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Boolean-Arithmetic Equations:
Acquisition and Uses

R. Gindullin⋆1,2, N. Beldiceanu1,2, J. Cheukam Ngouonou1,2,4,
R. Douence1,2,3, C.-G. Quimper4

IMT Atlantique1, LS2N2, INRIA3, Université Laval4

Abstract. Motivated by identifying equations to automate the discov-
ery of conjectures about sharp bounds on combinatorial objects, we intro-
duce a CP model to acquire Boolean-arithmetic equations (BAE) from
a table providing sharp bounds for various combinations of parameters.
Boolean-arithmetic expressions consist of simple arithmetic conditions
(SAC) connected by a single commutative operator such as ‘∧’, ‘∨’, ‘⊕’
or ‘+’. Each SAC can use up to three variables, two coefficients, and
an arithmetic function such as ‘+’, ‘−’, ‘×’, ‘floor’, ‘mod’ or ‘min’. We
enhance our CP model in the following way to limit the search space:
(i) We break the symmetries linked to multiple instances of similar SACs
in the same expression. (ii) We prevent the creation of SAC that could
be simplified away. We identify several use cases of our CP model for
acquiring BAE and show its applicability for learning sharp bounds for
eight types of combinatorial objects as digraphs, forests, and partitions.

Keywords: Boolean-arithmetic equation · equation discovery · bounds.

1 Introduction

In the context of finding conjectures about combinatorial objects, the relevance of
Boolean and BAE has been noted but not fully developed. Larson and Cleemput
describe in [21] the use of pure Boolean expressions to represent necessary or
sufficient conditions for a graph property, while [8] depicts the application of
BAE to express sharp bounds of graph characteristics. While the first work uses
a systematic generate and test approach, the second does not describe how such
BAE were produced. Our work is motivated by the following observations: (i) we
want to go beyond a generate and test approach [21], and investigate how CP
can be used to identify a wide range of concise BAE in the context of conjecture
acquisition; (ii) while the experimental part of [8] indicates the relevance to
use BAE to get sharp bounds for digraphs characteristics, it was still unclear
whether this applies to other combinatorial objects. The contribution of the
paper is threefold.

1. First, it exhibits a variety of Boolean-arithmetic expressions f(X1, X2, . . . ,
Xn) which occur in practice when looking for sharp bounds.

⋆ R. Gindulling is supported by the EU-funded ASSISTANT project no. 101000165.
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2. Second, it provides CP models for acquiring Boolean arithmetic expressions.
The main point of these models is to restrict the search space by breaking
symmetries between similar simple arithmetic conditions (SACs) and avoid-
ing generating simplifiable SACs.

3. Finally, it shows that Boolean-arithmetic expressions are not only relevant
for expressing bounds for digraphs as mentioned in [8], but also for trees,
forests, partitions, and some global constraints.

In Sect. 2, we describe four settings for the practical use of Boolean expressions
that we observed in the context of sharp bound acquisition. In Sect. 3, we define
the Boolean-arithmetic formulae that we consider throughout this paper. In
Sect. 4, we provide a core CP model for learning a BAE that explains an output
column of a table from a set of input columns. We show in Sect. 5 various
extensions of the core model to restrict the search space of Boolean-arithmetic
expressions. We evaluate the core model and its extensions in Sect. 6, discuss
related work in Sect. 7, and conclude in Sect. 8.

2 The Relevance of Boolean-Arithmetic Equations

To show the expressive power of BAE, let us consider typical situations where
they are relevant for acquiring sharp bounds, i.e. an inequality for which the
equality holds for at least one example.

1. Using a BAE is a natural option when the codomain of f(X1, X2, . . . , Xn)
is equal to {0, 1} or more generally consists of only two distinct consecutive
values v and v+1. For instance, let v, a, os and s be the number of vertices, of
arcs, of smallest strongly connected components and the size of the smallest
strongly connected component of a digraph. As found by the CP model of
[8] when a is maximal, we have the relation os = ⌊ v

max(−s+v,s)⌋, which is

subsumed by the relation os = 1+ [v = 2 · s], where the Boolean expression
[v = 2 · s] is used as an integer, i.e. either 0 for false or 1 for true.

2. Even when the number of distinct values m of the codomain of f(X1, X2,
. . . , Xn) is greater than two values, but still very small, we can use Boolean
arithmetic expressions to capture concise formulae. This is done by summing
up m − 1 Boolean-arithmetic conditions as illustrated now: e.g., let v, a, c1
and c be the number of vertices, of arcs, of connected components having
more than one vertex and the size of the smallest connected component of
a digraph. As found by the CP model in [8], when a is maximal, we have

the relation c1 = ⌊ (v+max(−c+v,c))
(2·max(max(−c+v,c),2)−max(−c+v,c)+1)⌋, which is subsumed

by the BAE c1 = 2− ([c = 1] + [(v − c) ≤ 1]).
3. Quite often, using BAE allows one simplifying formulae with min and max

as illustrated now. Let v, c, c23 and s be the number of vertices, connected
components, connected components with two or three vertices where the
size of each strongly connected component is equal to 1, and the size of
the largest strongly connected component of a digraph: e.g for the graph
. . . . . . . we have v = 7, c = 3, c23 = 2, s = 2. As discovered by the
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CP model of [8], when c is minimal, we have c23 = (v.s ≤ 3 ? min(v − 1, 1) :
0),1 which can be replaced by the Boolean relation c23 = [s = 1∧ v ∈ [2, 3]].

4. It may occur that a formula can provide an approximate bound with an error
of at most 1 on a parameter in Z. Then, a way for getting a sharp bound is
to find a Boolean formula which precisely describes the bound discrepancy.
For instance, a non-sharp lower bound (with a deviation of at most 1) on the
number of connected components c of a digraph G wrt the number of vertices
v of G, the size of the largest connected component c of G, and the size of the
smallest strongly connected component s of G is given by ⌈ v

c ⌉; but a sharp
lower is given by ⌈ v

c ⌉ + [(s < fmod(v, c)) ∧ (2 · s > c)], where fmod(x, y) is
defined by the conditional expression (x mod y = 0 ? y : x mod y).

The following points are specific to our equation discovery context [29]:

– As our samples are noise-free, we need to acquire formulae that correctly
represent all the samples we have.

– As our samples correspond to instances of combinatorial objects reaching a
sharp bound, this is why we search for equations rather than for inequalities.

– Simple conditions are not translated into a large set of features, which is the
case for most decision tree approaches [3,4,19].

– We keep the original columns of the tables, as using one-hot encoding consid-
erably increases the number of columns and affects the interpretability [28].

3 Describing Boolean-Arithmetic Expressions

The type of Boolean-Arithmetic expressions we consider is dictated by two op-
posite objectives. (i) On the one hand, we want to focus on concise expressions
involving a limited number of variables and constants. This is motivated by the
need to generate interpretable formulae and by the necessity to avoid a combi-
natorial explosion when searching for such formulae [12]. Consequently, we limit
the number of variables and constants, as well as the number of subterms of
Boolean-Arithmetic expressions. (ii) On the other hand, we aim at covering a
variety of Boolean expressions which occurs in practice. This is done by allowing
one to use a variety of arithmetic operators and Boolean functions.
To meet the above objectives, we use the following two-level description:

– First, we consider a Boolean-arithmetic condition (BAC) mentioning no
more than two variables and two constants, the comparison operators ≤,
=, ≥, ∈, /∈ and a variety of arithmetic operators such as +, −, ×, ⌊ ⌋, ⌈ ⌉,
mod, min, max. We currently have 53 elementary arithmetic conditions.

– Second, we build a Boolean-arithmetic term by feeding several arithmetic
conditions, or their negation, to a commutative and associative aggregation
operator such as +, ∨, ∧, ⊕, eq, card1, voting, where:
• ⊕ stands for xor;
• eq is equal to 1 iff all its conditions are evaluated to the same value;

1 The expression (cond ?x : y) denotes x if condition cond holds, y otherwise.
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• card1 is equal to 1 iff only one of its conditions is evaluated to 1;
• voting is equal to 1 iff the majority of its conditions are evaluated to 1.

The use of a commutative and associative aggregation operator simplifies the
interpretability of a formula and reduces the combinatorics, as the order of the
BACs within a Boolean-arithmetic term is irrelevant. It allows for a compact
representation of some Boolean expressions, that would otherwise be large when
expressed in conjunctive or disjunctive normal form without introducing new
variables. For instance, the n-ary xor, i.e. ⊕n

i=1 ℓi, is represented by a CNF
consisting of 2n−1 clauses, where each clause mentions all literals ℓ1, ℓ2, . . . , ℓn.
It also permits the use of the ‘+’ operator in a natural way.

4 A Core Model for Acquiring BAE

This section introduces a CP-based core model for acquiring BAE. First, the
model relies on soft constraints to represent learned Boolean expressions that
mention a restricted number of arithmetic conditions taken from a large set of
candidate conditions. Second, the model incorporates symmetry-breaking con-
straints resulting from the relaxation of arithmetic conditions. Sect. 5 will extend
these symmetry-breaking constraints.

4.1 Problem Description

Given a two-dimensional table tab[1..r, 1..c] of integer values, consisting of r
distinct rows and c distinct columns, where column c is functionally determined
by columns 1, 2, . . . , c− 1, the problem is to come up with a constraint model to
acquire an equality constraint of the form

∀j ∈ [1, r] : tab[j, c] = f(tab[j, 1], tab[j, 2], . . . , tab[j, c− 1]) (1)

i.e. a constraint that is valid for all rows of the table, where f is a Boolean-
arithmetic expression mentioning c− 1 parameters.

As we want to restrict the complexity of the acquired formulae, the expres-
sion f is limited to nAC ∈ {1, 2, 3} conditions chosen from m = 53 potential
distinct BACs introduced in Sect. 3 (where a few conditions may be duplicated
using different constants), and a single commutative and associative aggregation
operator g selected from the set {∨,∧,⊕,+, eq, card1, voting}. As the acquisi-
tion system successively tries the different aggregation operators, we assume
from now on that g is fixed. As we search for Boolean-arithmetic expressions by
increasing number of BACs, we also assume that nAC is fixed.

Each potential candidate BAC Cd of f (with d ∈ [1,m]) mentioning ℓd
columns of the tab table (with ℓd ∈ [1, 3]) and ℓ′d coefficients (with ℓ′d ∈ [0, 2]) is

represented by the term Cd

(
ad,1, . . . , ad,ℓd ,
cd,1, . . . , cd,ℓ′d

)
, where:

– the variables ad,1, . . . , ad,ℓd denote the indices of the distinct columns of the
table tab[1..r, 1..c] mentioned by condition Cd,
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– the variables cd,1, . . . , cd,ℓ′d represents the coefficients used in the arithmetic
expression of condition Cd.

The problem is to come up with a CP-based model which, given (i) a commu-
tative and associative Boolean operator g ∈ {∨,∧,⊕,+, eq, card1, voting}, and
(ii) a fixed number of conditions nAC, extracts the subset of relevant conditions
for the expression f of Constraint (1), and finds for each used conditions all its
parameters, i.e. which columns and which coefficient values it uses.

Example 1. On page 8, the left-hand side of Table 2 provides a table tab[1..9, 1..4]
from which we acquire the following BAE x4 = [(x1 − x2) = 2] ∨ [x3 ≤ 4]. The
acquisition process is now explained in Sect. 4.2.

4.2 A CP Core Model

Notation 1 Given a table tab[1..r, 1..c], the j-th row of tab[1..r, 1..c] is called a
negative entry if tab[j, c] = 0, and a positive entry otherwise.

Selecting the BACs used in f To each potential BAC Cd (with d ∈ [1,m])
of a Boolean-arithmetic expression f , we associate a variable bd such that:

• bd = −1 means that neither condition Cd, nor condition ¬Cd are used in f ,
• bd = 0 indicates that the condition ¬Cd is used in f , i.e. Cd is negated,
• bd = 1 signifies that the condition Cd occurs in f .

As f should mention nAC BACs, we set up the following among constraint to
specify that m− nAC conditions must be unused:

among (m− nAC, ⟨b1, b2, . . . , bm⟩,−1) (2)

Selecting the attributes used in each BAC For each potential condition

Cd

(
ad,1, . . . , ad,ℓd ,
cd,1, . . . , cd,ℓ′d

)
(with d ∈ [1,m]) we set all its variables ad,1, ad,2, . . . , ad,ℓd

to 0 when the condition Cd is not used, i.e. when bd = −1. We introduce the
variables a′d,1, a

′
d,2, . . . , a

′
d,ℓd

corresponding to ad,1 + 1, ad,2 + 1, . . . , ad,ℓd + 1: we
use the offset +1 as these variables will also be used in element constraints
whose index starts at 1.

For each potential condition Cd, its variables a′d,1, a′d,2, . . . , a′d,ℓd should
either be all distinct and greater than or equal to 2, or be all equal to 1. This is
expressed by the next global cardinality (gcc) constraint.

gcc

( 〈
a′d,1, a

′
d,2, . . . , a

′
d,ℓd

〉
,

⟨1 : {0, ℓd}, 2 : {0, 1}, . . . , c : {0, 1}⟩

)
(3)

When the condition Cd is unused, i.e. bd = −1, we set all its variables
a′d,1, a

′
d,2, . . . , a

′
d,ℓd

to 1 to break symmetry, i.e. to avoid enumerating over these
variables:

∀d ∈ [1,m],∀k ∈ [1, ℓd] : bd = −1 ⇔ a′d,k = 1 (4)
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To force the use of all attributes from 1 to c − 1 of the table tab[1..r, 1..c]
across all selected conditions, i.e. those conditions Cd, (with d ∈ [1,m]) such
that bd ̸= −1, we set up the following gcc constraint:

gcc


〈 a′1,1, a

′
1,2, . . . , a

′
1,ℓ1

,

a′2,1, a
′
2,2, . . . , a

′
2,ℓ2

,

. . . . . . . . . . . . . . . . . . . .
a′m,1, a

′
m,2, . . . , a

′
m,ℓm

〉
,

〈2 : o2,
3 : o3,
. . . . .
c : oc

〉with oi ∈ [1,m],∀i ∈ [2, c] (5)

Restricting the coefficients of each BAC When the BAC

Cd

(
ad,1, . . . , ad,ℓd ,
cd,1, . . . , cd,ℓ′d

)
is used, i.e. bd ̸= −1, the coefficient variables cd,1, . . . , cd,ℓ′d

denote the coefficients used in the arithmetic expression related to Cd. As we
look for simple formulae, the initial domain of such variables is initialised to a
small interval, e.g. [−9,+9].

Note that we are not interested in acquiring conditions that can be sub-
stituted by true or false as they could be simplified away. For some types
of conditions this would require additional constraints on the condition’s coeffi-
cients, e.g. for Cd(ad,1, cd,1, cd,2) ≡ [(ad,1 mod cd,1) = cd,2] we post the additional
constraints bd ̸= −1 ⇒ cd,1 ≥ 2 and bd ̸= −1 ⇒ cd,2 ∈ [0, cd,1 − 1]:

– If cd,1 = 1 then the condition Cd(ad,1, cd,1, cd,2) is either always true, when
cd,2 = 0, or always false when cd,2 ̸= 0.

– Otherwise, if cd,1 ≥ 2 and cd,2 /∈ [0, cd,1 − 1] then the condition
Cd(ad,1, cd,1, cd,2) is always false as (ad,1 mod cd,1) ∈ [0, cd,1 − 1].

When the condition Cd is unused, we have bd = −1 ⇒ (cd,1 = · · · = cd,ℓ′d = 0) to
avoid multiple solutions stemming from the coefficients of an unused condition.

How to further restrict the initial domain of the coefficient variables wrt the
entries of the table tab[1..r, 1..c] will be explained in Section 5.3.

Setting row constraints To evaluate each condition Cd wrt the j-th row of
the table tab[1..r, 1..c], we create the variables vd,j,k for the values of its k-th
attributes and a variable bd,j for the value of Cd. This is described in the next
two items:

– For each condition Cd (with d ∈ [1,m]), for each row j (with j ∈ [1, r]), and
for each argument k (with k ∈ [1, ℓd]) of condition Cd, we create a variable
vd,j,k that gives, either the value of the k-th argument of condition Cd wrt
the j-th row of the table tab[1..r, 1..c], or 0 if the condition Cd is unused:
• ∀d ∈ [1,m], ∀j ∈ [1, r], ∀k ∈ [1, ℓd] :

element
(
a′d,k, ⟨0, tab[j, 1], tab[j, 2], . . . , tab[j, c− 1]⟩ , vd,j,k

)
.

– We also create a 0–1 variable bd,j which will be set to true iff condition Cd

holds for the j-th row of the table tab[1..r, 1..c]:
• ∀d ∈ [1,m], ∀j ∈ [1, r] : bd,j ⇔ Cd (vd,j,1, vd,j,2, . . . , vd,j,ℓd) .
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Now, based on the aggregator g, we state a few row constraints for each used
condition Cd (with d ∈ [1,m]) and wrt each row of the table tab[1..r, 1..c]. These
row constraints are related to the type of aggregator g we are using. In this
context, we distinguish the following types of aggregators I, II, and III:

I. Aggregators for which (i) positive and negative table entries have distinct
row constraints and (ii) a single table entry may determine the Boolean
arithmetic expression value. For instance, if g is the ‘∧’ aggregator then on
a positive entry, a condition Cd which is false (with d ∈ [1,m]) falsifies the
Boolean arithmetic expression f . Aggregators ‘∨’ and ‘∧’ belong to this class.

II. Aggregators for which (i) positive and negative table entries have distinct
row constraints, and (ii) a single table entry cannot determine the Boolean
arithmetic expression value. Aggregator ‘eq’ belongs to this class.

III. Aggregators for which (i) positive and negative table entries have the same
row constraint, and (ii) a single table entry cannot determine the Boolean
arithmetic expression value. Aggregators ‘+’, ‘⊕’, ‘card1’, and ‘voting’ belong
to this class.

Table 1 provides for each class in {I, II, III} of aggregator g the corresponding
row constraints that determine the value of the Boolean arithmetic expression
f . As mentioned earlier, for the first two classes, these row constraints depend
on whether we have a positive or negative table entry; for the third class, the
same constraint applies for both a positive and a negative table entry. We now
explain the constraints stated in Table 1 for the first aggregator of each class.

[Case aggregator g is ‘∨’ ]
– For each positive row j (with j ∈ [1, r]), we post the constraint ∨m

d=1[bd =
bd,j ] to ensure that at least one condition is true so that the disjunction of
conditions holds.

– For each condition Cd (with d ∈ [1,m]) and each negative row j (with j ∈
[1, r]), we post the constraint table(⟨(bd, bd,j)⟩, ⟨(−1, 0), (−1, 1), (0, 1), (1, 0)⟩).
When the condition Cd is not used, i.e. bd = −1, there is no restriction on bd,j ,
i.e. bd,j ∈ {0, 1}; otherwise, each condition must be falsified, i.e. bd,j = 1−bd,
so that the corresponding disjunction of conditions is not true.

[Case aggregator g is ‘eq’ ]
– For each positive row j (with j ∈ [1, r]), we post the constraint:

[
∑m

d=1[bd = bd,j ] = nAC] ∨ [
∑m

d=1[bd = ¬bd,j ] = nAC]

enforcing either that all conditions hold or that all conditions are false.
– For each negative row j (with j ∈ [1, r]) we post the constraint:

[
∑m

d=1[bd = bd,j ] < nAC] ∧ [
∑m

d=1[bd = ¬bd,j ] < nAC]

imposing that at least one condition is false and at least one is true.

[Case aggregator g is ‘+’ ] For each row j (with j ∈ [1, r]), we post the
constraint tab[j, c] =

∑m
d=1[bd = bd,j ] to ensure that the appropriate number of

conditions are satisfied.
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Table 1. Row constraints which are posted on a positive or a negative table entry
for computing the value of a Boolean arithmetic expression f , depending on the used
aggregator g of classes I, II; for class III the same row constraint is posted for all entries.

Class g Positive entries (tab[j, c] = 1) Negative entries (tab[j, c] = 0)

I
‘∨’ ∨m

d=1[bd = bd,j ] table

(
⟨(bd, bd,j)⟩,

〈
(−1, 0), (−1, 1),
( 0, 1), ( 1, 0)

〉)
‘∧’ table

(
⟨(bd, bd,j)⟩,

〈
(−1, 0), (−1, 1),
( 0, 0), ( 1, 1)

〉)
∨m

d=1[bd = ¬bd,j ]

II ‘eq’
∨(∑m

d=1[bd = bd,j ] = nAC,∑m
d=1[bd = ¬bd,j ] = nAC

) ∧(∑m
d=1[bd = bd,j ] < nAC,∑m
d=1[bd = ¬bd,j ] < nAC

)

III

‘+’ tab[j, c] =
∑m

d=1[bd = bd,j ]

‘⊕’ tab[j, c] = (
∑m

d=1[bd = bd,j ]) mod 2

‘card1’ tab[j, c] = [(
∑m

d=1[bd = bd,j ]) = 1]

‘voting’ tab[j, c] = [2 · (
∑m

d=1[bd = bd,j ]) > nAC]

Table 2. Illustrating the core model on the table tab[1..9, 1..4] (with columns x1, x2,
x3, x4) for acquiring a Boolean-arithmetic expression explaining x4 wrt x1, x2, x3 using
the ‘∨’ aggregator with two conditions C1 and C2 selected from the following potential
candidate conditions C1 : xi − xj = cst , C2 : xi ≤ cst and C3 : xi = xj .

j
table tab C1 = [(x1 − x2) = 2] C2 = [x3 ≤ 4] C3 = [xk1 = xk2 ] row

constraint
satisfaction

x1x2x3x4
b1=1a

′
1,1=2 a′

1,2=3 b2=1 a′
2,1=4 b3=−1a′

3,1=1a
′
3,2=1

b1,j v1,j,1 v1,j,2 b2,j v2,j,1 b3,j v3,j,1 v3,j,2

p
o
si
ti
v
e

en
tr
ie
s

1 4 2 5 1 1 4 2 0 5 1 0 0 true

2 3 4 4 1 0 3 4 1 4 1 0 0 true

3 1 1 3 1 0 1 1 1 3 1 0 0 true

4 3 1 5 1 1 3 1 0 5 1 0 0 true

5 4 1 2 1 0 4 1 1 2 1 0 0 true

n
eg
a
ti
v
e

en
tr
ie
s

6 2 4 5 0 0 2 4 0 5 1 0 0 true

7 4 1 5 0 0 4 1 0 5 1 0 0 true

8 4 3 5 0 0 4 3 0 5 1 0 0 true

9 3 5 5 0 0 3 5 0 5 1 0 0 true

Example 2 (Continuation of Example 1). Table 2 summarises the acquisition
of the BAE x4 = [(x1 − x2) = 2] ∨ [x3 ≤ 4] from the table tab[1..9, 1..4]: it
provides the main variables introduced by the core model. First, note that only
conditions C1 and C2 are selected, as b3 = −1. For the first positive entry
(i.e. j = 1) and the first negative entry (i.e. j = 6), we now show that the
corresponding row constraints described in Table 1 are true:

– As row 1 is a positive entry, we post the constraint [b1 = b1,1] ∨ [b2 =
b2,1] ∨ [b3 = b3,1] which is true as b1 = b1,1 holds.
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– As row 6 is a negative entry, we post the constraint table (⟨(bd, bd,6)⟩, T ),
with T = ⟨(−1, 0), (−1, 1), (0, 1), (1, 0)⟩, for each condition Cd (d ∈ {1, 2, 3}).
All three constraints hold for the sixth row.

5 Enhancing the Core Model

5.1 Linking the Number of Conditions, their Arity, and the
Number of Attributes

We introduce the following constraints to explicitly restrict the potential com-
binations of unary, binary and ternary conditions to consider.

Notation 2 Within the expression f formed by nAC conditions, let nAC,k denote
the number of conditions mentioning k attributes.

Since we restrict the Boolean-arithmetic expression f to at most three con-
ditions, we state the constraints nAC =

∑3
k=1 nAC,k and

∑3
k=1 k · nAC,k =∑c

i=2 oi, where oi is the number of occurrences of value i in the variables
a′d,1, a

′
d,2, . . . , a

′
d,ℓd

, as stated by the gcc constraint (3) of the core model. We
now state the lower and upper bounds on the number of distinct attributes c−1
appearing in the expression f wrt nAC,k (with k ∈ [1, 3]):

• c− 1 ≥ max3k=1 (k ·min(1, nAC,k)), • c− 1 ≤
∑3

k=1 (k · nAC,k).

5.2 Symmetry Breaking

As a formula may involve commutative arithmetic operators whose arguments
can be interchanged, and mention several occurrences of the same condition
which can be swapped, we show how to restrict the search space for formulae.

Commutative arithmetic operators For each BAC Cd

(
ad,1, ad,2,

cd,1, . . . , cd,ℓ′d

)
(with

d ∈ [1,m]) mentioning two attributes ad,1 and ad,2, as well as a commutative
arithmetic operator such as +, min, or max, we order its arguments only when
the condition is used, by posting a constraint of the form bd ̸= −1 ⇒ a′d,1 < a′d,2
on its variables a′d,1 and a′d,2.

Conditions mentioning the same comparison and arithmetic opera-
tors In case a same condition would occur several times in the expression f ,
positively or negatively, or with different attributes, we post symmetry-breaking
constraints to prevent generating equivalent subexpressions. We order the list of
potential BACs C1, C2, . . . , Cm so that conditions that use the same comparison
operator ≤, =, ≥, ∈, as well as the same arithmetic operator +, −, ×, ⌊ ⌋, ⌈ ⌉,
mod, min, max are located consecutively. For each pair of consecutive condi-

tions Cd

(
ad,1, . . . , ad,ℓd ,
cd,1, . . . , cd,ℓ′d

)
, Cd+1

(
ad+1,1, . . . , ad+1,ℓd+1

,
cd+1,1, . . . , cd+1,ℓ′d+1

)
(with d ∈ [1,m− 1])
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using the same comparison and arithmetic operators, we enforce the following
symmetry-breaking constraint.

The idea is to impose a strict lexicographic ordering constraint (SLOC)
between the variables of such consecutive conditions Cd and Cd+1. However,
we need to consider the cases where these conditions are unused (bd = −1,
bd+1 = −1), negated (bd = 0, bd+1 = 0) or positively used (bd = 1, bd+1 =
1). We use the following idea to adapt the SLOC to our context: a SLOC
can be described as a finite automaton whose input alphabet consists of let-
ters that pairwise compare the k-th components of two vectors [6]. We com-

pare the vectors
−→
U = (bd, a

′
d,1, a

′
d,2, . . . , a

′
d,ℓd

) = (u1, u2, . . . , uℓd+1) and
−→
V =

(bd+1, a
′
d+1,1, a

′
d+1,2, . . . , a

′
d+1,ℓd+1

) = (v1, v2, . . . , vℓd+1). Recall from Sect. 4.2

that (i) depending on whether condition Cd is unused, negated or used pos-
itively, bd will be set to −1, 0 or 1 respectively, and that (ii) the variables
a′d,1, a

′
d,2, . . . , a

′
d,ℓd

are all in the range [2, c] as we applied the offset +1. By pair-

wise comparing the k-th components of vectors
−→
U and

−→
V (with k ∈ [1, ℓd + 1])

we create the following vector
−→
W = (w1, w2, . . . wℓd+1), where each component

is defined by one of the nine letters 0, 1, . . . , 8 described in Table 3.

We then force the components of vector
−→
W to be accepted by the finite

automaton given in Fig. 1. The three accepting states labelled by n, o, and t

respectively correspond to the fact that (i) none of the conditions Cd, Cd+1

is used, (ii) only the first condition Cd is used, and (iii) the two conditions

Cd, Cd+1 are both used. The outgoing transitions from state ϵ to states t
̸=

Table 3. Definition of the input letters of the finite automaton depicted in Part (A)
of Fig. 1 used for breaking symmetry between two consecutive conditions

Input letter Corresponding condition Comment

wk = 0 uk = −1 ∧ vk = −1 Both conditions are unused.

wk = 1 (uk = 0 ∨ uk = 1) ∧ vk = −1 Only one condition is used.

wk = 2 uk = 1 ∧ vk = 0
The 1st condition is used positively,

and the negation of the 2nd condition is used.

wk = 3 uk = 0 ∧ vk = 0
The negation of the 1st condition is used,

and the negation of the 2nd condition is used.

wk = 4 uk = 1 ∧ vk = 1
k = 1: both conditions are used positively,

k > 1: attributes of both conditions are unused.

wk = 5 uk > 1 ∧ vk = 1
uk is an attribute of the 1st condition, and

vk an unused attribute of the 2nd condition,

as the 2nd condition is unused.

wk = 6 uk > 1 ∧ vk > 1 ∧ uk = vk
uk and vk are attributes of the two used

conditions, such that uk = vk.

wk = 7 uk > 1 ∧ vk > 1 ∧ uk > vk
uk and vk are attributes of the two used

conditions, such that uk > vk.

wk = 8 uk > 1 ∧ vk > 1 ∧ uk < vk
uk and vk are attributes of the two used

conditions, such that uk < vk.
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and t
> enforce that, when using a condition and its negated form, the negated

form is located in the second position. The two outgoing transitions of state t
>

ensure that the arguments of the first used condition are lexicographically strictly
greater than the arguments of the second condition, while the two outgoing

transitions of state t
̸= force the two conditions to not use the same arguments.

5.3 Pre-computing the Combinations of Possible Values of the
Coefficients of a Condition

Most BACs Cd

(
ad,1, . . . , ad,ℓd ,
cd,1, . . . , cd,ℓ′d

)
can be presented as a comparison of the form

C ′
d(P )♢ cd,ℓ′d (with ♢ ∈ {≤,=,≥}), where C ′

d(P ) is an arithmetic expression

parameterised by P =

(
a′d,1, . . . , a

′
d,ℓd

,

cd,1, . . . , cd,ℓ′d−1

)
. Such BACs in a Boolean formula f

must not be equivalent to true or false, as otherwise they could be simplified
away from f . We also want to avoid generating a condition involving an inequal-
ity when an equality would suffice. For this purpose we proceed as follows.

– For each possible combination of values p of parameter P wrt the potential
values of a′d,1, . . . , a

′
d,ℓd

, cd,1, . . . , cd,ℓ′d−1, we compute the feasible values of
C ′

d(p) wrt all the table entries of tab[1..r, 1..c]. We denote by Vd,p such sets.

– Then, depending on the comparison operator ♢ used in condition Cd, we
derive for each combination of values p of parameter P , the set of values
of coefficient cd,ℓ′d which does not make condition Cd always true or always

false. We denote such sets as V♢
d,p. They are obtained from the sets Vd,p in

the following way.

• [♢ is ‘=’]: when the coefficient cd,ℓ′d is assigned a value outside Vd,p the
condition Cd would always be false; if the cardinality of Vd,p is 1 then

no condition is used

one condition
is used

two conditions are used

ϵn

o

t
> t

t
̸=

0

2

4

1

5

3

4

6

7

6
7

8

6

7

8

−→
U

−→
V

−→
W Condition(s)

(−1, 1) (−1, 1) (0, 4) none

( 0, 2) (−1, 1) (1, 5) ¬Cd(1)

( 0, 3) (−1, 1) (1, 5) ¬Cd(2)

( 0, 3) ( 0, 2) (2, 7) ¬Cd(2) ¬Cd+1(1)

( 1, 2) (−1, 1) (1, 5) Cd(1)

( 1, 3) (−1, 1) (1, 5) Cd(2)

( 1, 3) ( 0, 2) (2, 7) Cd(2) ¬Cd+1(1)

( 1, 3) ( 1, 2) (4, 7) Cd(2) Cd+1(1)

(A) (B)

Fig. 1. (A) Automaton for breaking symmetries between two consecutive conditions
Cd, Cd+1 sharing the same comparison and arithmetic operators, where accepting states

are denoted by a double circle; (B) Examples of vectors
−→
U ,

−→
V ,

−→
W and corresponding

used conditions with their arguments (each condition mentions one single attribute).
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Table 4. Example table for pre-computing the possible values of the coefficients for
conditions C1 and C2

x1 x2 xc [x1 − x2] [x2 − x1] [x1 mod 3] [x2 mod 3]

1 2 0 −1 1 1 2
2 1 0 1 −1 2 1
1 2 1 −1 1 1 2
1 3 1 −2 2 1 0
1 4 1 −3 3 1 1

V♢
d,p = ∅ (i.e. if there is only one value the condition would always be

true), otherwise V♢
d,p = Vd,p.

• [♢ is ‘≤’ or ‘≥’]: let α and ω respectively be the smallest and the largest
value of the set Vd,p; then V♢

d,p = Vd,p \ {α, ω}. The intuition for ♢ =‘≤’
is as follows: if we keep α then ♢ =‘≤’ is equivalent to ♢ =‘=’ ; if we keep
ω the condition will always be true. For ‘≥’ the intuition is symmetrical.

– We may further reduce the set V♢
d,p by considering the aggregator g. First,

for each possible combination of values p of parameter P , we compute the
feasible values of C ′

d(p) wrt all the positive (resp. negative) table entries of
tab[1..r, 1..c]. We denote by Vpos

d,p (resp. Vneg
d,p ) such sets. From these sets, we

compute the further restricted set V♢,g
d,p as follows:

• [g is ‘∧’]: if ♢ is ‘=’ then V♢,g
d,p = Vpos

d,p else V♢,g
d,p = Vpos

d,p ∩V♢
d,p,

• [g ∈ {‘ ∨ ’, ‘ + ’}]: V♢,g
d,p = V♢

d,p \ V
neg
d,p ,

• [g /∈ {‘ ∧ ’, ‘ ∨ ’, ‘ + ’}]:V♢,g
d,p = V♢

d,p.

– Finally, we set up the table constraint table

(〈
a′d,1, . . . , a

′
d,ℓd

,

cd,1, . . . , cd,ℓ′d

〉
,S
)

where

S corresponds to the union of cartesian products ∪p∈P (p× V♢,g
d,p ).

Example 3. To illustrate the process, consider Table 4. There are two input
columns 1 and 2 and the output column c. Consider the two conditions C1 =
[a1,1 − a1,2 = c1,1] and C2 = [a2,1 mod c2,1 ≥ c2,2].
• For C1 we have only two options for p = {a1,1, a1,2}, namely:

1) p = {1, 2}:
{
V1,p = {−3,−2,−1, 1}, V=

1,p = V1,p,

V=,‘∧’
1,p = {−3,−2,−1}, V=,‘∨’

1,p = V=
1,p \ {−1, 1} = {−3,−2}.

2) p = {2, 1}:
{
V1,p = {−1, 1, 2, 3}, V=

1,p = V1,p,

V=,‘∧’
1,p = {1, 2, 3}, V=,‘∨’

1,p = V=
1,p \ {−1, 1} = {2, 3}.

• For C2 we need to enumerate on c2,1. Wlog, we only consider the case c2,1 = 3.
In this context, the options for p = {a2,1, c2,1} are:

1) p = {1, 3}: V2,p = {1, 2}, α = 1, ω = 2, V≥
2,p = V2,p \α, ω = ∅, i.e. this set of

options for this condition is not considered any further.

2) p = {2, 3}:


V2,p = {0, 1, 2}, α = 0, ω = 2, V≥

1,p = V2,p \ {α, ω} = {1},
Vpos
2,p = {1}, Vneg

2,p = {1, 2},
V≥, ‘∧’
2,p = Vpos

2,p ∩ V≥
2,p = {1},V≥,‘∨’

2,p = V≥
2,p \ V

neg
2,p = ∅.
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6 Evaluation

The CP core model introduced in Sect. 4 and its extension described in Sect. 5
were evaluated in the context of the search of conjectures on sharp bounds on
characteristics of several combinatorial objects, which we now describe.

– digraph (without isolated vertex): a set of vertices V and a set of ordered
pairs of vertices A with the restriction that each vertex of V occurs in at least
one pair of A [5].

– rooted tree: a connected acyclic undirected graph where a vertex is de-
signed as the “root” of the tree [18].

– rooted forest: a disjoint union of rooted trees [18]; we also consider a
variant, rooted forest2, where all rooted trees have at least two vertices.

– partition: a partition of a set S is a collection of possibly empty subsets
of S such that every element of S is in exactly one of the subsets of the
collection. The use of a partition was motivated the by fact that a partition
can be interpreted as a solution to the conjunction of the nvalue (i.e. the
number of partition subsets, see [26]) and the balance (i.e. the difference
between the cardinalities of the largest and smallest subsets of the partition,
see [7]) constraints. Motivated by the extension of the balance constraint,
i.e. all balance [9], we also consider a version of partition named parti-
tion0 where all subsets of S are non-empty.

– stretch: a solution of a stretch constraint on 0-1 variables, where a subse-
quence of 1 immediately preceded and followed by a 0 is called a stretch [27];
we also consider the variant named cyclic stretch where, when the sequence
begins and terminates by 1, those two 1 belong to the same stretch.

Table 5 shows for each combinatorial object some characteristics we consider, and
some conjectures found using the Boolean model described in this paper. Those
conjectures are equalities which express (i) either the value of a characteristic
when another characteristic is reaching its sharp bound, (ii) either a sharp bound
formulated wrt other characteristics [8]. We evaluate the CP models of Sect. 4
and 5 wrt to the following two aspects:

1. The computing time spent by the core model of Sect. 4 (i.e. C. Model)
and by its enhanced version of Sect. 5 (i.e. E. Model) wrt (i) the type of
aggregator used in a BAE, and wrt (ii) the kind of combinatorial object. For
this aspect, we test 3706 examples of acquired BAE on a MacBookPro with
a 2.6 GHz Core i7 and 16Gb of memory using SICStus 4.6.0. Table 6 shows
that the E. model acquires a BAE with, on average, 73% less time than
the C. Model. Additional tests showed that using just the constraints from
Sect. 5.1 increases the speed of the C. Model by ≈ 5%, just the constraints
from Sect. 5.2 - by ≈ 63% and just the constraints from Sect. 5.3 - by ≈ 48%.

2. Using the enhanced model together with the model acquiring polynomial
of [8] (i.e. the EP. Model), Table 7 gives (i) the number of Boolean for-
mulae found, i.e. 642 (sum of second columns), replacing a formula with a
polynomial, and (ii) the number of new Boolean formulae, i.e. 56 (sum of
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Table 5. Examples of characteristics (char.) of combinatorial objects and correspond-
ing conjectures: (i) c, s, oc, c and s: number of connected components (cc), strongly
connected components (scc), connected components with at least two vertices, size of
the smallest cc and size of the largest scc of a digraph; (ii) c0: denote 0 if all the
cc have same maximal size, and c otherwise, for a digraph; (iii) v and f : number
of vertices and leaves in a rooted tree; (iv) d: largest degree of a parent node in a
rooted tree or a rooted forest; (v) p and t: minimum depth and size of the smallest
tree in a rooted forest; (vi) n, nval , and m: number of elements, number of subsets,
and cardinality of the smallest subset in a partition; (vii) sr , dr , and dm: difference
between the number of elements of the largest and smallest stretches, difference between
the maximum and minimum distance of consecutive stretches, and minimum distance
between consecutive stretches in stretch; (viii) n, ng , and osc: number of elements,
total number of stretches, and number of stretches which have more than one element
when the number of element of the largest stretch is maximal in cyclic stretch.

Combinatorial Number Some of the Examples of discovered
object of char. used char. conjectures

digraph 20 c, c, s, oc c = 1 + [¬(s ≤ c ∧ oc ≤ 1)]
digraph 20 c0, c, s, s c0 = [¬ voting(c = s, c = 1,min(c, s) = 1)]

rooted tree 6 d, v, f d = (v = f ∨ v = 1 ? 0 : f)

rooted forest 11 p, d, t d = 2 − ([p = 0] + [(t − p) = 1])
partition 14 n,nval,m nval = 1 + [2 · m ≤ n]
stretch 26 sr , dr , dm dm = [(sr + dr) ≥ 1]
cyclic stretch 26 osc,n,ng osc = [¬ card1(n = 2 · ng, n · ng = 3, n · ng ≤ 3)]

Table 6. Computing time for the Core and the Enhanced models wrt aggregators (left
side) and combinatorial objects (right side)

g nAC

Number of Average time
conjectures per conjecture

C. Model E. Model

∧ 1 2311 0.36s 0.35s
∧ 2 341 25.5s 11s
∧ 3 5 2591s 542s
∨ 2 190 18.9s 6.1s
∨ 3 1 3062s 292s
eq 2 143 35.7s 14.7s
eq 3 47 309s 50s
+ 2 662 2s 1.3s

card1 3 2 1003s 27.5s
voting 3 4 345s 66s

Combinatorial Number of Average time
object conjectures per conjecture

C. Model E. Model

digraph 546 43s 10s
rooted tree 56 1.5s 1s
rooted forest 229 3.4s 1.3s
rooted forest2 586 18.2s 5.9s
partition 24 2.7s 1.7s
partition0 24 0.8s 0.5s
stretch 1059 10s 2.7s
cyclic stretch 1182 6.4s 1.8s

Total 3706 14.4h 3.9h

third columns) discovered compared to the model described in [8], which only
looked for formulae with polynomials and arithmetic functions involving two
polynomials (i.e. the P. Model).

7 Related Work

Learning purely Boolean expressions from data is widely reported in the litera-
ture. A significant number of papers explore the acquisition of relevant features,
often called the “relevant features problem” (RFP). Blum formalises the RFP
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in [10], and provides a survey of various algorithms in [11]. The RFP can be ap-
plied to features that are Boolean, integer or continuous, each of which requires
its own approach [15, chapter 1.2]. Some of the works focusing on purely Boolean
RFP are described in [25,23,13]. In [24], Mutlu and Oghaz provide a taxonomy of
Boolean and non-Boolean feature extraction techniques applied to graphs. Other
works present the acquisition of Boolean expressions as a part of the Boolean
rules extraction process for classification problems using SAT [31] or neural net-
works [22]. Lastly, there are papers [16,14] focusing on the construction and
the simplification of Boolean functions. The acquisition of Boolean-arithmetic
expressions is often used in the context of classification problems. Random for-
est [17], decision trees [3,4,19], Bayesian rule lists [30], fuzzy association rules [2]
and rough sets [20] approaches are used. Most of the work considers the acquisi-
tion of relatively simple Boolean-arithmetic expressions of the type “attribute has
a value of ”. The SEEN system [19] extracts more complex Boolean-arithmetic
expressions that contain the +, × and / arithmetic operators: it calls such do-
main “logical-arithmetic expression mining”.

Beyond the domain of Boolean formulae, synthesising formulae from data [1]
mostly relies on a generate and test approach to produce candidate formulae of
increasing complexity for a fixed grammar. In our context, applying techniques
that minimise an error function produces complicated formulae that are not
verified wrt all input data. In [8] we compared our approach to methods used
for symbolic regression such as GPlearn and ffx: GPlearn generally found no
formulae, while ffx discovered formulae with a large number of terms.

8 Conclusion

The paper presents a CP model for learning BAE that can cope with a variety
of expressions involving the most common Boolean aggregators and arithmetic
operators. In the context of sharp bound acquisition, this complements the model
introduced in [8] for learning equations whose right-hand sides are polynomials.
The model is relevant not only in the context of digraphs, but also for other
combinatorial objects such as rooted trees or partitions.

Table 7. Contribution of the EP. Model that both acquires Boolean formulae (BF) and
polynomials compared to searching only formulae with polynomials with the P. Model

Combi- Number of (BF) which are:
natorial found replacing new
object polynomials
digraph 164 118 46
rooted tree 26 26 0
rooted forest 91 86 5
rooted forest2 149 145 4

Combi- Number of (BF) which are:
natorial found replacing new
object polynomials
partition 20 20 0
partition0 10 10 0
stretch 93 93 0
cyclic stretch 145 144 1
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C.G., Walsh, T.: The balance constraint family. In: O’Sullivan, B. (ed.) Princi-
ples and Practice of Constraint Programming. pp. 174–189. Springer International
Publishing, Cham (2014)

10. Blum, A.: Relevant examples and relevant features: Thoughts from computational
learning theory. In: AAAI Fall Symposium on ‘Relevance. vol. 5, p. 1 (1994)

11. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artificial intelligence 97(1-2), 245–271 (1997)
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