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Spectral Hole Burning (SHB)

Pumping-out all the ions at one frequency produces a narrow 
transmissive 'spectral hole' in the absorption spectrum.

   The 7F0->
5D0 transition 

in Eu3+ has a narrow 
homogeneous absorption 
line of order ~100 Hz.
   Within the crystal, 
inhomogeneous 
constraints lead to a 
broadening of the 
absorption spectrum.
   A narrow linewidth 
pump beam at 580 nm 
excites the ions, which 
drop into a hyper�ne 
state.

Experimental Setup

A slave laser is phase-locked to a cavity-
referenced pre-stabilized master laser at 
1160 nm.  The slave is frequency doubled 
and tuned to the absorption band of the 
Eu3+:Y2SiO5 crystal.  The desired spectrum 
of beat notes is generated on the slave by an 
AOM driven by a GNU Radio controlled 
Ettus X310 FPGA-based SDR.             
   At high power (1 uW) the slave laser acts 
as the pump, burning the spectral holes.  
Switching to low power (10 nW), it probes 
the holes, experiencing a phase retardation 
proportional to the frequency di�erence 
between the laser modes and spectral holes.
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  This phase di�erence,                                     , is measured in the FPGA, comparing the transmitted beat note on PDXtal 
with a reference beat on PDRef. The FPGA generates the correction signal tuning the PLL o�set.

Multi-mode
Heterodyne Detection[3]

[3] X. Lin, Opt. Express,  31(23), 38475-38493 (2023).

We implemented a novel multi-mode detection 
scheme to reduce sensing noise. In this scheme we 
probe multiple narrow spectral holes 
simultaneously using corresponding laser probe 
modes, pi:            
Below: We average over the modes, reducing 
uncorrelated noise.

To reduce correlated 
noise sources we utilize 
one mode as a 'monitor 
mode', m1.

Above: Propagating on the same beam, the 
monitor mode passes through a broad 'square' 
spectral hole, accumulating common-mode 
phase noise from sources such as parasitic 
interferometers.
Below: Subtracting path-length noise in real-
time has yielded high common-mode noise 
rejection into the thousands of seconds of 
integration time.
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Spectral Hole
Line Shi�s at < 1K[5]

[4] N. Galland, et al., Opt. Lett., 45, 1930-1933 (2020).
[5] Manuscript in Preparation.

Early measurements in our experiment[4] found frequency noise that is compatible with 
spectral hole (SH) temperature-induced line shi�s at T ~ 4 K combined with the temperature 
stability of our cryostat.  This motivated the addition of a custom dilution refrigerator 
(MyCryoFirm) where, at temperatures < 1 K, we expected a 4 order-of-magnitude reduction 
in temperature sensitivity. With the laser frequency locked to the SH, we measured the SH 
temperature sensitivity in two ways[5]:  1) we ramp the temperature and measure the 
frequency shi� of the SH-locked laser against the SYRTE frequency comb, the temperature 
sensitivity is the derivative of this shi�. 2) we modulate the temperature while recording the 
laser frequency against the comb.  Demodulation of these signals reveals the temperature 
sensitivity directly, the integration of this signal  indicates the temperature shi�.
Currently, we are collaborating with LENA (U. Braunschweig) to  measure the mechanical 
loss angle of Y2SiO5. This, combined with our temperature shi� measurements, will allow us 
to develop a suite of thermal noise models to understand the fundamental stability limit.

Le�: The measured frequency shi� in a spectral hole at 
dilution temperatures. At spectroscopic site 2, the line shi� 
roughly follows the expected T4 dependence, however at site 
1 a large deviation from this trend reveals a local minimum 
around 300 mK providing a region of temperature 
insensitvity to �rst order.  Above: Measured cryostat 
temperature stability and SH temperature sensitivities reveals 
a region with temperature induced fractional frequency 
instabilities < 10-20.
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Ultra-Stable Lasers
The State of the Art

In order for optical clocks to reach their ultimate performance (quantum projection limit, ~10-17 fractional  
frequency stability at 1 s), they require an ultra-stabilized probe laser, setting a goal of 10-18 at 1 s.

L0 = N (λ/2)   ->   f0 = N (c/2L0)

Conventional cavities have a fundamental limit, due to thermal noise, 
at ~10-16 at 1 s. E�orts to mitigate thermal noise include alternate cavity 
geometries, use of high-Q materials, and cryogenic cavities.
     • PTB, JILA[1]: Cryogenic Cavities: 4×10-17 at 1 s
     • PTB[2]: Long Cavities: 8×10-17 at 1 s
While successful, this route faces considerable technological challenges.

We are researching a potential 
paradigm shi� in ultra-stable 
lasers: stabilization to an optical 
transition of a rare earth ion, 
Europium (Eu3+), doped into an 
Yttrium Orthosilicate (Y2SiO5) . 

Traditionally, these lasers 
use length-stable optical 
cavities as a frequency 
reference.
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[1] D. G. Matei, et al., Phys. Rev. Lett. 118, 263202 (2017).
[2] S. Häfner, et al., Opt. Lett. 40, 2112-2115 (2015).


