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Abstract

This document provides additional information and details on the article ”En-
hancing the Power of GGM Inference by Modeling the Graph Structure”. First,
all mathematical details on the new greedy ICL algorithm for the NSBM are pro-
vided. Then another version of the NSBM where variances of the observations are
supposed to be unknown is introduced and the associated inference algorithm is de-
tailed. Moreover, further numerical results are presented to support the conclusions
on the performance of the NSBM approach for GGM inference.

S1 Greedy algorithm

S1.1 Proof of Proposition 1

The expression of ICLSBM in Proposition 1 of the main paper is proven in Côme and

Latouche (2015). So we only prove the expression of ICLnoise(X,A,Z), which corresponds

to the term of the ICL related to the noise layer of the NSBM. With the notations of the

main paper,

p(X|A,Z, µ) =
∏

(i,j)∈A

p(Xi,j|Ai,j, Zi, Zj, µ)

=
∏

(i,j)∈A

{[
fN (0,1)(Xi,j)

]1−Ai,j
∏
q≤l

[
fN (µq,l,σ2)(Xi,j)

]Ai,jZi,j
q,l

}
.
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By integration,

ICLnoise(X,A,Z) = log

(∫
p(X|A,Z, µ)πµ(µ)dµ

)

= log

 ∏
(i,j)∈A

[
fN (0,1)(Xi,j)

]1−Ai,j ×
∏
q≤l

∫  ∏
(i,j)∈A

[
fN (µq,l,σ2)(Xi,j)

]Ai,jZi,j
q,l

 fN (ρ0,τ20 )
(µq,l)dµq,l


=
∑

(i,j)∈A

(1− Ai,j) log(fN (0,1)(Xi,j)) +
∑
q≤l

log(Jq,l),

where

∑
(i,j)∈A

(1− Ai,j) log(fN (0,1)(Xi,j)) = −1

2

∑
(i,j)∈A

(1− Ai,j)X
2
i,j −

N −MA

2
log(2π),

and, for q ≤ l,

Jq,l =

∫ ∏
(i,j)∈Iq,l

fN (µq,l,σ2)(Xi,j)× fN (ρ0,τ20 )
(µq,l)dµq,l

=

∫ (
1

σ
√
2π

)nq,l

exp

−
∑

(i,j)∈Iq,l

(Xi,j − µq,l)
2

2σ2

× 1

τ0
√
2π

exp

{
−(µq,l − ρ0)

2

2τ 20

}
dµq,l

=

(
1

σ
√
2π

)nq,l 1

τ0
√
2π

∫
exp

−1

2

 1

σ2

∑
(i,j)∈Iq,l

(Xi,j − µq,l)
2 +

(µq,l − ρ0)
2

τ 20

 dµq,l.

Developing the term in brackets, it turns out that it is equal to

µ2
q,l

(
1

τ 20
+

nq,l

σ2

)
︸ ︷︷ ︸

=a

− 2µq,l

ρ0
τ 20

+
1

σ2

∑
(i,j)∈Iq,l

Xi,j


︸ ︷︷ ︸

=b

+

ρ20
τ 20

+
1

σ2

∑
(i,j)∈Iq,l

X2
i,j


︸ ︷︷ ︸

=c

= a

(
µ− b

a

)2

− 1

a
(b2 − ac).

Consequently, by integrating we obtain for Jq,l,

Jq,l =

(
1

σ
√
2π

)nq,l 1

τ0
√
a
exp

{
1

2a
(b2 − ac)

}
.

One can show that

b2 − ac = − 1

τ 20σ
2

∑
(i,j)∈Iq,l

(Xi,j − ρ0)
2 −

n2
q,l

σ4
Sq,l.
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Hence,

Jq,l =

(
1

σ
√
2π

)nq,l
(
σ2 + τ 20nq,l

σ2

)− 1
2

× exp

− 1

2(σ2 + τ 20nq,l)

∑
(i,j)∈Iq,l

(Xi,j − ρ0)
2 −

τ 20n
2
q,l

2(σ4 + τ 20σ
2nq,l)

Sq,l

 .

Then,

∑
q≤l

logJq,l = − log σ

(∑
q≤l

nq,l −NQ

)
− 1

2
log(2π)

∑
q≤l

nq,l −
1

2

∑
q≤l

log
(
σ2 + τ 20nq,l

)
− 1

2

∑
q≤l

1

σ2 + τ 20nq,l

∑
(i,j)∈Iq,l

(Xi,j − ρ0)
2 − 1

2

∑
q≤l

τ 20n
2
q,l

σ4 + τ 20σ
2nq,l

Sq,l.

By gathering all terms and noting that MA =
∑

q≤l nq,l, we obtain the desired result.

S1.2 Efficient computation of ∆g→h

In the greedy algorithm the impact on the ICL of swapping a node i∗ from its current

block, say g, to another block h must be evaluated. That is, one has to compute

∆g→h = ICLNSBM(X,Zswap, Aswap)− ICLNSBM(X,Z,A).

The numerical evaluation of ICLNSBM has some computational cost, however the difference

∆g→h can be computed more efficiently, as changing the block assignment of a single node

has an impact only on a small number of the count statistics that appear in the expression

of the ICLNSBM in Proposition 1 of the main paper. For instance, the number of nodes

associated with block q, that is nq =
∑

i∈JnK Zi,q, only changes for q = g and q = h. Let us

add superscript swap to denote the quantities after the swap. As such we have nswap
g = ng−1,

nswap
h = nh + 1 and nswap

q = nq for all q /∈ {g, h}.

For the count statistics nq,l, it is clear that their value changes only if q ∈ {g, h} or l ∈

{g, h}. And as A and Aswap are identical except on the i∗-th row and i∗-th column, changes

only come from edges involving node i∗. We introduce the sets IAl = {j : Zj = l, Ai∗,j = 1}

indicating the set of nodes assigned to block l to which i∗ is connected in graph A. Then
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one can show that nswap
g,l = nswap

l,g = ng,l − |IAl | for all l ̸= h, nswap
h,l = nswap

l,h = nh,l + |IAswap

l |

for all l ̸= g, and nswap
g,h = nswap

h,g = ng,h − |IAh | + |IAswap

g |. If both q /∈ {g, h} and l /∈ {g, h},

then nswap
q,l = nq,l.

Concerning the changes in n̄q,l, first note that nq,l + n̄q,l is the maximal number of

possible edges between nodes in q and l, that we may denote by mq,l and which can also

be written as mq,l = nqnl if q ̸= l and mq,q = nq(nq − 1)/2 for q ∈ JQK. We have , for

all l /∈ {g, h}, mswap
g,l = mswap

l,g = mg,l − nl and mswap
h,l = mswap

l,h = mh,l + nl. Moreover,

mswap
g,g = mg,g − ng + 1, mswap

h,h = mh,h + nh and mswap
g,h = mswap

h,g = mg,h − nh + ng − 1. Then,

n̄swap
q,l = mswap

q,l − nswap
q,l .

Likewise, only the sets Iq,l with q ∈ {g, h} or l ∈ {g, h} are changed by the swap. More

precisely,

Iswapq,l =
{
Iq,l\{1{q=g} ⊙ IAl ∪ 1{l=g} ⊙ IAq }

}⋃{
1{q=h} ⊙ IA

swap

l ∪ 1{l=h} ⊙ IA
swap

q

}
,

where 1⊙ I = I and 0⊙ I = ∅ for any set I.

With these observations on the count statistics, it is clear that the computation of ∆g→h

can be simplified, since the difference of the sums taken over all (q, l) such that q ≤ l in

ICLNSBM reduces to sums involving only quantities that change with the swap of i∗ from g

to h. More precisely, only the terms with pairs of indices (q, l) in the set Sg,h are relevant,

where Sg,h is defined as

Sg,h = {(g, l) : l ∈ JQK}
⋃

{(h, l) : l ∈ JQK\{g}} .

Now, to state ICLNSBM explicitly, two cases must be distinguished depending on whether

the swap empties block g (that is i∗ is the last node assigned to block g) or not.

Proposition S1. For Aswap defined in (4) in the main paper,

∆g→h = ∆SBM
g→h +∆noise

g→h ,

where ∆SBM
g→h = ICLSBM(Aswap, Zswap)−ICLSBM(A,Z) refers to the change of ICLSBM induced

by the swap and ∆noise
g→h = ICLnoise(X,Aswap, Zswap) − ICLnoise(X,A,Z) the variation of the
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term related to the noise layer in the NSBM. For the form of ∆SBM
g→h and ∆noise

g→h two cases

are to be distinguished.

Case 1 If i∗ is not the only node assigned to block g (that is ng > 1), then moving i∗ to

another block does not change the number of blocks Q. Then

∆SBM
g→h = log

n0 + nh

n0 + ng − 1
+

∑
(q,l)∈Sg,h

log
B(η0 + nswap

q,l , ξ0 + n̄swap
q,l )

B(η0 + nq,l, ξ0 + n̄q,l)
,

∆noise
g→h = −1

2

∑
j∈JpK

X2
i∗,j(Ai∗,j − Aswap

i∗,j )−
∑

(q,l)∈Sg,h

(
nswap
q,l − nq,l

)
log σ

− 1

2

∑
(q,l)∈Sg,h

log
σ2 + τ 20n

swap
q,l

σ2 + τ 20nq,l

− τ 20
2σ2

∑
(q,l)∈Sg,h

{
(nswap

q,l )2Sswap
q,l

τ 20n
swap
q,l + σ2

−
n2
q,lSq,l

τ 20nq,l + σ2

}

− 1

2

∑
(q,l)∈Sg,h

 1

σ2 + τ 20n
swap
q,l

∑
(i,j)∈Iswap

q,l

(Xi,j − ρ0)
2 − 1

σ2 + τ 20nq,l

∑
(i,j)∈Iq,l

(Xi,j − ρ0)
2

 .

Case 2 If i∗ is the only node assigned to block g (that is ng = 1), then removing i∗ from

g, block g disappears from the model so that Qswap = Q− 1 and

∆SBM
g→h = log

n0 + nh

n0

+ log

(
Γ(Qn0 + p)Γ((Q− 1)n0)

Γ((Q− 1)n0 + p)Γ(Qn0)

)
+QB(η0, ξ0)

+
∑

l∈JQK\{g}

log
B(η0 + nswap

h,l , ξ0 + n̄swap
h,l )

B(η0 + nh,l, ξ0 + n̄h,l)
−
∑
l∈JQK

logB(η0 + ng,l, ξ0 + n̄g,l),

∆noise
g→h = −1

2

∑
j∈JpK

X2
i∗,j(Ai∗,j − Aswap

i∗,j )−

Q+
∑

l∈JQK\{g}

(
nswap
h,l − nh,l

)
−
∑
l∈JQK

ng,l

 log σ

− 1

2

∑
l∈JQK\{g}

log
σ2 + τ 20n

swap
h,l

σ2 + τ 20nh,l

+
1

2

∑
l∈JQK

log(σ2 + τ 20ng,l)

− τ 20
2σ2

∑
l∈JQK\{g}

{
(nswap

h,l )2Sswap
h,l

τ 20n
swap
h,l + σ2

−
n2
h,lSh,l

τ 20nh,l + σ2

}
+

τ 20
2σ2

∑
l∈JQK

n2
g,lSg,l

τ 20ng,l + σ2

− 1

2

∑
l∈JQK\{g}

 1

σ2 + τ 20n
swap
h,l

∑
(i,j)∈Iswap

h,l

(Xi,j − ρ0)
2 − 1

σ2 + τ 20nh,l

∑
(i,j)∈Ih,l

(Xi,j − ρ0)
2


+

1

2

∑
l∈JQK

1

σ2 + τ 20ng,l

∑
(i,j)∈Ig,l

(Xi,j − ρ0)
2.
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Proof of Proposition S1. The expressions of ∆SBM
g→h are given in Côme and Latouche (2015).

The formulae for ∆noise
g→h are obtained by direct computation and by taking into account

two particular facts. First, quantities related to pairs of blocks (q, l) are unchanged under

the swap if both indices q and l are different from g and h, that is q, l /∈ Sg,h. Second,

by definition, Aswap coincides with A for all entries not involving i∗, so that corresponding

terms disappear when taking the difference. To obtain the expression in the second case,

we use that nswap
g,l = nswap

l,g = 0 for all l ∈ JQK. Then the result is straightforward.

S1.3 Merging entire blocks

In our numerical experiments, we observed that the solution obtained by Algorithm 1 of

the main paper can be improved, by checking whether merging entire blocks increases the

ICL criterion. Denote by ∆g∪h the variation of ICLNSBM when blocks g and h are merged,

where without loss of generality we assume that all nodes in g are assigned to h. Then,

∆g∪h is defined as

∆g∪h = ICLNSBM(X,Amerge, Zmerge)− ICLNSBM(X,A,Z),

where Zmerge coincides with Z except for all i such that Zi = g, for which we set Zmerge
i = h,

and Amerge is obtained from A by modifying only the entries (i, j) involving nodes that

belong to blocks g or h. More precisely, with Il = {i : Zi = l} and V merge = {(i, j) : i ∈

Ig ∪ Ih or j ∈ Ig ∪ Ih} = {(i, j) : Zmerge
i = h or Zmerge

j = h},

Amerge
i,j = 1{ρmerge

i,j > 0.5}, ∀(i, j) ∈ V merge and Amerge
i,j = Ai,j, ∀(i, j) /∈ V merge,

with ρmerge
i,j = Pθ̂merge(Ai,j = 1 | X,Zmerge), where θ̂merge is the updated parameter estimate

obtained with Zmerge. The expression of the variation ∆g→h is given in Proposition S2.

The variation ∆g∪h is evaluated for each pair of blocks (g, h). Then the blocks g and

h, for which the variation is the largest, are definitely merged. Merging blocks is repeated

until no further merge increases the ICL criterion anymore. A similar merge algorithm has
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Algorithm 1: Merge ICL algorithm for NSBM inference

Input : Observation X, clustering Z into Q clusters, parameter estimate θ, edge

probabilities ρ

Output: Clustering Z, estimate θ, edge probabilities ρ

Compute A with entries Ai,j = 1{ρi,j > 0.5};

while not converged do

for every pair of blocks (g, h) with g < h do

Calculate ∆g∪h from X, Z, A and Amerge according to Proposition S2;

end

Merge the blocks g and h that achieve the largest increase ∆g∪h;

Update Z,Q, θ, ρ, A accordingly.

end

also been proposed in Côme and Latouche (2015) for the inference in the classical SBM.

The algorithm is summarized in Algorithm S1.

We introduce notations similar to the previous algorithm with superscript merge to denote

the quantities after merging blocks g and h. For the number of nodes per block, we have

nmerge
h = nh + ng, n

merge
g = 0, and nmerge

q = nq for all q /∈ {g, h}. For the set of edges

(i, j) between blocks q and l, Imerge
g,l = Imerge

l,g = ∅ for l ∈ JQK, Imerge
h,l = Imerge

l,h = {(i, j) :

Z i,jmerge
h,l Amerge

i,j } for l ̸= g and Imerge
q,l = Iq,l for q, l /∈ {g, h}. For the number of edges

between blocks q and l, we find nmerge
g,l = nmerge

l,g = 0 for l ∈ JQK, nmerge
h,l = nmerge

l,h = |Imerge
h,l |

for l ̸= g and nmerge
q,l = nq,l for all other indices (q, l). The number of possible edges between

blocks q and l satisfies: mmerge
g,l = mmerge

l,g = 0 for l ∈ JQK, mmerge
h,l = mmerge

l,h = mh,l +mg,l for

l ̸= {g, h} andmmerge
h,h = mh,h+mg,g+mg,h. This implies that n̄merge

g,l = n̄merge
l,g = 0 for l ∈ JQK,

n̄merge
h,l = n̄merge

l,h = mmerge
h,l − nmerge

h,l for l ̸= g and n̄merge
q,l = n̄q,l for all other indices (q, l).

Finally, we denote Smerge
h,l the empirical variance associated with {Xi,j : (i, j) ∈ Imerge

h,l }.
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Proposition S2. The variation of the ICL when blocks g and h are merged is equal to

∆g∪h = ∆SBM
g∪h +∆noise

g∪h ,

with

∆SBM
g∪h = log

Γ(n0 + nh + ng)Γ(Qn0 + p)Γ(n0)Γ((Q− 1)n0)

Γ(n0 + ng)Γ(n0 + nh)Γ((Q− 1)n0 + p)Γ(Qn0)

+
∑

l∈JQK\{g}

log
B(η0 + nmerge

h,l , ξ0 + n̄merge
h,l )

B(η0 + nh,l, ξ0 + n̄h,l)
−
∑
l∈JQK

logB(η0 + ng,l, ξ0 + n̄g,l) +QB(η0, ξ0),

and

∆noise
g∪h = −1

2

∑
(i,j)∈V merge

(Ai,j − Amerge
i,j )X2

i,j −

Q+
∑

l∈JQK\{g}

(
nmerge
h,l − nh,l

)
−
∑
l∈JQK

ng,l

 log σ

− 1

2

∑
l∈JQK\{g}

log
σ2 + τ 20n

merge
h,l

σ2 + τ 20nh,l

+
1

2

∑
l∈JQK

log(σ2 + τ 20ng,l)

− τ 20
2σ2

∑
l∈JQK\{g}

{
(nmerge

h,l )2Smerge
h,l

τ 20n
merge
h,l + σ2

−
n2
h,lSh,l

τ 20nh,l + σ2

}
+

τ 20
2σ2

∑
l∈JQK

n2
g,lSg,l

τ 20ng,l + σ2

− 1

2

∑
l∈JQK\{g}

 1

σ2 + τ 20n
merge
h,l

∑
(i,j)∈Imerge

h,l

(Xi,j − ρ0)
2 − 1

σ2 + τ 20nh,l

∑
(i,j)∈Ih,l

(Xi,j − ρ0)
2


+

1

2

∑
l∈JQK

1

σ2 + τ 20ng,l

∑
(i,j)∈Ig,l

(Xi,j − ρ0)
2.

S2 NSBM with unknown variances

The test statistics proposed in Liu (2013) are asymptotically normal, but their limit vari-

ances are unknown. To deal with this case, we propose a natural extension of our model

and an adaptation of the algorithm, both presented in this section.

S2.1 Model with unknown variances

The definition of the NSBM is the same as in Section 2.1 of the main paper except the last

layer, which describes the blurring mechanism. It is replaced with

(Xi,j)(i,j)∈A | Z,A ∼
⊗

(i,j)∈A

(1− Ai,j)N (0, 1) + Ai,jN (µZi,Zj
, σ2

Zi,Zj
),
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with additional unknown symmetric parameter matrix σ2 = (σ2
q,l)q,l ∈ RQ×Q

+ . In this case

the unknown model parameter is given by θ = (π,w, µ, σ2).

S2.2 ICL criterion

To define the ICL criterion in the model with unknown variances, one has to choose an

appropriate prior for θ = (π,w, µ, σ2). As previously, we use a factorized prior, that

is, πθ(π,w, µ, σ
2) = ππ(π)πw(w)πµ,σ2(µ, σ2), where ππ and πw are the same priors as

before. For the Gaussian parameters, we assume πµ,σ2(µ, σ2) = ⊗q≤lπµq,l,σ
2
q,l
(µq,l, σ

2
q,l). In

Bayesian statistics, when both the mean and the variance of a Gaussian distribution are

unknown, it is common to use a normal-inverse Gamma (NIG) distribution as prior, since

it is conjugate. That is, πµq,l,σ
2
q,l
(m, s) = πµq,l|σ2

q,l
(m | s)πσ2

q,l
(s), where πσ2

q,l
is the inverse

Gamma distribution IG(c0, d0) with hyperparameters c0, d0, that is, the prior density is

given by

πσ2
q,l
(z) =

dc00
Γ(c0)

z−c0−1e−
d0
z , z > 0,

and πµq,l|σ2
q,l
(· | s) is the Gaussian distribution N

(
a0,

s
b0

)
with hyperparameters a0, b0. We

use the standard values for the hyperparameters, which are a0 = 0 and b0 = c0 = d0 = 1.

With this choice of the prior, the ICL has an analytical form stated in the following

proposition.

Proposition S3. The integrated complete data log-likelihood is given by

ICLNSBM(X,A,Z) = log p(X,A,Z) = ICLSBM(A,Z) + ICLnoise(X,A,Z),

with ICLSBM(A,Z) given by (2) in the main paper and

ICLnoise(X,A,Z) = log p(X|A,Z)

=− N

2
log(2π)−NQ log

(
Γ(c0)

dc00
√
b0

)
− 1

2

∑
(i,j)∈A

(1− Ai,j)X
2
i,j

+
∑
q≤l

{
log Γ

(
c0 +

nq,l

2

)
− 1

2
log(b0 + nq,l)−

(
c0 +

nq,l

2

)
log(dq,l)

}
,
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with the notations of Proposition 1 in the main paper and

dq,l = d0 +
nq,lSq,l

2
+

nq,lb0
2(b0 + nq,l)

(Xq,l − a0)
2,

where Xq,l denotes the sample mean of the observations Xi,j with (i, j) ∈ Iq,l.

Proof of Proposition S3. Compared to the previous case, only the term ICLnoise changes.

We have

ICLnoise(X,A,Z) = log

∫
R
NQ
+

∫
RNQ

p(X|A,Z, µ, σ2)π(µ, σ2)dσ2dµ

=
∑

(i,j)∈A

(1− Ai,j) log(fN (0,1)(Xi,j)) +
∑
q≤l

log(Jq,l),

with, for all q ≤ l,

Jq,l =

∫
R+

∫
R

 ∏
(i,j)∈Iq,l

fN (µq,l,σ
2
q,l)

(Xi,j)

 fN (a0,σ2
q,l/b0)

(µq,l)fIG(c0,d0)(σ
2
q,l)dµq,ldσ

2
q,l.

By dropping subscripts q,l for readability, we obtain

Jq,l = (2π)−
n
2
− 1

2

√
b0d

c0
0

Γ(c0)

×
∫
R+

∫
R
(σ2)−(c0+

n
2
+ 3

2
)e−

d0
σ2 exp

(
− 1

2σ2

(∑
I

(Xi,j − µ)2 + b0(µ− a0)
2

))
dµdσ2

= (2π)−
n
2
− 1

2

√
b0d

c0
0

Γ(c0)

∫
R+

(σ2)−c0−n
2
− 3

2 e−
d
σ2

∫
R
exp

{
−(b0 + n) (µ− ā)2

2σ2

}
dµdσ2

= (2π)−
n
2
− 1

2

√
b0d

c0
0

Γ(c0)

∫
R+

(σ2)−c0−n
2
− 3

2 e−
d
σ2

√
2πσ2

b0 + n

∫
R
fN (ā, σ2

b0+n
)
(µ)dµdσ2

= (2π)−
n
2

√
b0

b0 + n

dc00
Γ(c0)

Γ(c0 +
n
2
)

dc0+
n
2

∫
R+

fIG(c0+
n
2
,d)(σ

2)dσ2

= (2π)−
n
2

√
b0

b0 + n

Γ(c0 +
n
2
)

Γ(c0)

dc00
dc0+

n
2

,

with ā = (nq,lXq,l + a0b0)/(b0 + nq,l). Moreover,∑
(i,j)∈A

(1− Ai,j) log(fN (0,1)(Xi,j)) = −1

2
log(2π)

∑
(i,j)∈A

(1− Ai,j)−
1

2

∑
(i,j)∈A

(1− Ai,j)X
2
i,j.

Putting all terms together and as NQ = Q(Q+1)
2

and N =
∑

q≤l nq,l +
∑

(i,j)∈A(1−Ai,j), the

result follows.

10



S2.3 Greedy ICL inference algorithm

To maximize the ICL criterion in the NSBM with unknown variances, Algorithm 1 from

the main paper can still be used, but the expression of the variation ∆g→h of the ICL when

node i∗ is swapped from block g to block h is slightly changes. The decomposition

∆g→h = ∆SBM
g→h +∆noise

g→h ,

still holds, where ∆SBM
g→h is given by Proposition S1. Also the changes in the count statistics

nq, nq,l etc. are the same. The new expression of ∆noise
g→h is given in the following proposition.

Proposition S4. According to two situations, the following expressions hold.

Case 1 If ng > 1, that is i∗ is not the only node assigned to block g, then

∆noise
g→h =− 1

2

∑
j∈JpK

(Ai∗,j − Aswap
i∗,j )X2

i∗,j

+
∑

(q,l)∈Sq,h

log
Γ
(
c0 +

nswap
q,l

2

)
Γ
(
c0 +

nq,l

2

) − 1

2
log

b0 + nswap
q,l

b0 + nq,l

− log
(dswapq,l )c0+nswap

q,l /2

(dq,l)c0+nq,l/2

 .

Case 2 If ng = 1, that is, after the swap block g is empty, so that block g disappears from

the model and the number of blocks diminishes by 1, that is Qswap = Q− 1, then

∆noise
g→h =Q log

Γ(c0)

dc00
√
b0

− 1

2

∑
j∈JpK

(Ai∗,j − Aswap
i∗,j )X2

i∗,j

+
∑

l∈JQK\{g}

log
Γ
(
c0 +

nswap
h,l

2

)
Γ
(
c0 +

nh,l

2

) − 1

2
log

b0 + nswap
h,l

b0 + nh,l

− log
(dswaph,l )c0+nswap

h,l /2

(dh,l)c0+nh,l/2


−
∑
l∈JQK

{
log Γ

(
c0 +

ng,l

2

)
− 1

2
log(b0 + ng,l)−

(
c0 +

ng,l

2

)
log(dg,l)

}
.

Finally, Algorithm 1 to merge blocks can be applied where only the expression of the

term ∆noise
g∪h is changed.
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Proposition S5. When all nodes from block g are moved to block h, then it holds

∆noise
g∪h =Q log

Γ(c0)

dc00
√
b0

− 1

2

∑
(i,j)∈V merge

(Ai,j − Amerge
i,j )X2

i,j

+
∑

l∈JQK\{g}

log
Γ
(
c0 +

nmerge
h,l

2

)
Γ
(
c0 +

nh,l

2

) − 1

2
log

b0 + nmerge
h,l

b0 + nh,l

− log
(dmerge

h,l )c0+nmerge
h,l /2

(dh,l)c0+nh,l/2


−
∑
l∈JQK

{
log Γ

(
c0 +

ng,l

2

)
− 1

2
log(b0 + ng,l)−

(
c0 +

ng,l

2

)
log(dg,l)

}
.

S3 Numerical results

To complete the numerical study of Section 5.1 in the main paper, this section provides

results for settings with p < n (Figure S1) and p = n (Figure S2). The ztransform-NSBM

procedure corresponds to the NSBM approach applied to test statistics computed from the

inverse of the sample covariance matrix (Anderson, 2003) and is only applicable when n is

larger than p. The conclusions are roughly the same as in the more difficult setting with

p > n. Namely, in general we observe a significant improvement by applying the NSBM

approach over the classical multiple testing approach for all test statistics.
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Figure S1: Boxplots of the FDP and TDP for all procedures described in Section 4.2 of

the main paper for the settings SBM, hub, band and scale-free for 200 simulated datasets,

where p = 50 and n = 100. Horizontal lines represent the nominal level α, with α = 0.1 in

the SBM and the hub setting and α = 0.05 in the band and scale-free cases. The crosses in

the boxplots correspond to the sample FDR (resp. TDR) defined as the mean of the FDP

(resp. TDP).
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Figure S2: Boxplots of the FDP and TDP for all procedures described in Section 4.2 of

the main paper for the settings SBM, hub, band and scale-free for 200 simulated datasets,

where p = 100 and n = 100. Horizontal lines represent the nominal level α, with α = 0.1

in the SBM and the hub setting and α = 0.05 in the band and scale-free cases. The crosses

in the boxplots correspond to the sample FDR (resp. TDR) defined as the mean of the

FDP (resp. TDP).
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