤ m ≤ CJt1,t2∣∣∣∣ log ϕ̂ JZτ (u)

∣∣∣∣ ≤ 3t2 − t1 + sup
[−m,m]

| logϕε(·)| ≤ ln(J)
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Therefore, it comes from Equation (25) and Equation (4) that

log ϕ̃ JZτ (u) = log ϕ̂ JZτ (u) .

By using Lemma 23 and the definition of γ, we have

E[I
(1)
τ,J,m] =

1

(t2 − t1)2

m∧M(γcm)
J,τ∫

−m∧M(γcm)
J,τ

E
[
1Ωζ,τ (m)| log ϕ̂ JZτ (u)− logϕZτ (u)|2

]
du

≤ 1

(t2 − t1)2

∫ m

−m

E[|ϕ̂JZτ (u)− ϕZτ (u)|2]

|ϕZτ (u)|2
du ,

because γcm
ζ log

( γcm
γcm−ζ

)
≤ 1 due to the fact that γcm > ζ.

Direct computations lead to

E[|ϕ̂JZτ (u)− ϕZτ (u)|2] =
1− |ϕZτ (u)|2

J

=
1− |ϕYτ (u)|2|ϕε(u)|2

J

=
(1− |ϕYτ (u)|2|)|ϕε(u)|2 + 1− |ϕε(u)|2

J

≤ (1− |ϕYτ (u)|2|)|ϕε(u)|2 + 1− |ϕε(u)|2

J

≤ 2

J
.

We deduce that

E[I
(1)
τ,J,m] ≤ 2

J(t2 − t1)2

∫ m

−m

1

|ϕZτ (u)|2
du .

Futhermore, we know that (Yτ ) is a compound Poisson process with intensity λ = 1 . It
leads to

|ϕYτ (u)| ≥ e−2τ , u ∈ R .

Then,

|ϕZτ (u)|2 = |ϕYτ (u)ϕε(u)|2 ≥ e−4τ |ϕε(u)|2

It leads to

E[I
(1)
τ,J,m] ≤ 2e4τ

J(t2 − t1)2

∫ m

−m

1

|ϕε(u)|2
du .

Step 2 – Control I(3)
τ,J,m.. on the event Ωζ,τ (m)c, it is more complicated to control the

empirical distinguished logarithm. Nevertheless, the cut-off on the estimator allows us
to write that
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m∫
−m

| log ϕ̃ JZτ (u)− logϕZτ (u)|2 du ≤ 2

m∫
−m

| log ϕ̃ JZτ (u)|2 du+ 2

m∫
−m

| logϕZτ (u)|2 du

≤ 4m ln2(J) + 2

m∫
−m

| logϕYτ (u) + logϕε(u)|2 du

≤ 4m ln2(J) + 4

m∫
−m

| logϕYτ (u)|2 du+ 4

m∫
−m

| logϕε(u)|2 du

≤ 4m ln2(J) + 32mτ2 du+ 4

m∫
−m

| logϕε(u)|2 .

Indeed, we have that ϕX = 1 + 1
τ logϕYτ . It follows that | logϕYτ | ≤ 2τ .

Recall that we have

I
(3)
τ,J,m =

1

(t2 − t1)2
1Ωζ,τ (m)c

m∫
−m

| log ϕ̃ JZτ (u)− logϕZτ (u)|2 du ,

which leads to write

E[I
(3)
τ,J,m] ≤ 1

(t2 − t1)2
·
(

4m ln2(J) + 32mτ2 du+ 4

m∫
−m

| logϕε(u)|2 du
)
· P(Ωζ,τ (m)c) .

We apply Lemma 22 with η = 2 and ζ >
√

5τ . It ensures that

E[I
(3)
τ,J,m] ≤ 1

(t2 − t1)2
·
(

4m ln2(J)+32mτ2+4

m∫
−m

| logϕε(u)|2 du
)
·
(
E[X2

i ]

Jτ
+
E[ε2]

Jτ2
+4

m

(Jτ)2

)

Step 3 – Control I(2)
τ,J,m.. By Assumption, τ ≤ δ log(Jτ) and δ < 1/4. It follows that for

all u ∈ [−m,m],,

|ϕZτ (u)| = |ϕYτ | · |ϕε| > e−2τ cm > (Jτ)−2δcm > γcm
√

log(Jτ)/(Jτ)
}
,

when Jτ is enough high.

Finally, M (γcm)
J,τ ≥ m, and I(2)

τ,J,m = 0 a.s. .

5.2. Proof of Theorem 3. Let m ≥ 0. The proof of the theorem is divided in two steps
: in a first one, we control E‖f̂m̂n,J − f‖22 on the event E = {m̂J < m}, then we control it
on the complementary event Ec = {m̂J ≥ m}.
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As we know, it follows from the triangular inequality and Parseval’s equality that

‖fm,J − f‖22 = ‖fm − f‖22 +
1

2π

∫ m

−m
|ϕ̃JX(u)− ϕX(u)|2 du

=
1

2π

∫
|u|∈[−m,m]c

|ϕX(u)|2 du+
1

2π

∫ m

−m
|ϕ̃JX(u)− ϕX(u)|2 du .

Therefore, by replacing the estimator f̂m,J by f̂m̂n,J produces a surplus of bias on E and
and surplus of variance on Ec. Then, we only need to control these surpluses.
Step 1 – Control on E .

E
[
1E

∫
|u|∈[m̂J ,m]

|ϕX(u)|2 du
]
≤ 2E

[
1E

∫
|u|∈[m̂J ,m]

|ϕ̃JX(u)|2 du
]

+ 2E
[
1E

∫
|u|∈[m̂J ,m]

|ϕ̃JX(u)− ϕX(u)|2 du
]

≤ 2E
[
1E

∫
|u|∈[m̂J ,m]

κ2
J,t1,t2

· (1 + u2)

J(t2 − t1)2
du
]

+ 2E
[
1E

∫
|u|∈[0,m]

|ϕ̃JX(u)− ϕX(u)|2 du
]

≤ 4m · (1 +m2) ·
κ2
J,t1,t2

J(t2 − t1)2
+ 2A ,

where A =
∑2

i=1
4e4ti

J(t2−t1)2

∫m
−m

du
|ϕε(u)|2 +

4KJ,t1,t2
(t2−t1)2 ·

(
E[X2

i ]
Jti

+ E[ε2]
Jt2i

+ 4 m
(Jti)2

)
is given by

Theorem 1.

Given that κJ,t1,t2 = 2
√

2e2t2 + κ
√

ln(J(t2 − t1)2), we have that

E
[
‖f m̂J − f‖

2
21E
]
≤ ‖fm − f‖22 + C

m · (1 +m2) · ln(J(t2 − t1)2)

J(t2 − t1)2
+ C̃A

where C and C̃ are two constantes.
Step 2 – Control on Ec. Now, we look at the case where where m̂J > m. By construction,
m̂J is bounded by (mmax)α. It follows that

E
[ ∫
m<|u|<m̂J

|ϕJX(u)− ϕ(u)|2 du1Ec
]
≤ E

[ ∫
m<|u|<(mmax)α

|ϕJX(u)− ϕ(u)|2 du
]

Let η > 2, such that α−η < −1. As for the proof of the theorem 1, Lemma 22 and Lemma
23 leads to

E
[
|ϕJX(u)− ϕ(u)|2

]
≤ |ϕX(u)|2 + E

[
|ϕ̂JX(u)− ϕ(u)|2

]
≤ |ϕX(u)|2 +

2∑
i=1

4e4ti

J(t2 − t1)2

du

|ϕε(u)|2
+

E[X2
1 ]

Jt1
+

E[ε2]

Jt21
+ 4

m

(Jt1)η
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I On the event

∣∣∣ ϕX(u)√
1 + u2

∣∣∣ ≥ 2e2t2
√
J(t2 − t1)

we see that

E
[
|ϕJX(u)− ϕ(u)|2

]
≤ |ϕX(u)|2 +

8

J(t2 − t1)2

e4t2

|ϕε(u)|2
+

E[X2
1 ]

Jt1
+

E[ε2]

Jt21
+ 4

m

(Jt1)η

≤ |ϕX(u)|2 +
2|ϕX(u)|2

1 + u2

1

|ϕε(u)|2
+

E[X2
1 ]

Jt1
+

E[ε2]

Jt21
+ 4

mmax

(Jt1)η

≤ |ϕX(u)|2 +
2|ϕX(u)|2

(1 + u2)

(1 + u2)

d
+

E[X2
1 ]

Jt1
+

E[ε2]

Jt21
+ 4

(t2 − t1)2α

J · tη1
≤ C0|ϕX(u)|2,

as J →∞.
I From now on, all that remains to be done is to look at the event

A = {
∣∣∣ ϕX(u)√

1 + u2

∣∣∣ ≤ 2e2t2
√
J(t2 − t1)

}

By definition, we know that

ϕJX(u) ≤ 1 +
2 log(J)

(t2 − t1)

Then, on the event

∣∣∣ ϕX(u)√
1 + u2

∣∣∣ ≤ 2e2t2
√
J(t2 − t1)
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we see that

E
[ ∫

[m,m̂n]
|ϕJX(u)− ϕ(u)|2 · 1A

]
≤

∫
|u|∈[m,(mmax)α]

|ϕ(u)|2 du+
(

2 +
2 log(J)

(t2 − t1)

)2
∫
|u|∈[m,(mmax)α]

P
(∣∣∣ ϕ̂X(u)√

1 + u2

∣∣∣ ≥ κJ,t1,t2√
J(t2 − t1)

)
1A du

≤
∫

|u|∈[m,(mmax)α]

|ϕ(u)|2 du+
(

2 +
2 log(J)

(t2 − t1)

)2
∫
|u|∈[m,(mmax)α]

P
(∣∣∣ ϕ̂X(u)√

1 + u2

∣∣∣ ≥ κJ,t1,t2√
J(t2 − t1)

)
1A du

≤
∫

|u|∈[m,(mmax)α]

|ϕ(u)2|du

+
(

2 +
2 log(J)

(t2 − t1)

)2
∫

|u|∈[m,(mmax)α]

P
(∣∣∣ ϕ̂X(u)− ϕ(u)√

1 + u2

∣∣∣ ≥ κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)
du

≤
∫

|u|∈[m,(mmax)α]

|ϕ(u)2|du

+
(

2 +
2 log(J)

(t2 − t1)

)2
∫

|u|∈[m,(mmax)α]

P
(∣∣ϕ̂X(u)− ϕ(u)

∣∣ ≥ κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)
du

≤
∫

|u|∈[m,(mmax)α]

|ϕ(u)2|du+
(

2 +
2 log(J)

(t2 − t1)

)2
· TJ

Finally, it only remains to bound TJ where

TJ =

∫
|u|∈[m,(mmax)α]

P
(∣∣ϕ̂X(u)− ϕ(u)

∣∣ ≥ κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)
du

By Definition, we have
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P
(∣∣ϕ̂X(u)− ϕ(u)

∣∣ ≥ κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)

= P
(∣∣ log ϕ̂ JZt2

(u)− log ϕ̂ JZt1
(u)− logϕZt2 (u) + logϕZt1 (u)

∣∣
t2 − t1

≥
κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)
≤ P

(∣∣ log ϕ̂ JZt1
(u)− logϕZt1 (u)

∣∣+
∣∣ log ϕ̂ JZt2

(u)− logϕZt2 (u)
∣∣ ≥ (t2 − t1)

κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)
≤ P

(∣∣ log ϕ̂ JZt1
(u)− logϕZt1 (u)

∣∣ ≥ (t2 − t1)
1

2
·
κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)
+ P

(∣∣ log ϕ̂ JZt2
(u)− logϕZt2 (u)

∣∣ ≥ (t2 − t1)
1

2
·
κ
√

ln(J(t2 − t1)2)√
J(t2 − t1)

)
Without loss of generality, we only consider the term

P
(∣∣ log ϕ̂ JZt2

(u)− logϕZt2 (u)
∣∣ ≥ (t2 − t1)

κ
√

ln(J(t2 − t1)2)

2
√
J(t2 − t1)

)
.

By taking γ∆ and ζ > 0, like in the proof of Theorem 1, we have that

P
(∣∣ log ϕ̂ JZt2

(u)− logϕZt2 (u)
∣∣ ≥ (t2 − t1)

κ
√

ln(J(t2 − t1)2)

2
√
J(t2 − t1)

)
≤ P

(∣∣ϕ̂ JZt2 (u)− ϕZt2 (u)
∣∣ ≥ (t2 − t1)|ϕZt2 (u)|

κ
√

ln(J(t2 − t1)2)

2
√
J(t2 − t1)

)
+ P(Ωc

ζ,(t2−t1)2) .

Using hypothesis on the regularity of |ϕε|, we have that

|ϕZt2 | = |ϕYt2 | · |ϕε| ≥ |ϕYt2 | ·
d√

1 + u2
≥ e2t2 · d√

1 + (mmax)2

Let c(θ) = κ(t2 − t1)e2t2 · d√
1+(mmax)2

It follows from Hoeffding inequality and Lemma 22 that

P
(∣∣ log ϕ̂ JZt2

(u)− logϕZt2 (u)
∣∣ ≥ κ

√
ln(J(t2 − t1)2)

2
√
J(t2 − t1)

)
≤ 2(J(t2 − t1)2)−c(θ)

2
+

E[X2
1 ]

J(t2 − t1)2
+

E[ε2]

J(t2 − t1)4
+ 4

mmax

(J(t2 − t1)2)η

If we take η > 3 such that 2α− η < −1 and ζ >
√

(t2 − t1)2(1 + 2η), then we have∫
|u|∈[m,(mmax)α]

P
(∣∣ log ϕ̂ JZt2

(u)− logϕZt2 (u)
∣∣ ≥ κ

√
ln(J(t2 − t1)2)

2
√
J(t2 − t1)

)

≤ 4(J(t2 − t1)2)α−c(θ)
2

+
C ′

J(t2 − t1)2
+

C ′

J(t2 − t1)4
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where C ′ depends on E[X2
1 ],E[ε2].

Similar reasoning on ∫
|u|∈[m,(mmax)α]

P
(∣∣ log ϕ̂ JZt1

(u)− logϕZt1 (u)
∣∣,

leads to

TJ ≤ C0(J(t2 − t1)2)α−c(θ)
2

+
C1

J(t2 − t1)2
+

C2

J(t2 − t1)4

where C0, C1 and C2 depends on E[X2
1 ],E[ε2].

5.3. Proof of Theorem 10. This proof is an adaptation of the proof of Theorem 3.1 of
Duval and Kappus [18]. Nevertheless, we are working with products of random variables
and not with sums, which forces us to adapt the proof to use to take the Mellin transform
in consideration.

We have the decomposition

‖f̂m − f‖2ω1
≤ ‖fm − f‖2ω1

+ ‖f̂m − fm‖2ω1
.

To prove the theorem, we have to bound the variance term ‖f̂m − fm‖2ω1
.

Using the isometry equation, we get

‖f̂m − fm‖2ω1
=

1

2π

∫ m

−m

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds .

To get a majorization of the right side term, we consider different events on which it can
be control.

Fix γ > ζ and set γ∆ = 2ζ
1∧∆ . We consider the events

Ωζ,∆(m) =

{
∀u ∈ [−m,m], |M̂1[∆](u)−M1[∆](u)| ≤ ζ

√
log(n∆)

n∆

}
and

{m ≤M (γ∆)
n,∆ } where M

(γ∆)
n,∆ = min

{
u ≥ 0 : |M1[∆](u)| = γcm

√
log(Jt)/(Jt)

}
.

We have

1

2π

∫ m

−m

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds =

1

2π

∫ m∧M(γ∆)

n,∆

−m∧M(γ∆)

n,∆

1Ωζ,∆(m)

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds

+
1

2π
1
m>M

(γ∆)

n,∆

· 1Ωζ,∆(m)

∫
|s|∈[M

(γ∆)

n,∆ ,m]

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds

+ 1Ωcζ,∆(m)
1

2π

∫ m

−m

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds
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Step 1. Focus on the event A = {|u| ≤ m ∧M (γ∆)
n,∆ } ∩ Ωc

ζ,∆(m).

First, we prove that M̂1[f ](s) = M̃1[f ](s)

The triangular inequality ensures that

M̂1[f ](s) ≤ 1 +
| ̂logM1[∆](s)− logM1[∆](s)|+ | logM1[∆](s)|

∆
.

and Lemma 23 ensures that

M̂1[f ](s) ≤ 1 +
1

∆
log
( γ

γ − ζ

) |M̂1[∆](s)−M1[∆](s)|
|M1[∆]|

+
| logM1[∆]|

∆
.

Furthermore, since

M1[f ](s) = 1 +
1

∆
logM1[∆](s) ,

it follows that
M̂1[f ](s) ≤ 3 +

1

∆
log
( γ

γ − ζ

)
≤ 4 .

Then M̂1[f ](s) = M̃1[f ](s).

Therefore,

E
[ 1

2π

∫ m∧M(γ∆)

n,∆

−m∧M(γ∆)

n,∆

1Ωζ,∆(m)

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds

]
=

1

2π

∫ m∧M(γ∆)

n,∆

−m∧M(γ∆)

n,∆

E
[
1Ωζ,∆(m)

∣∣M̂1[f ](s)−M1[f ](s)
∣∣2] ds

=
1

2π∆2

∫ m∧M(γ∆)

n,∆

−m∧M(γ∆)

n,∆

E
[
1Ωζ,∆(m)

∣∣ ̂logM1[∆](s)− logM1[∆](s)
∣∣2] ds

Lemma 23 ensures that

E
[ 1

2π

∫ m∧M(γ∆)

n,∆

−m∧M(γ∆)

n,∆

1Ωζ,∆(m)

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds

]
≤ 1

2π∆2

∫ m∧M(γ∆)

n,∆

−m∧M(γ∆)

n,∆

E
[
|M̂1[∆](s)−M1[∆](s)|2

]
|M1[∆](s)|2

ds

We have

E
[
|M̂1[∆](s)−M1[∆](s)|2

]
= Var(M̂1[∆](s)) ≤ 1

n
E(|Zc−1+it

∆ |2)

Then we have

E
[ 1

2π

∫ m∧M(γ∆)

n,∆

−m∧M(γ∆)

n,∆

1Ωζ,∆(m)

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds

]
≤ 1

2πn∆2

∫ m

−m

1

|M1[∆](s)|2
ds

Then, set ζ >
√

5∆. Using Lemma 22 with η = 2 to get

E
[
1Ωcζ,∆(m)

1

2π

∫ m

−m

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds

]
≤ 50m

2π

(E[ln(X1)2]

∆n
+ 4

m

(n∆)2

)
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Finally, we observe that |M1(∆)(s)| > e−2∆. We can use the same strategy that Duval
Kappus [18] to show that Mγ∆

n,∆ = +∞ and that

E
[ 1

2π
1
m>M

(γ∆)

n,∆

· 1Ωζ,∆(m)

∫
|s|∈[M

(γ∆)

n,∆ ,m]

∣∣M̃1[f ](s)−M1[f ](s)
∣∣2 ds

]
= 0 .

5.4. Proof of Theorem 13. Let 0 < m < (n∆)α. As for the Theorem 3, the proof
is divided in two steps : in the first one, we control E

[
‖fm̂n,∆ − f‖2ω1

]
on the event

E = {m̂n < m}, then we control it on the complementary event Ec = {m̂n ≥ m}.

Step 1 - The first event E. The triangular inequality and the isometry equality leads to

E
[
1E

∫
|u|∈[m̂n,m]

|M1[f ](u)|2 du
]
≤ 2E

[
1E

∫
|u|∈[m̂n,m]

|M̃1[f ](u)|2 du
]

+ 2E
[
1E

∫
|u|∈[m̂n,m]

|M̃1[f ](u)−M1[f ](u)|2 du
]

≤ 2E
[
1E

∫
|u|∈[m̂n,m]

κ2
n,∆

n∆
du
]

+ 2E
[
1E

∫
|u|∈[0,m]

|M̃1[f ](u)−M1[f ](u)|2 du
]

≤ 4
κ2
n,∆m

n∆
+

1

πn∆2

∫ m

−m

1

|M1[∆](s)|2
ds+

50

π
m
(E[ln(X1)2]

∆n
+ 4

m

(n∆)2

)
.

By definition, κn,∆ = e2∆ + κ
√

log(n∆). It follows from Theorem 10 that

E
[
1E‖fm̂n,∆ − f‖

2
ω1

]
≤ ‖fm − f‖2ω1

+ C
log(n∆)m

n∆

+
1

πn∆2

∫ m

−m

1

|M1[∆](s)|2
ds+

50

π
m
(E[ln(X1)2]

∆n
+ 4

m

(n∆)2

)

Step 2 - The second event Ec. Henceforth, we considere the case where m̂n ≥ m. It remains
to control the surplus in the variance of f̃m̂n .
Since m ≤ m̂n ≤ (n∆)α, it follows that

E
[
1Ec

∫
|u|∈[m,m̂n]

∣∣M1[f ](u)−M[f ](u)
∣∣2] ≤ [ ∫

|u|∈[m,(n∆)α]

E
[∣∣M1[f ](u)−M[f ](u)

∣∣2]
Let η > 2 such that α− η < −1. Lemma 11 and Lemma 12 ensure that

E
[∣∣M1[f ](u)−M[f ](u)

∣∣2] ≤ |M1[f ](s)|2 + E
[∣∣M̂1[f ](u)−M[f ](u)

∣∣2]
≤ |M1[f ](s)|2 +

2

n∆2
∣∣M1[∆](s)

∣∣2 +
E[ln(X1)2]

∆n
+

4

n∆
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First, we assume that {|M1[f ](s)|2 > e2∆
√
n∆
}. Given that M1[∆](u) > e−2∆, it follows in

this case that

E
[∣∣M1[f ](u)−M1[f ](u)

∣∣2] ≤ |M1[f ](u)|2(6 + E[ln(X1)2]).

Therefore,

E
[ ∫

|u|∈[m,m̂n]

∣∣M1[f ](u)−M[f ](u)
∣∣2 · 1{||M1[f ](s)|2|> e2∆

√
n∆
} · 1Ec

]
du ≤ A

∫
|u|∈[m,m̂n]

|M1[f ](u)|2 du

≤ A
∫

[−m,m]c

|M1[f ](u)|2 du

where A = 6 + E[ln(X1)2].

Secondly, we assume that {|M1[f ](s)|2 ≤ e2∆
√
n∆
}. By construction, |M1[f ](s)| ≤ 4. It

follows that

E
[ ∫

|u|∈[m,m̂n]

∣∣M1[f ](u)−M[f ](u)
∣∣2 · 1{|M1[f ](s)|2|≤ e2∆

√
n∆
} · 1Ec

]
du

≤
∫

|u|∈[m,(n∆)α]

|M1[f ](u)|2 du+ 25

∫
|u|∈[m,(n∆)α]

P
(
|M̂1[f ]| ≥

κn,∆√
n∆

)
· 1{|M1[f ](s)|2|≤ e2∆

√
n∆
} du

≤
∫

|u|∈[m,(n∆)α]

|M1[f ](u)|2 du+ 25

∫
|u|∈[m,(n∆)α]

P
(
|M̂1[f ]−M1[f ]| ≥ κ

√
log(n∆/(n∆))

)
du

It remains to bound the last term. For that, we use Lemma 11 and Lemma 12 by taking
γ∆ and ζ > 0, like in the proof of Theorem 10. By definition, we have that

P
(
|M̂1[f ]−M1[f ]| ≥ κ

√
log(n∆/(n∆))

)
= P

(
| log M̂1[∆]− logM1[∆]| ≥ κ∆

√
log(n∆/(n∆))

)
≤ P

(
|M̂1[∆]−M1[∆]| ≥ |M1[∆]|κ∆

√
log(n∆/(n∆))

)
+ P(Ωc

ζ,∆((n∆)α)).

Let c(∆) = k∆e−2∆. The Hoeffding inequality and Lemma 11 ensure that

P
(
|M̂1[f ]−M1[f ]| ≥ κ

√
log(n∆/(n∆))

)
≤ 2(n∆)α−c(∆)2

+
E[ln(X1)2]

n∆
+ 4(n∆)α−η.

If we take η > 3 such that 2α− η < −1 and ζ >
√

∆(1 + 2η), then∫
|u|∈[m,(n∆)α]

P
(
|M̂1[f ]−M1[f ]| ≥ κ

√
log(n∆/(n∆))

)
du ≤ 4(n∆)α−c(∆)2

+
B

n∆
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where B depends on E[ln(X1)2].

It follows that there exist two constant A,B such that

E
[
‖fm̂n,∆ − f‖

2
ω1

]
≤ A

(
‖fm − f‖2ω1

+
log(n∆)m

n∆
+

1

n∆2

m∫
−m

1

|M1[∆](s)|2
ds+ 4

m2

(n∆)2

)
+B

(
(n∆)α−c(∆)2

+
1

n∆

)
.

We conclude by taking the infimum in m.

6. Conclusion and perspectives

In this article, we develop an adaptive procedure to estimate the jump density in a noisy
compound Poisson process. In our case, we observe several noisy compound Poisson
processes. We have shown that by looking at what happens at two different times, it
is possible to reconstruct then density fX .

In practice, the experimental data allow us to observe the process at different times. A
discussion could be conducted later to understand if it is possible to combine estimators
built with different t1 and t2 to improve our estimator.
In future work, we plan to apply our statistical method to biological data from the article
by Robert et al. [34].

Furthermore, it is possible to link compound Poisson process to the fragmentation equation
which has been widely studied in the literature [15, 14, 16]. We plan to develop and study
this link, in future work.

Appendix A. The distinguished logarithm

In the section, we recall the definition and some properties of the distinguished logarithm.
The reader who would like to have more information can refer to the articles of Duval and
Kappus [17, 18] or to the article of Finkelstein et al. [21].

Theorem 14. Let d ∈ N− {0} and let ϕ ∈ C0(Rd;C∗) be a continuous application which
never vanishes and such that ϕ(0) = 1.
Then there exists a unique continuous application ψ ∈ C0(Rd;C) such that

(1) ψ(0) = 0,
(2) for all x ∈ Rd , ϕ(x) = eψ(x).

The application ψ is called the Distinguished Logarithm of ϕ and is denoted by logϕ.

Remark 15. In general, the distinguished logarithm does not reduce to a composition by
the principal determination of the logarithm. In his book [36], Sato remarks to his readers
that one can have ϕ(z1) = ϕ(z2) and logϕ(z1) 6= logϕ(z2) .
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Indeed, consider the application ϕ(t) = eit, (t ∈ R). It verifies all the assumptions of
Theorem 14. which ensures that

logϕ(t) = it , (t ∈ R) ,

It follows that

ϕ(0) = ϕ(2) = 1 and logϕ(0) = 0 , logϕ(2) = 2iπ .

Proposition 16. (Theorem 2. of [21])
Let d > 0 be a positive integer and f, (fn)n∈N ∈ C0(Rd;C∗) be continuous functions which
never vanishes and such that f(0) = fn(0) = 1 for all n ∈ N. If (fn) converges uniformly to
f on compact subsets of Rd, then the sequence (log(fn))n∈N converges uniformly to log(f)
on compact subsets of Rd.

Proposition 17. (Lemma 3. of [17])
Let ϕ be a characteristic function without zeroes and assume that ϕ is differentiable. Then,
it follows that

logϕ(u) =

∫ u

0

ϕ′(z)

ϕ(z)
dz .

Corollary 18. Let d ∈ N−{0} and f1, f2 ∈ C0(Rd;C∗) be two continuous functions which
never vanishes and such that f1(0) = f2(0) = 1. Assume that f1, f2 are both differentiable
and let h : Rd → C∗ denotes the quotient h = f2

f1
. Then,

∀u ∈ Rd , log h(u) = log f2(u)− log f1(u) .

Proof.

log h(u) =

∫ u

0

h′(z)

h(z)
dz =

∫ u

0

(f2

f1
)′(z)(f2

f1
)(z)

dz =

∫ u

0

(f ′2f1−f2f ′1
f2
1

)(f2

f1
)

dz =

∫ u

0

(f ′2f1 − f2f
′
1

f1f2

)
dz

=

∫ u

0

(f ′1
f1

)
dz −

∫ u

0

(f ′2
f2

)
dz = log f2(u)− log f1(u)

�

Appendix B. Compound Poisson processes

Proposition 19. Let (Yt, t ∈ R+) be a compound Poisson process with intensity λ ∈ R+

and jump size density f . Assume that X1 is integrable. Then for all t ∈ R+, Yt is integrable
and

E(Yt) = λtE(X1) .

Proposition 20. Let (Yt, t ∈ R+) be a compound Poisson process with intensity λ ∈ R+

and jump size density f . Assume that X1 is square-integrable. Then for all t ∈ R+, Zt is
square-integrable and

Var(Yt) = λtE(X2
1 ) .
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Proposition 21. Let (Yt, t ∈ R+) be a compound Poisson process with intensity λ ∈ R+

and jump size density f . Then

ϕYt(u) = e−λt(1−ϕX(u)) .

Proof. We have

ϕYt(u) = E
(
eiξ

∑Nt
i=1 Xi

)
= E

[
E
(
eiξ

∑Nt
i=1 Xi

)
|Nt

]
= E

[
E
(
eiξNtX

)
|Nt

]
=
∞∑
k=0

e−λt
λktk

k!
× E

(
eiξx
)

= e−λt
∞∑
k=0

λktk

k!
× E

(
eiξx
)k

= e−λt × eλt·ϕX(u).

�

Appendix C. Useful lemmas

C.1. A first Lemma.

Lemma 22. Let m, ζ, t ∈ R+ be positive reals. We consider the event

Ωζ,t(m) =

{
∀u ∈ [−m,m], |ϕ̂JZt(u)− ϕZt(u)| ≤ ζ

√
log(Jt)

Jt

}
.

If E[X2
1 ] <∞, then

∀η > 0 , ∀ζ >
√
t(1 + 2η) , P(Ωζ,t(m)c) ≤ E[X2

1 ]

Jt
+

E[ε2]

Jt2
+ 4

m

(Jt)η
.

Proof. Let c, h, τ ∈ R+ be some positive reals. We define the events

A(c) =


∣∣∣∣ 1J

J∑
j=1

|Zjt | − E
[
|Zt|
]∣∣∣∣ ≤ c

 ,

Bh,τ(m) =

{
∀|k| ≤

⌈
m

h

⌉
, |ϕ̂JZt(kh)− ϕZt(kh)| ≤ τ

√
log(Jt)

Jt

}
.
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As we know that the function x 7→ eiux is 1-Lipschitz, then for all u ∈ R and for all h ∈ R+

we have

|ϕ̂JZt(u)− ϕ̂JZt(u+ h)| =
∣∣∣ 1
J

J∑
j=1

eiuZ
j
t − 1

J

J∑
j=1

ei(u+h)Zjt

∣∣∣
≤ 1

J

J∑
j=1

∣∣∣eiuZjt − ei(u+h)Zjt

∣∣∣
≤ h

J

J∑
j=1

|Zjt |

= h
( 1

J

J∑
j=1

[
|Zjt | − E[|Zt|]

]
+ E[|Zt|

)
The definition of A(c) ensures that

(30) ∀u ∈ R , h > 0 , |ϕ̂JZt(u)− ϕ̂JZt(u+ h)|1A(c) ≤ h(c+ E[|Zt|) .

Moreover we have

(31) E[|Zt|] ≤ tE[|X1|] + E[|ε|] .

If E[X2
1 ] <∞, by appling the Markov inequalities and Proposition 20,

Var[|Zt|] ≤ Var[Zt] = tE[X2
1 ] + E[ε2]

we claim that

(32) P(A(c)c) ≤ tE[X2
1 ]

c2J
+

E[ε2]

c2J
.

Moreover we have

P(Bc
h,τ(m)) = P

(
∃|k| ≤

⌈
m

h

⌉
, |ϕ̂JZt(kh)− ϕZt(kh)| > τ

√
log(Jt)

Jt

)
(33a)

≤

⌈
m
h

⌉∑
k=−

⌈
m
h

⌉P
(
|ϕ̂JZt(kh)− ϕZt(kh)| > τ

√
log(Jt)

Jt

)
(33b)

≤

⌈
m
h

⌉∑
k=−

⌈
m
h

⌉P
(∣∣∣ J∑

j=1

eikhZ
j
t − E[eikhZ

j
t ]
∣∣∣ > τ

√
J log(Jt)

t

)
(33c)
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As |eikhZ
j
t | ≤ 1 almost surely , Hoeffding’s inequality ensures that

≤

⌈
m
h

⌉∑
k=−

⌈
m
h

⌉ 2 exp
(
− τ2 log(Jt)

2t

)
(33d)

= 4
⌈m
h

⌉
(Jt)−τ

2/(2t)(33e)

Let |u| ≤ m. Then there exists k a positive integer such that u ∈ [kh− h
2 , kh+ h

2 ]. Then

1A(c)∩Bh,τ (m)|ϕ̂JZt(u)− ϕZt(u)| ≤ 1A(c)∩Bh,τ (m)

(
|ϕ̂JZt(u)− ϕ̂JZt(kh)|

+ |ϕ̂JZt(kh)− ϕZt(kh)|+ |ϕZt(kh)− ϕZt(u)|
)(34)

Since the function x 7→ eixt is 1-Lipschitz, we have

|ϕZt(kh)− ϕZt(u)| = |E[eikhZt − eiuZt ]
≤ hE[|Zt|]

By applying this last result to Equation (34)

1A(c)∩Bh,τ (m) sup
|u|≤m

|ϕ̂JZt(u)− ϕZt(u)| ≤ 1A(c)∩Bh,τ (m)

(
|ϕ̂JZt(u)− ϕ̂JZt(kh)|

+ |ϕ̂JZt(kh)− ϕZt(kh)|+ hE[|Zt|]
) .

It follows from Equation (30) that

1A(c)∩Bh,τ (m) sup
|u|≤m

|ϕ̂JZt(u)− ϕZt(u)| ≤ h(c+ E[|Zt|]) + 1A(c)∩Bh,τ (m)

(
|ϕ̂JZt(kh)− ϕZt(kh)|

)
+ hE[|Zt|] .

By using the definition of Bh,τ (m), we have

1A(c)∩Bh,τ (m) sup
|u|≤m

|ϕ̂JZt(u)− ϕZt(u)| ≤ h(c+ E[|Zt|]) + τ

√
log(Jt)

Jt
+ hE[|Zt|]

≤ hc+ 2hE[|Zt|] + τ

√
log(Jt)

Jt

≤ hc+ 2h(tE[|X1|+ E[|ε|]]) + τ

√
log(Jt)

Jt
.(36)

In particular, if c = t, h = o(

√
log(Jt)
Jt ) such that h > 1√

Jt
and ζ > τ , Equation (36), allows

us to say that

A(c) ∩Bh,τ(m) ⊂ Ωζ,t(m) .
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In addition, h > 1√
Jt
, (30) et (32)), we prove that for all η > 0,

P(Ωc
ζ,t(m)) ≤ P(Ac(t)) + P(Bc

h,τ )(m)

≤ E[X2
1 ]

Jt
+

E[ε2]

Jt2
+ 4
⌈m
h

⌉
(Jt)−

τ2

2t

≤ E[X2
1 ]

Jt
+

E[ε2]

Jt2
+ 4m(Jt)−

t−τ2

2t

We obtain the result by taking τ2 = t(1 + 2η).
�

C.2. A second lemma.

Lemma 23. (Lemma 5.2. of [18]) Let γ ∈ R+, t ∈ R+ and consider

M
(γ)
J,t = min

{
u ≥ 0 : |ϕZt(u)| = γ

√
log(Jt)/(Jt)

}
,

with the convention inf{∅} = +∞.
Let ζ ∈ R+ be a positive real s.t. 0 < ζ < γ. Then

1|u|≤Mγ
J,t∧m,Ωζ,t(m) ·

∣∣∣ log(ϕ̂JZt(u))− logϕZt(u)
∣∣∣ ≤ γ

ζ
log
( γ

γ − ζ

) |ϕ̂JZt(u)− ϕZt(u)|
|ϕZt(u)|
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