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Enhancing the Power of Gaussian Graphical
Model Inference by Modeling the Graph

Structure

Valentin Kilian, Tabea Rebafka and Fanny Villers∗

LPSM, Sorbonne Université, Paris, France

Abstract

For the problem of inferring a Gaussian graphical model (GGM), this work ex-
plores the application of a recent approach from the multiple testing literature for
graph inference. The main idea of the method by Rebafka et al. (2022) is to model the
data by a latent variable model, the so-called noisy stochastic block model (NSBM),
and then use the associated ℓ-values to infer the graph. The inferred graph controls
the false discovery rate, that means that the proportion of falsely declared edges does
not exceed a user-defined nominal level. Here it is shown that any test statistic from
the GGM literature can be used as input for the NSBM approach to perform GGM
inference. To make the approach feasible in practice, a new, computationally effi-
cient inference algorithm for the NSBM is developed relying on a greedy approach
to maximize the integrated complete-data likelihood. Then an extensive numerical
study illustrates that the NSBM approach outperforms the state of the art for any of
the here considered GGM-test statistics. In particular in sparse settings and on real
datasets a significant gain in power is observed.
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1 Introduction

Graphical modeling offers a convenient way to describe complex conditional dependence

structures between variables using a graph. This is of great interest in a large variety of

domains of application. One of the main question is to attempt to discover the links between

variables from a set of repeating observations of these variables. Gaussian Graphical Models

(GGM) provide a suitable framework in this context. The goal of our work is to propose

an approach for GGM inference that is both powerful to detect significant links and allows

a control of the error rate. More precisely, we aim at providing a control of the false

discovery rate (FDR), that is we want to guarantee that the proportion of falsely declared

dependencies between variables does not exceed a user-defined nominal level. The approach

that we propose here is based on a method for graph inference developed in a general

statistical framework by Rebafka et al. (2022). We make this approach usable in practice

for GGM inference by developing a new computationally efficient estimation algorithm

for the so-called noisy stochastic block model and show that the approach detects more

dependencies among variables than state-of-the-art methods.

1.1 Inference in Gaussian graphical models

We consider the setting, where observations are independent realizations of a multivariate

Gaussian distribution. Its precision matrix, that is the inverse of the covariance matrix,

provides information on the conditional correlations of the variables. Notably, two variables

are conditionally independent given all other variables if and only if the associated entry of

the precision matrix is zero. Now, GGM inference amounts to recover the non zero entries

of the precision matrix from the realizations of the Gaussian distribution. The problem can

also be viewed as a graph inference problem, where the edges of a binary graph indicate the

non zero entries of the precision matrix and this graph is to be inferred from the Gaussian

observations.
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In the literature there are mainly three different approaches for GGM inference. First,

some methods aim at estimating the precision matrix, as done in graphical Lasso (Banerjee

et al., 2008; Friedman et al., 2007) with a penalized maximum likelihood approach, or in

(Cai et al., 2011; Li et al., 2022) with a constrained ℓ1 minimization method. Second, there

are methods based on neighborhood estimation, as the Lasso procedure by Meinshausen

and Bühlmann (2006), that performs a conditional regression for every variable against all

other variables. Third, GGM inference can be done using multiple-testing procedures based

on appropriate estimators of the precision matrix. When the sample size is large and the

sample covariance matrix invertible, there are natural test statistics for the entries of the

precision matrix (Drton and Perlman, 2007). However, in the high-dimensional setting, the

sample covariance matrix is typically nonsigular, and there have been several propositions

to circumvent this issue. The use of bagging or shrinkage provides more reliable estimates

of the covariance matrix or its inverse (Schäfer and Strimmer, 2005; Schäfer and Strimmer,

2005). Alternatively, one can test the first-order partial correlation, that is, the conditional

correlation of two variables given only another third one (Wille and Bühlmann, 2006). More

recently, new estimators of the precision matrix were obtained by improving the original

Lasso-regularized estimators (Liu, 2013; Ren et al., 2015; Jankova and van de Geer, 2018).

As these estimates are asymptotically normal when the precision matrix is sparse, they can

serve to infer the graph while controlling the FDR (Liu, 2013).

1.2 Graph inference by a multiple testing procedure

Rebafka et al. (2022) propose a multiple testing procedure for graph inference in the general

statistical framework, where a real-valued graph is observed resulting from a perturbation

of some underlying binary latent graph, which is to be recovered. We will show that this

approach can be used for GGM inference, by using test statistics from the GGM literature

as input to this method.
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The procedure by Rebafka et al. (2022) consists in modeling the data by a suitable latent

variable model and then using the associated structured ℓ-values, that is, the posterior

probabilities of the presence of an edge, to infer a graph such that the FDR is controlled.

This method is more powerful than other existing multiple testing procedures, since the

ℓ-value of an entry (i, j) of the graph depends not only on the observed value for (i, j), but

also on the learned statistical graph model.

Data are modeled by the so-called noisy stochastic block model (NSBM), where the

underlying binary graph is a classical stochastic block model, to which the following blurring

mechanism is applied: absent edges are replaced with pure random noise, and in place of

present edges, some effect or signal is observed. For the testing procedure the NSBM

has to be fitted to the data, but inference is involved as the model is quite complex.

In Rebafka et al. (2022) a variational EM-algorithm is proposed, but the implemented

algorithm is rather slow and not scalable to large graphs. Therefore, it is not convenient

for GGM inference, where graphs can be huge. In this work, a new inference algorithm is

developed according to the approach proposed by Côme and Latouche (2015). While the

variational EM-algorithm provides an approximation of the maximum likelihood estimate,

the aforementioned method is a Bayesian approach and relies on a new objective function,

the so-called exact integrated complete-data likelihood (ICL). Its maximization is a discrete

optimization problem, that can be solved by a greedy algorithm. An important advantage

of the algorithm is that it automatically selects the best model, that is, the best number

of blocks in the NSBM.

1.3 Contributions and organization of the paper

In Section 2, the definition of the NSBM and the associated multiple testing procedure

for graph inference are recalled. In Section 3 a fast greedy algorithm is developed to

maximize the ICL criterion in the NSBM. Then, Section 4 shows how to use the NSBM for
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GGM inference with control of the FDR. Namely, any known test statistic from the GGM

literature can be used as an input for the NSBM approach. Finally, Section 5 provides a

numerical study to assess the performance of our NSBM approach for GGM inference and

a comparison to the state of the art on both simulated data and a real dataset.

2 Model and graph inference procedure

In this section we present notations, the model and the graph inference procedure.

2.1 Model definition

In the noisy stochastic block model (NSBM) the observation matrix X = (Xi,j)i,j ∈ Rp×p

is a perturbed version of some underlying binary latent graph represented by its adjacency

matrix A = (Ai,j)i,j ∈ {0, 1}p×p, which is modeled by a stochastic block model (SBM). Here

only undirected graphs without loops are considered. Denote A = {(i, j) : 1 ≤ i < j ≤ p}

the set of all possible undirected edges among the p nodes of the graph.

The nodes are partitioned into Q blocks by a vector Z = (Z1, . . . , Zp) which is composed

of independent and identically distributed discrete latent variables Zi with probabilities

πq = P(Z1 = q) for q ∈ JQK for some parameter π = (π1, . . . , πQ) ∈ [0, 1]Q such that∑
q∈JQK πq = 1. The entries Ai,j of the latent graph A are independent conditionally on Z

with Bernoulli distribution, that is,

(Ai,j)(i,j)∈A | Z ∼
⊗

(i,j)∈A

B(wZi,Zj
),

for some symmetric parameter matrix w = (wq,l)q,l ∈ [0, 1]Q×Q. The blurring mechanism is

the following. If there is no edge between nodes i and j, i.e. Ai,j = 0, than Xi,j is standard

Gaussian noise, otherwise (when Ai,j = 1) some signal is observed and the signal strength
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is modulated by the latent variables Zi and Zj. That is,

(Xi,j)(i,j)∈A | Z,A ∼
⊗

(i,j)∈A

(1− Ai,j)N (0, 1) + Ai,jN (µZi,Zj
, σ2),

for an unknown symmetric parameter matrix µ = (µq,l)q,l ∈ RQ×Q and known variance

σ2 > 0. The unknown model parameter in the NSBM is denoted by θ = (π,w, µ) and

the distribution and density of (X,A,Z) are denoted by Pθ and pθ, respectively. In the

Supplementary Material an extension of the NSBM is presented, where the variance of the

Gaussian under the alternative is unknown and assumed to depend on the latent variables.

2.2 Graph inference via multiple testing

Graph inference in the NSBM can be viewed as the multiple testing problem, where for all

pairs (i, j) ∈ A we consider the hypotheses of the absence or presence of an edge between

nodes i and j in the latent graph A. That is, we test H0,i,j : Ai,j = 0 against H1,i,j : Ai,j ̸= 0.

Rebafka et al. (2022) propose a powerful testing procedure based on the posterior prob-

abilities that the null hypothesis is true, also called ℓ-values. They are given by

ℓi,j(X,Z, θ) = Pθ(Ai,j = 0 | X,Z) =
(1− wZi,Zj

)fN (0,1)(Xi,j)

(1− wZi,Zj
)fN (0,1)(Xi,j) + wZi,Zj

fN (µZi,Zj
,σ2)(Xi,j)

,

where fN (m,s2) denotes the Gaussian density with mean m and variance s2. The procedure

consists in rejecting H0,i,j if the ℓ-value is sufficiently small, that is ℓi,j(X,Z; θ) ≤ t for

some threshold t, which can be chosen such that the FDR is controlled. For more details

we refer the reader to Rebafka et al. (2022).

The point of the ℓ-value ℓi,j for the node pair (i, j) is that its value does not only

depend on the observation Xi,j, but on the entire NSBM through the model parameter θ

and the node clustering Z. This results in an important increase of the power compared to

the classical Benjamini-Hochberg procedure. Rebafka et al. (2022) also provide results on

the optimality of this ℓ-values procedure in terms of FDR and the power. The approach
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is typically used with estimated model parameters θ̂ and estimated latent variables Ẑ.

Therefore, an efficient inference algorithm for the NSBM is required.

3 New inference algorithm in the NSBM

While Rebafka et al. (2022) propose a variational EM-algorithm limited to networks of

very moderate size, in this section a much more efficient and more convenient inference

algorithm for the NSBM is developed. The approach relies on an integrated likelihood

criterion and comes with a fast greedy algorithm that computes the best clustering Z,

estimates the model parameter θ and automatically performs model selection, that is the

choice of the best number of blocks in the SBM.

3.1 ICL criterion in the NSBM

The integrated complete-data log-likelihood (ICL) is defined in a Bayesian framework,

where πθ denotes a prior on the parameter θ. In the NSBM the ICL is given by

ICLNSBM(X,A,Z) = log p(X,A,Z) = log

(∫
Θ

pθ(X,A,Z)πθ(θ)dθ

)
.

Notably, the criterion only depends on the observations and the latent variables. The value

of Z that maximize the ICL can be used to derive an estimator of θ, which in turn will be

used to compute the ℓ-values for the final test procedure.

To compute the maximum it is convenient to have an analytic expression of ICLNSBM.

This is obtained by considering a factorized prior of the form πθ(π,w, µ) = ππ(π)πw(w)πµ(µ)

and by using conjugate priors for the different parameters. Here we choose the Dirichlet dis-

tribution for the cluster proportions π, Beta distributions for the edge probabilities w and

Gaussian distributions for the means µ. More precisely, for convenient hyperparameters

7



n0, η0, ζ0, ρ0, τ0, we consider

ππ(π) = Dir(n0, ..., n0), πw(w) =
⊗
q≤l

πwq,l
(wq,l) =

⊗
q≤l

Beta(η0, ζ0), (1)

πµ(µ) =
⊗
q≤l

πµq,l
(µq,l) =

⊗
q≤l

N (ρ0, τ
2
0 ).

To state the formulae of ICLNSBM, we introduce some further notations and useful

count statistics. Let N = p(p− 1)/2 be the maximal number of possible edges, MA =∑
(i,j)∈AAi,j the total number of edges and NQ = Q(Q + 1)/2 the number of pairs of

blocks. Let Zi,q = 1{Zi = q} indicate whether node i is assigned to block q or not, and

Z i,j
q,l = 1{Zi,qZj,l + Zi,lZj,q > 0} whether nodes i and j belong to blocks q and l. Then,

nq =
∑

i∈JpK Zi,q is the number of nodes associated with block q, and nq,l =
∑

(i,j)∈AZ
i,j
q,lAi,j

(resp. n̄q,l =
∑

(i,j)∈AZ
i,j
q,l (1−Ai,j)) is the number of present (resp. absent) edges between

nodes in q and l. Finally, Iq,l = {(i, j) ∈ A, Ai,j = 1,Z i,j
q,l = 1} is the set of present edges

between nodes belonging to blocks q and l (such that |Iq,l| = nq,l), and Sq,l denotes the

empirical variance associated with {Xi,j, (i, j) ∈ Iq,l}.

Proposition 1 In the NSBM with the priors defined in (1), the ICL is given by

ICLNSBM(X,A,Z) = ICLSBM(A,Z) + ICLnoise(X,A,Z),

where ICLSBM is the ICL in the SBM given by

ICLSBM(A,Z) = log p(Z) + log p(A|Z)

= log
C(n0 + n1, . . . , n0 + nQ)

C(n0, ..., n0)
+
∑
q≤l

log
B(η0 + nq,l, ξ0 + n̄q,l)

B(η0, ξ0)
, (2)

where C(x1, . . . , xQ) =
∏

q Γ(xq)

Γ(
∑

q xq)
, Γ(.) is the Gamma function and B(a, b) = Γ(a)Γ(b)

Γ(a+b)
the Beta

function. Furthermore, ICLnoise(X,A,Z) = log p(X|A,Z) is the part of the ICL criterion
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associated with the noise layer in the NSBM given by

ICLnoise(X,A,Z) = −N

2
log(2π)− 1

2

∑
(i,j)∈A

(1− Ai,j)X
2
i,j −

(
MA −NQ

)
log σ (3)

− 1

2

∑
q≤l

log
(
σ2 + τ 20nq,l

)
+

τ 20n
2
q,l

τ 20σ
2nq,l + σ4

Sq,l +
1

σ2 + τ 20nq,l

∑
(i,j)∈Iq,l

(Xi,j − ρ0)
2

 .

3.2 Greedy NSBM inference algorithm

The maximization of the ICL is a discrete optimization problem and we propose a greedy

algorithm for this task, which is in line with the algorithm developed by Côme and Latouche

(2015). The algorithm successively picks a node and searches its best block assignment in

terms of the ICL criterion while keeping all other node assignments fixed. This amounts

to evaluate the variation of the ICL denoted by ∆g→h due to swapping the selected node

i∗ with current block membership g to block h, where ∆g→h is defined by

∆g→h = ICLNSBM(X,Zswap, Aswap)− ICLNSBM(X,Z,A),

where Z = (Z1, . . . , Zp) denotes the current partition of the nodes with Zi∗ = g and Zswap

the block assignments after the swap, that is, Zswap
i∗ = h and Zswap

i = Zi for all i ̸= i∗.

Likewise, A denotes the current adjacency matrix and Aswap the one after the swap obtained

by thresholding the posterior probabilities of edges involving node i∗, that is,

Aswap
i∗,j = Aswap

j,i∗ = 1{ρswapi∗,j > 0.5}, ∀j ∈ JpK, Aswap
i,j = Ai,j, ∀i ̸= i∗, j ̸= i∗. (4)

where ρswapi,j = Pθ̂(Ai,j = 1 | X,Zswap) and current parameter estimate θ̂ composed of

ŵq,l =

∑
i<j Z

i,j
q,lρi,j∑

i<j Z
i,j
q,l

, µ̂q,l =

∑
i<j Z

i,j
q,lρi,jXi,j∑

i<j Z
i,j
q,lρi,j

, σ̂2
q,l =

∑
i<j Z

i,j
q,lρi,j(Xi,j − µ̂q,l)

2∑
i<j Z

i,j
q,lρi,j

, (5)

where the posterior probabilities ρi,j = Pθ̂(Ai,j = 1 | X,Z) are used as weights to define

estimates that have the form of weighted means.

In the greedy algorithm, as the variation ∆g→h is evaluated many times, its computation

represents a huge part of the computational burden of the algorithm. Thus, it is important
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that the numerical evaluation of ∆g→h is fast. Details on the efficient computation of ∆g→h

are provided in the Supplementary Material.

It occurs that the algorithm successively moves all nodes from one block to other blocks

resulting in an empty block. Thus, starting from a large number Qinit of blocks, the

approach automatically performs model selection by emptying blocks and providing a final

clustering with an appropriate number of clusters. The ICL criterion can be considered as

a penalized criterion encouraging the use of a parsimonious model.

The greedy ICL algorithm is summarized in Algorithm 1. The estimates of the model

parameter θ and the clustering Z are then used to compute the ℓ-values (obtained in fact

directly from the posterior edges probabilities ρ) to infer a graph such that the FDR is

controlled. The code will soon be available in the R package noisysbmGGM.

A numerical comparison of the method with the variational EM algorithm implemented

in the package noisySBM showed that both methods provide essentially the same estimates

when applied to the same dataset, while the greedy ICL algorithm largely outperforms EM

in terms of computing time. Furthermore, graphs of larger size can be treated with this

new algorithm, which makes it suitable for GGM inference.

4 GGM inference using the NSBM approach

This section describes how to use the multiple testing approach using the NSBM to infer a

GGM. In particular, different test statistics from the GGM literature are presented, which

are convenient for building the observation matrix X provided to the NSBM algorithm.

4.1 GGM test statistics for the NSBM

Let Y = (Y1, . . . , Yp)
t be a centered random vector with multivariate Gaussian distribution

with nonsingular covariance matrix Σ. The inverse of the latter, denoted by Ω = Σ−1 =
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Algorithm 1: Greedy ICL algorithm for the NSBM

Input : Observation X, initial number of latent blocks Qinit

Output: Clustering Z into Q clusters, estimator θ, edge probabilities ρ

Initialize Z, θ, ρ = (ρij)i,j∈A and A; Set Q = Qinit;

repeat

Select a node i∗ ∈ JpK ; Set g ← Zi∗ ;

for h ̸= g do

Calculate ∆g→h;

end

Find h such that ∆g→h is maximum;

if ∆g→h > 0 then

Update clustering Z by setting Zi∗ = h;

if block g is empty then

Shrink the number of blocks: Q = Q− 1;

end

Update θ, ρ = (ρij)i,j∈A and A based on the updated clustering Z;

end

until convergence;

(ωi,j)i,j, is called the precision matrix and represents the partial correlations. More precisely,

Corr(Yi, Yj|Y−(i,j)) = −
ωi,j√
ωi,iωj,j

, where Y−(i,j) = {Yk, k /∈ {i, j}}.

The interpretation is that ωi,j = 0 if and only if Yi and Yj are independent given all other

variables Y−(i,j). In other words, if ωi,j ̸= 0, then there is a direct dependency or link

between Yi and Yj (Lauritzen, 1996). Now, the aim of GGM inference is to detect the pairs

of random variables with nonzero partial correlation on the basis of a sample of Y. This

amounts to infer the binary graph with adjacency matrix A with Ai,j = 1{ωi,j ̸= 0}.

The literature provides various test statistics computed on a sample of size n of Y for
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testing whether partial correlations are zero or not. They can be used to directly build a

multiple testing procedure, but in this work we use them to build the observation matrix

X fed to the greedy NSBM algorithm. The following test statistics are considered:

• When the sample size n exceeds the number of variables p, the inverse of the sam-

ple covariance matrix is an estimate of the precision matrix. Applying Fisher’s z-

transformations to the associated partial correlations provides asymptotically normal

test statistics (Anderson, 2003).

• Ren et al. (2015) use the residuals of bivariate regressions that model the outcome of

two variables Yi and Yj as a function of all other variables to estimate the precision

matrix. We refer to this test statistic as Ren. Asymptotic normality is obtained in the

sparse setting, where the maximum degree s of the graph satisfies s = o(
√
n/ log p).

• Jankova and van de Geer (2018) propose test statistics inspired by the debiasing

approach in high-dimensional linear regression. Two variants are available, the first

one uses graphical Lasso, here referred to as JankovaGL, the second is a nodewise

Lasso approach, denoted by JankovaNW. In the same sparse regime as above, these

test statistics are asymptotically normal.

• Liu (2013) uses a bias correction of the sample covariance of residuals when consider-

ing the conditional regression for the variables Yi and Yj. Two variants are available

depending on the method for the estimation of the regression parameters: Lasso

regression and a scaled Lasso regression, denoted by LiuSL resp. LiuL. Contrary

to the other methods, the asymptotic variance of these test statistics is unknown.

Thus, we will apply an extension of Algorithm 1 that estimates the limit variance

(see Supplementary Material).
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4.2 Multiple testing procedures for GGM inference

Liu (2013) proposes a classical multiple testing approach for GGM inference based on the

test statistics he proposed and an adjustment of the significance level of the tests. The

approach achieves the asymptotic control of the FDR at the desired level α in the sparse

setting. It is straightforward to use Liu’s procedure with all other test statistics described

above and this is done in our numerical study in the next section, where Liu’s multiple

testing approach serves as a baseline to which our NSBM approach will be compared. The

main difference of Liu’s approach and ours is that Liu only applies a correction of the

significance level, but does not model neither the joint distribution of the test statistics nor

the graph structure.

In detail, in the numerical study we consider the challenging setting where p > n. We de-

note by Ren-classical, JankovaNW-classical, JankovaGL-classical, LiuSL-classical,

LiuL-classical the classical multiple testing procedure by Liu (2013) applied to the dif-

ferent test statistics. Computations are performed with the R package SILGGM (Zhang

et al., 2018). Then, we apply the analogous procedures with our NSBM approach, that

is Algorithm 1 applied to the same test statistics, followed by the multiple testing proce-

dure based on ℓ-values. We denote them by Ren-NSBM, JankovaNW-NSBM, JankovaGL-NSBM,

LiuSL-NSBM, LiuL-NSBM. For LiuSL-NSBM and LiuL-NSBM the version of the NSBM with

unknown variances under the alternative (see Section 2 of the Supplementary Material) is

used. This is done with our R package noisysbmGGM. Furthermore, the following popular

procedures that do not control any error rate are applied: the procedure by Meinshausen

and Bühlmann (2006) (MB) and graphical Lasso (glasso). Finally, the CLIME procedure

(clime) (Cai et al., 2011; Li et al., 2022) is applied to complete the picture.
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(a) SBM (b) Hub (c) Band (d) Scale-free

Figure 1: Illustration of the graph structures in the four settings.

5 Numerical study

In this section various numerical experiments are conducted to assess the performance of

our NSBM approach for GGM inference, to compare to the state of the art, and to evaluate

robustness to model misspecification.

5.1 Comparison of test statistics on synthetic data

Data are generated from a Gaussian distribution Np(0,Σ) with different choices for the

precision matrix Ω = (ωi,j)i,j = Σ−1. More precisely, we consider different underlying

graphs A = (1{ωi,j})i,j illustrated in Figure 1. In the SBM setting (a), the graph A is

the realization of a SBM with five communities of equal size and varying probabilities of

connection among the blocks. To evaluate the robustness of our procedure to model mis-

specification, we also consider three settings where A is not a SBM. In the hub setting (b),

the set of nodes is partitioned into groups of size 10. In each group one node is a hub and

as such connected to all other nodes in the group. In the band setting (c), every node i

is connected to all nodes j at distance 3, that is Ai,j = 1{1 ≤ |i − j| ≤ 3}. This yields

a matrix A with bands of ones around the diagonal. Finally, in the scale-free setting (d),

the graph is generated by preferential attachement (Barabasi and Albert, 1999). That is,

the graph is built iteratively starting from a small initial graph, here consisting of only two

connected nodes. Then new nodes are added one by one and each of them is connected to
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Figure 2: Boxplots of the FDP and TDP for all procedures described in Section 4.2 for

the settings SBM, hub, band and scale-free for 200 simulated datasets, where p = 200 and

n = 100. Horizontal lines represent the nominal level α, with α = 0.1 in the SBM and

the hub setting and α = 0.05 in the band and scale-free cases. The crosses in the boxplots

correspond to the sample FDR (resp. TDR) defined as the mean of the FDP (resp. TDP).
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a single node in the graph with probabilities proportional to the current node degrees.

Now, to generate a precision matrix Ω and a covariance matrix Σ associated with a

given adjacency matrix A, we proceed as in the R package huge. That is, first a positive

definite matrix Ω is obtained by the transformation

Ω = γA+ diag

(
| min
λ∈Sp(γA)

(λ)|+ β

)
,

where γ = 0.3, β = 0.2 and Sp(γA) denotes the spectrum of γA. In other words, the ones

in A are replaced by γ and the diagonal is such that Ω is invertible. Hence, Σ = Ω−1 is

well defined and realizations of the desired Gaussian distribution can be simulated.

In the simulations there are p = 200 variables and the sample size is n = 100. In every

setting all procedures described in Section 4.2 are evaluated on 200 datasets with nominal

level α = 0.1 in the SBM and the hub setting and α = 0.05 in the band and scale-free

cases. The performance of a procedure is evaluated by comparing the inferred graph Â to

the true adjacency matrix A. In particular, the false discovery proportion (FDP) is the

proportion of errors among the edges declared as significant, whereas the proportion of

edges that are correctly declared as significant among the true edges in A is referred to as

the true discovery proportion (TDP). They are defined as

FDP =
|{(i, j) : Âi,j = 1, Ai,j = 0}|
|{(i, j) : Âi,j = 1}| ∨ 1

, TDP =
|{(i, j) : Âi,j = 1, Ai,j = 1}|
|{(i, j) : Ai,j = 1}|

.

For procedures that are supposed to control the FDR, the FDP should in average be lower

or equal than α, while the TDP representing the power of the procedure is desired to be

as large as possible.

Figure 2 displays the results. First, we observe that concerning the FDR, for all Ren-

and Jankova-procedures the FDR is always controlled at the nominal level α. The FDR

of all Liu-procedures slightly exceeds α, but the Liu-NSBM procedures mostly do better

than their classical inference counterparts. The last three procedures in the figure are not

conceived for controlling the FDR, so the comparison to the nominal level does not really

make sense since the output of these procedures is the same for any α.

16



Second, in terms of power, in every setting the largest TDRs are achieved by NSBM

based procedures, in particular our approach with both of Liu’s test statistics appears to be

the most powerful procedures. Notably, also the power of the methods that do not require

the control of the FDR, namely the one by Meinshausen & Bühlmann, graphical Lasso

and CLIME, is largely below those of most other procedures. Moreover, in all settings the

NSBM approach is more powerful than the classical inference procedure using the same

test statistics. That is, whatever test statistic is used, there is a gain in power when using

our NSBM approach. This is in line with what has been observed for other multiple testing

procedures, that is that using a latent structure and learning the model is beneficial (Sun

and Cai, 2009; Cai and Sun, 2009; Liu et al., 2016; Rebafka et al., 2022). Furthermore,

these results confirm the observation done in Rebafka et al. (2022) that the SBM is an

appropriate choice for graph inference, as the SBM is a highly flexible random graph model

accommodating a wide spectrum of graph topologies. Here we see that the SBM is also

appropriate in the framework of GGM inference. In other words, our approach is robust

to model misspecification as good results are also obtained in the hub, band and scale-free

settings in our study.

5.2 Sparse setting

As in practice, most graphs are rather sparse, we now investigate the behaviour of our

procedure in the sparse setting described in terms of the maximum degree in the graph.

Indeed, most of the test statistics that we consider are known to be asymptotically normal

in the sparse setting when s = o(
√
n/ log(p)), where s is the maximum node degree in

the graph. For this, we simulate data with given maximum degree. More precisely, given

a maximum degree s, we first generate a sequence of degrees according to a power law

with exponent 2 and then try to simulate a graph A with this degree sequence. Then, we

proceed as previously to generate Gaussian vectors.
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Figure 3: TDR (Average TDP) evaluated for different procedures over 200 simulations

versus the maximum degree s of the graphs (p = 100, n = 100, α = 0.1). In blue and

filled red are respectively represented the classical inference procedures and our NSBM

procedures with the different test statistics.

We carry out simulations with graphs composed of p = 100 nodes and n = 100 obser-

vations, for a maximum degree s in the range from 3 to 20. The average FDR and average

TDR are estimated over 200 simulations and results are presented in Figure 3. As expected,

the larger the maximum degree s, the lower the power. This is true for all methods, but

the decrease in power of the NSBM procedures is less important than for the classical ones.

Thus, there is a clear benefit of using our procedure for GGM inference in sparse settings.
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5.3 Validation on a human T-cell dataset

Now, we investigate the performance of our procedure on a real dataset. We consider

the multivariate flow cytometry data produced by Sachs et al. (2005) concerning a human

T-cell signalling pathway, whose deregulation may lead to carcenogenesis. The data are

available from https://www.science.org/doi/10.1126/science.1105809 and were ex-

tensively studied in the literature (see e.g. Sachs et al., 2005; Henao and Winther, 2011;

Desgranges, 2015; Eaton and Murphy, 2007; Ramsey and Andrews, 2018). The amount of

11 specific proteins in single cells was simultaneously measured under different perturbation

conditions of the cell. We focus on a general perturbation (anti-CD3/CD28 + ICAM-2)

that overall stimulates the cellular signalling network. In this condition measurements for

902 cells are available.

As the dataset is rather huge, it can be used to first compute a benchmark on the full

dataset and then assess the performance of the inference procedures on small subsets of the

data. More precisely, on the full dataset various methods, namely the classical procedure

with Liu’s test statistics LiuL and nominal level α = 0.05, yield the graph displayed in

Figure 4. The inferred graph contains ten edges, nine of which are interactions well known

from the literature. The additional edge p38-JNK was also inferred by Sachs et al. (2005)

but with low confidence, and also was found by Henao and Winther (2011); Desgranges

(2015); Eaton and Murphy (2007).

Now to evaluate the ability to recover these edges from a smaller dataset, we sample

subsets of n = 20 cells and apply both the classical and the NSBM procedures with the

test statistic LiuL with α = 0.05. Table 1 reports the number of times the edges of the

benchmark network from Figure 4 are detected with each method on 200 sampled datasets.

Obviously, the NSBM procedure detects all edges more often than the classical procedure.

That is, there is a real gain in power also on real datasets. This confirms that using our

procedure helps to improve GGM inference.
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Figure 4: Benchmark obtained on the full dataset.

6 Conclusion

In this work a new approach for GGM inference is proposed that relies on the modeling of

the graph structure by a latent variable model. It allows to control the false discovery rate

and outperforms state-of-the-art methods in terms of power, that is, more “true” edges are

detected than with classical methods. The performance is assessed in various numerical

experiments and the procedure is particularly suited for real datasets, since it is is robust

to model misspecification and works on sparse networks as well as on small datasets.

It is noteworthy that this is a generic approach that can be used in combination with

any test statistic for GGM inference. It can be viewed as a layer on top of the traditional

problem of constructing a test statistic. So the user may consider his or her favorite test

statistic and provide them to our NSBM method for GGM inference. We have shown that

this consistently yields more powerful results than with the classical inference approach.

Moreover, the new greedy ICL algorithm for fitting the NSBM to a dataset is much more
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edge LiuL-classical LiuL-NSBM

Raf - Mek1/2 200 200

PLCg - PIP2 28 44

PLCg - PIP3 121 143

PIP2 - PIP3 167 172

Erk1/2 - Akt 199 199

Erk1/2 -PKA 42 54

Akt - PKA 92 121

PKC - p38 146 158

PKC - JNK 107 121

p38 - JNK 102 115

Table 1: The number of times the 10 edges of Figure 4 are detected over 200 subsampled

datasets with sample size n = 20 for both the classical and the NSBM procedure with Liu’s

test statistics LiuL with α = 0.05.

attractive in terms of computing time and scalability to large graphs than the variational

EM algorithm. It is noteworthy that the ICL algorithm can be used beyond the context of

NSBM-based GGM inference.

References

Anderson, T. (2003). An Introduction to Multivariate Statistical Analysis. Wiley Series in

Probability and Statistics. Wiley.

Banerjee, O., L. El Ghaoui, and A. d’Aspremont (2008). Model selection through sparse

maximum likelihood estimation for multivariate Gaussian or binary data. Journal Ma-

chine Learning Research 9, 485–516.

21



Barabasi, A. and R. Albert (1999). Emergence of scaling in random networks. Sci-

ence 286 (5439), 509–512.

Cai, T., W. Liu, and X. Luo (2011). A constrained ℓ1 minimization approach to sparse

precision matrix estimation. Journal of the American Statistical Association 106 (494),

594–607.

Cai, T. T. and W. Sun (2009). Simultaneous testing of grouped hypotheses: Finding

needles in multiple haystacks. Journal of the American Statistical Association 104 (488),

1467–1481.
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Schäfer, J. and K. Strimmer (2005). An empirical Bayes approach to inferring large-scale

gene association networks. Bioinformatics 21 (6), 754–764.
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Wille, A. and P. Bühlmann (2006). Low-order conditional independence graphs for inferring

genetic networks. Statistical Applications in Genetics and Molecular Biology 5, 1–34.

Zhang, R., Z. Ren, and W. Chen (2018). SILGGM: An extensive R package for efficient

statistical inference in large-scale gene networks. PLOS Computational Biology 14 (8),

1–14.

24


