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Université PSL, CNRS, Sorbonne Université
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Abstract—Here we report on the status of the Spectral-Hole
Burning (SHB) laser-stabilization experiment at LNE-SYRTE, fo-
cusing on our first measurements of thermally induced frequency
shifts of spectral holes at dilution temperatures (T0 < 1K). The
effect, which is predicated to scale as T4, produces shifts of order
1− 10Hz over its ≈ 517THz center at these temperatures.
To meet this challenge, we introduced a novel temperature-
modulation based approach to spectral-hole line shift measure-
ments, allowing integration time of the small signals. We find a
preliminary value for the line-shift constant of Eu3+:Y2SiO5,
α = 107HzK−4, a first at dilution temperatures.

Index Terms—Spectral Hole Burning, Laser Frequency Stabi-
lization, Metrology, Spectroscopy

I. INTRODUCTION

The spectral-hole burning (SHB) experiment at LNE-
SYRTE aims to produce an ultra frequency-stable laser by
spectroscopic methods. The current state of the art ultra-
stable lasers involve locking to a length-stable optical cavity
as a frequency reference [1] [2]; however, this approach is
reaching a fundamental materials limit, Brownian noise in
the cavity mirrors. The SHB experiment explores a different
approach to laser stabilization by utilizing, as its frequency
reference, a transmissive spectral line (spectral hole) which we
imprint (burn) at one of two absorption sites (homogeneously
broadened about 580.039 nm and 580.211 nm) in a rare-earth-
ion doped crystal, Eu3+:Y2SiO5 [3].

The SHB group has previously demonstrated the technique,
stabilizing a laser to a pulse tube cooled crystal (T0 = 3.7K)
achieving a fractional frequency stability of 1.7× 10−15 over
1 s [4], as well as studying the effects of mechanical stress [5]
[6] and external electric fields [7]. Further characterizations of
our experimental detection noise floor [4] and of the spectral
hole thermal line shifts in the 3 − 6K range [Manuscript in
Press, Phys Rev A] suggest that these are performance limiting
effects. The T 4 scaling of the thermal shifts motivates our
move to a dilution refrigerator to cool our sample below 1K.
Here we present our initial measurements of spectral-hole line
shifts at dilution temperatures.
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Excellent Science (EMPIR 20FUN08 NEXTLASERS - EMPIR programme
cofinanced by the Participating States and from the EU Horizon 2020 Research
and Innovation Programme).
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Fig. 1. Illustration of the SHB setup at LNE-SYRTE.

II. EXPERIMENTAL SETUP

The setup, illustrated in Fig. 1, uses two tunable 1160 nm
diode lasers. An infrared pre-stabilized laser (PSL) is locked to
an optical cavity. The infrared probe laser (PRB) is locked to
the PSL transferring its initial stability through an offset phase-
lock-loop (PLL). The PLL offset is sourced by an FPGA based
software defined radio (SDR) system (Ettus USRP X310)
upmixed by a function generator. A portion of the infrared
light is sent to the frequency comb at LNE-SYRTE, providing
a stable and robust frequency count of the PRB.

The PRB is frequency doubled to interrogate the spectro-
scopic sites near 580 nm. The yellow 580 nm beam completes
a double-pass through a high-speed AOM where the light
is frequency shifted by a custom spectrum, also generated
by the SDR at a second output. As we implement a multi-
spectral-hole interrogation scheme, several probe modes are
imprinted at this point. The resulting spectrum of beat signals
is split: a reference beam is measured by photodetector PD1,
and the other beam probes the crystal where each probe mode
experiences a phase delay proportional to the difference fre-
quency between the laser and the spectral hole. PD2 measures
the dephased beat notes. The signals from PD1 and PD2 are
digitized by the SDR which produces the error signal. The
PRB is actuated toward the center of the spectral hole by
controlling the PLL offset.



III. METHODS

Similar to our own previous thermal line shift measurements
[Manuscript in Press, Phys Rev A], two groups have made
earlier measurements of thermal line shifts in Eu3+:Y2SiO5

by measuring the change in the absorption profile for increas-
ing crystal temperatures from 2.5K and above [8] [9] where
temperature sensitives at spectroscopic site 1 are on the order
of 10 000HzK−1 and higher. For dilution temperatures, where
the sensitivities are on order 10− 100HzK−1, we implement
a different approach.

We lock the PRB laser to a spectral hole burned in the
crystal held at 700mK. The crystal temperature is controlled
by a resistive heater in an active loop driven by a com-
mercial cryogenic temperature controller (Lakeshore 350). A
custom control program modulates the temperature set-point,
simultaneously recording 0) the registered set-point (the sys-
tem’s driving signal), 1) the measured actual temperature (the
system’s input signal) and 2) the PRB-frequency comb beat
(the system’s output signal). Care is taken in optimizing the
feedback PID gain, selecting appropriate modulation depths
(m = 0.01, 0.02) and frequency (fmod = 31.6mHz) to ensure
that the temperature tracks the set-point. An example data
point is shown in Fig. 2. A fit to the system driving signal
provides the reference sinusoid. The amplitude and phase
of the temperature (A1, ϕ1) and beat note signal (A2, ϕ2)
modulation are determined through I-Q demodulation with the
fitted reference sinusoid. The temperature sensitivity of the
frequency is then calculated directly, df

dT = A2

A1
.
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Fig. 2. An example data point of recorded temperature set-point, measured
temperature, and frequency data. Left: Raw time series segment covering 1
modulation period. Right: Signals after averaging and removing offset

IV. RESULTS

Staying locked to the spectral hole over a period of sev-
eral hours, we actuate the mean crystal temperature to each
measurement point, stopping to modulate for 24 periods. The
resulting plot of temperature dependent temperature sensitiv-
ities is shown in Fig. 3. At temperatures below the Debye
Temperature, the absolute shift in the spectral line center
frequency is given in terms of the line shift constant, α:
∆f = αT 4. Over the temperature range 0.5−0.9K, we fit this
constant to be α = 107HzK−4 at site 1 from our preliminary
data. By comparison, at site 1 others have measured this
constant to be α1 = 168± 25HzK−4 fitting over 70− 100K
[8] and α1 = 76 ± 15HzK−4 measuring over the range
2.5− 5.5K [9].
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Fig. 3. Preliminary measurements of temperature spectral line sensitivity of
spectral holes in Eu3+:Y2SiO5 for temperatures from 0.5 − 0.9K, and a
fit of the spectroscopic site 1 line shift constant α.

V. DISCUSSION

These early results support our expected 3 order of mag-
nitude reduction in temperature sensitivity by moving from
pulse-tube to dilution temperatures. Considering measured
cryostat temperature fluctuations of order 100µK over 1 s,
this reduces the temperature-induced limit to fractional laser
frequency stability from order 10−15 down to 10−18. This
measurement, a first in spectral-hole spectroscopy, marks a
major step towards achieving our goal realizing an ultra-stable
laser with a fractional frequency stability of 10−18 at 1 s.
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