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In this paper, a new cross-scale finite element method is developed to study the mechanical response of concrete-faced rockfill dams, in which an arbitrary-node hexahedron element is used to deal with the mesh transition between the concrete slab and dam body. By using the proposed method, the mesh sizes of concrete slab and rockfill may be very different. Moreover, since the cross-scale method doesn't change the finite element calculation framework, the proposed method is easy to use. In the simulated CFRD, the mechanical behavior of the concrete slab is described by an elastic-plastic constitutive model, and a nonlinear elastic model is applied to the rockfill materials. The computational accuracy and performance of the proposed method are analyzed. The numerical results and analysis provides an effective approach to study the local behavior of concrete face slabs.

Introduction

The concrete-faced rockfill dam (CFRD) is one of the most common dam types. Particularly, due to its advantages in reliability, economic cost, and environmental adaptability, the concrete-faced rockfill dam is becoming an increasingly attractive type of dam [START_REF] Fell | Geotechnical engineering of dams[END_REF][START_REF] Cruz | Concrete face rockfill dams[END_REF][START_REF] Kan | Application of advanced bounding surface plasticity model in static and seismic analyses of Zipingpu Dam[END_REF]. As the key seepage-proof structure of a CFRD, the safety and reliable operation of the face slab remains the major research topic of the dam engineering community. In the classical finite element simulation, the concrete slab is simulated using coarse mesh as the dam body which is composed of rockfill materials. Since the concrete face slab is a thin-slab structure, the element dimensions on the slab surface will be much larger than that along the thickness direction. As a result, it is difficult to guarantee the reliability of numerical results. In practice, it is generally believed that the size of slab mesh should be controlled within a few meters. However, the size of the slab mesh should be controlled within a few centimeters to study the local failure and crack propagation of the slab [START_REF] Wei | Application of displacement multi-point constraint refinement method in simulation of concrete-faced rockfill dams[END_REF]. However, a fine mesh of the slab leads to a significant increase in the element number in the dam body, and the computational costs are inevitably increased. Given this, numerical estimation of the mechanical behavior of CFRDs requires developing a numerical method to deal with the mesh transition between the concrete slab and the rockfill body.

In practice, the mesh transition between the dam body and the face slab is realized by gradually increasing the element density in the dam body near the face slab [START_REF] Xu | Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model[END_REF]. However, the previous method increases the modeling complexity and difficulty while the numerical accuracy may be also disturbed by the eventual creation of distorted elements [START_REF] Wang | Finite element method[END_REF]. Moreover, although the transition method has been successfully applied in two-dimensional conditions, it is still difficult to be used in three-dimensional conditions [START_REF] Qu | A novel interface element with asymmetric nodes and its application on concrete-faced rockfill dam[END_REF] due to the presence of complex element shapes in the transition zone. Therefore, developing a reasonable and efficient method for the mesh transition between the face slab and rockfill mass is necessary for the numerical prediction of deformation behavior of CFRDs. So far, some scholars have applied transition methods to the refined simulation of the face slab. Zhou et al. (2016a[START_REF] Zhou | Numerical evaluation of soft inter-slab joint in concrete-faced rockfill dam with dual mortar finite element method[END_REF] used the dual mortar approach to realize the load transfer between the fine mesh of the concrete slab and the coarse mesh of the dam body. Nevertheless, this method is a contact mechanics approach, including important nonlinear characteristics. This method presents the high convergence insufficiency in the application of engineering structures with complex geometry and under seismic loading conditions. As a result, the previous method can't be used to study the deformation developed at the interface between the face slab and dam body under seismic loading conditions. After that, [START_REF] Qu | A novel interface element with asymmetric nodes and its application on concrete-faced rockfill dam[END_REF] developed a plane interface element with asymmetric nodes to describe the interface characteristics. However, the developed interface element is not suitable for local mesh optimization and three-dimensional problem. Recently, [START_REF] Wei | Application of displacement multi-point constraint refinement method in simulation of concrete-faced rockfill dams[END_REF] applied the multi-point constraint method to study a concrete-faced rockfill dam with a refined mesh for the face slab. [START_REF] Chen | Global concurrent cross-scale nonlinear analysis approach of complex CFRD systems considering dynamic impervious panel-rockfill material-foundation interactions[END_REF], [START_REF] Xu | A nonlinear analysis of dynamic interactions of CFRD-compressible reservoir system based on FEM-SBFEM[END_REF], [START_REF] Gong | The simulation of high compressive stress and extrusion phenomenon for concrete face slabs in CFRDs under strong seismic loads[END_REF] and [START_REF] Qu | Three-dimensional refined analysis of seismic cracking and anti-seismic measures performance of concrete face slab in CFRDs[END_REF] applied the polyhedral scaled boundary finite element method to connect the fine slab mesh with the coarse rockfill mesh. Using the above method, the element number is significantly decreased and detailed analyses of the concrete slab can be also obtained. However, due to the complexity of such a semi-analytical numerical method, this method has only been applied in several concrete-faced rockfill dam simulations.

In view of this, a cross-scale finite element method is proposed in this study to improve the accuracy and efficiency of the numerical simulation of a concrete-faced rockfill dam. In this method, the arbitrary-node hexahedron element is used as the transition zone between two different mesh: the fine mesh of the concrete slab and the coarse mesh of the dam body. In the numerical simulation, the mechanical behaviors of rockfill materials and concretes are described by a nonlinear elastic model and 4 an elasto-plastic model, respectively. Comparing the numerical results of the proposed method and the classical finite element method, it is observed that the load transfer of discontinuous mesh is precisely predicted by the proposed method. The obtained 3D FE numerical results of the CFRD indicate that the cross-scale finite element method is capable of satisfactorily reproducing the stress gradient and the distribution of plastic hardening in the face slab. Thanks to its ease of use, the proposed method can be used in engineering structures with complex geometry and different material components.

Cross-scale finite element method

Arbitrary-node hexahedron element

In the finite element calculation, eight-node hexahedron elements are used in this study. The mesh transition between the fine element of the face slab and the relatively coarse element of the rockfill mass is performed via the arbitrary-node hexahedral element [START_REF] Wang | A multiscale extended finite element method for modeling three-dimensional crack problems[END_REF], which has also been applied in three-dimensional crack problems [START_REF] Wang | Finite element method[END_REF]Yu, 2014,2016). To the best knowledge of the authors, it is the first time that the arbitrary-node hexahedral element is applied in the numerical analysis of CFRDs. With the application of the arbitrary-node hexahedral element, the cross-scale numerical simulation of a concrete-faced rockfill dam can be easily realized in the finite element calculation framework. As the displacement mode of the arbitrary-node hexahedral element is quite different from that of the eight-node hexahedron element, the arbitrary-node hexahedral element is presented in the following.

Under three-dimensional conditions, for a given real displacement field () u ξ , its approximated displacement h () u ξ is given as follows:

    1 () M h T i i i     u ξ N ξ u a p ξ (1)
where M represents the number of sampling points in the point interpolation. For a given node i, i N is the shape function and its nodal displacement i u is a column vector with the size of 31  .   (2)

where

  T 1M ...  U u u
is the nodal displacement matrix, and

  1M ...  q p p
is the polynomial basis matrix at the node.

Substituting Eq. (2) into Eq. (1), the shape functions are then obtained:

    -1 T 1 M N ... N  qpξ (3)
According to Eq. (3), the shape functions of arbitrary-node hexahedral elements can be obtained via the point interpolation of a series of special bases. Considering a set of piecewise linear bases, the arbitrary-node hexahedral element with seven types of nodes is given in Fig. 1. The first type of node is eight nodes at corners; the second type of node is j additional nodes on the edge of The polynomial basis function of the arbitrary-node hexahedral element is expressed as
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The above polynomial basis is illustrated in detail as follows. When the element contains only the first two nodes, the polynomial basis function of the element becomes
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is the local coordinate of the second type of nodes.
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when the second type of nodes appears in the element. The basis is written as

( 1)( 1) i       
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 , =1  , 1
  , and is equal to zero on other edges of 1   .

Therefore, under the influence of the basis ( 1)( 1
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, the displacement distribution is piecewise linear along the edge of =1 
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is discontinuous, it is necessary to modify the numerical integration.

To overcome the discontinuity of the differential in the numerical integration, the 2 × 2 Gauss integration per subdomain is used [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Lim | Variable-node element families for mesh connection and adaptive mesh computation[END_REF]. According to additional nodes, the element is divided into some eight-node hexahedron sub-elements, and the shape functions still are trilinear interpolation within a sub-element despite the slope discontinuity at the element level.

Numerical implementation

To implement the arbitrary-node hexahedral element in the finite element code, an important issue is to determine the local coordinates of the additional nodes. In Fig. 2, a mesh composed of two elements (called A and B) is established using a uniform scale mesh. On the contact surface of element A and B, ijmn denotes four nodes of this contact surface. After that, element B is divided into four elements, denoted as B1-B4. Meanwhile, hanging nodes appear on the ijmn surface of element A. With the combination of element A and hanging nodes, an arbitrary-node hexahedral element is created. In order to calculate a polynomial basis function of the arbitrary-node hexahedral element, it is necessary to determine the local coordinates of the hanging nodes. Since the hanging nodes are all on the ijmn surface of element A, the local coordinates in the direction of the hanging nodes are equal to either 1 or -1.

Consequently, only the local coordinates in the two other directions of the hanging nodes are needed to be determined. For a given hanging node k on the ijmn surface of element A, the process of determining its location is illustrated in Fig. 3. 

Constitutive models

Nonlinear elastic model for rockfill

For a given CFRD, the dam body is described by a nonlinear elastic model proposed by [START_REF] Liu | Practical nonlinear constitutive model for rockfill materials with application to rockfill dam[END_REF]. This constitutive model is capable of describing the dilatancy behavior, the strength nonlinearity of rockfill materials, as well as the influence of the intermediate principal stress. The model has been applied in the 3D FE study of a real CFRD during the construction and impounding phases. The valley where the dam is located is basically symmetrical with slope angles about 4 0 ~4 5  . The riverbed is relatively flat and the dam foundation has 20~30m thick alluvium of sand gravels. The calculated deformation of the dam body and the deflection of the concrete face slabs are in good agreement with the in-situ measurements, and the performance of proposed model is verified. A detailed description of the model can be found in the work by [START_REF] Liu | Practical nonlinear constitutive model for rockfill materials with application to rockfill dam[END_REF]. A rapid review of the above-mentioned constitutive model is given as follows.

The stress-strain relationship of the model in mean stress p-deviatoric stress q space is given by
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where K is the bulk modulus, G is the shear modulus and J is the coupling modulus. The bulk modulus K, representing the volumetric stiffness with respect to dp, can be expressed as
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where a P is the atmospheric pressure; The shear modulus G, which controls shear strain with respect to dq, and the coupling modulus J, describing the coupling between the volumetric strain produced by an increment dq and the shear strain produced by an increment dp, are given as 
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is the shear failure strength and u q is the deviatoric stress in the curve s q   when s  approaches to the infinite strain. In the proposed model, the SMP criterion is adopted and the stress , pq %% are obtained in the new stress transformed stress space. With the introduction of transformed stress tensor ij % [START_REF] Yao | A unified constitutive model for both clay and sand with hardening parameter independent on stress path[END_REF][START_REF] Yao | UH model: three-dimensional unified hardening model for overconsolidated clays[END_REF], the SMP criterion [START_REF] Matsuoka | On the significance of the "spatial mobilized plane[END_REF]) can be represented as an Extended Mises type criterion in the new stress transformed stress space. The transformed stress tensor ij % is given as
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where I 1 , I 2 and I 3 are the first, second and third stress invariants, respectively.

Elastoplastic model for concrete

In the literature, for ease of use, the linear elastic model is widely used for concrete slabs [START_REF] Zhang | Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer[END_REF][START_REF] Seo | Behavior of concrete-faced rockfill dams during initial impoundment[END_REF][START_REF] Dakoulas | Longitudinal vibrations of tall concrete faced rockfill dams in narrow canyons[END_REF]Wang et al., 2014). However, when the linear elastic model is used to simulate concrete slabs, the obtained tensile stress often exceeds the tensile strength of concrete. Inspired by the research work of [START_REF] Yang | An experimental and numerical investigation of the mechanical behaviour of a concrete and of its permeability under deviatoric loading[END_REF], an elastoplastic model is used for concrete slabs. The plastic yield function of concrete is given as
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where A is the slope of linear failure surface in the p-q stress space; s C is the cohesion coefficient of concrete;  describes the plastic hardening of concrete and is a function of the current cumulated equivalent plastic deviatoric strain p  :
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It varies from the initial yield threshold 0  to the ultimate failure state 1   . The parameter B controls the rate of plastic hardening.

To describe the volumetric transition between dilatancy and compaction, a non-associated plastic flow rule is adopted:
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where p corresponds to the intersection point between the axis p and the plastic potential surface, and the parameter c  controls the transition boundary between the compaction and dilatancy domain. The model's parameters can be identified by a uniaxial tension test and a uniaxial/triaxial compression test. A detailed description of constitutive model can be found in the work by [START_REF] Yang | An experimental and numerical investigation of the mechanical behaviour of a concrete and of its permeability under deviatoric loading[END_REF].

Numerical verification

To verify the computational accuracy and rationality of the cross-scale finite element method, the dam section of the Tankeng CFRD is simulated, and the obtained numerical results will be compared 

FE analysis model

In Fig. 5, two numerical schemes of Tankeng CFRD are presented. In scheme 1, the mesh dimensions of the face slab and rockfill mass are the same and the mesh of CFRD contains 1290 eight-node hexahedron elements, including 44 slab elements (Fig. 5a). In scheme 2, the mesh of face slab and cushion in scheme 1 are further refined, and a mesh discontinuity appears in the CFRD.

Meanwhile, the cross-scale finite element method is adopted to connect two different-size meshs of the face slab and dam body while the arbitrary-node hexahedron element is used for elements in the transition zone. The final mesh of scheme 2 is composed of 1759 elements (Fig. 5b), in which 176 elements are applied for the face slab. In two schemes, the length along the dam axis is both 12m, which is equal to the width of a single face slab. The dam's axial direction is noted as x direction while the direction along the river denotes y direction and the vertical direction represents z direction. For the boundary conditions, all the displacements at the bottom of the foundation and the axial displacement on both sides of the dam are blocked. 1 and2 [START_REF] Liu | Practical nonlinear constitutive model for rockfill materials with application to rockfill dam[END_REF][START_REF] Yang | An experimental and numerical investigation of the mechanical behaviour of a concrete and of its permeability under deviatoric loading[END_REF]. The interface between the concrete face slab and the cushion is described using Goodman elements [START_REF] Goodman | A model for the mechanics of jointed rock[END_REF].

Table 1 The nonlinear model parameters for different materials of Tankeng CFRD

Material

Dry density 
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Numerical results

The main numerical results are presented in this section. The distributions of deformation and stress in the dam body are given for different construction and operation stages (Fig. 6), with the consideration of the effects of self-weight and post-impoundment water pressure. One observes that almost the same numerical results are obtained in two cases. For instance, the maximum settlements obtained with schemes 1 and 2 are 121.3cm and 121.4cm, respectively. The maximum settlement is about 0.75% of the dam height, which is of the same order of magnitude as the in-situ measurements observed in most of CFRDs [START_REF] Wen | A statistical review of the behaviour of concrete face rockfill dams based on case histories[END_REF]. Under the hydraulic pressure, the dam movement towards the upstream is partly restricted and the overall trend of the horizontal displacement varies towards the downstream. The maximum horizontal displacements towards upstream in schemes 1 and 2 are 9.02cm and 9.05cm, respectively, and the maximum horizontal displacements towards downstream in schemes 1 and 2 are 26.36cm and 26.34cm, respectively. The difference of the maximum displacements between two schemes is within 0.5%. In two schemes, the maximum principal stress is the same and located at the bottom of the dam. The maximum major principal stress is 2.49 MPa, and the minor principal stress is 1.17 MPa. Fig. 7 compares the dam deformation increments of two schemes, induced by the last step water load. It can be seen that the numerical results of scheme 2 agree well with those of scheme 1. The maximum settlement increments of schemes 1 and 2 are 17.51cm and 17.53cm, respectively. On the other hand, the maximum horizontal displacement increments of schemes 1 and 2 are 16.71cm and 16.85cm, respectively. The difference of the maximum displacement increments between two schemes is within 1%. For two schemes, the obtained deformation and stress fields of the dam body obtained are almost the same, indicating that the cross-scale finite element method can accurately transfer the upstream water load to the dam body. Based on the numerical analysis, one can conclude that the cross-scale finite element method is capable of providing good precision in the load transfer between discontinuous meshes. In the next section, the proposed method will be used to perform a 3D FEM simulation of the Tankeng CFRD. 

CFRD 3D finite element analysis and results

FE analysis model

A 3D FEM analysis of the Tankeng CFRD is carried out by using the cross-scale finite element method in this section. The numerical model of the Tankeng CFRD considering the construction and water storage process is shown in Fig. 8. The same construction and water storage processes are used as those given in section 4. The dam crest is 505 m long and 12 m wide. Each concrete face slab is 12 m wide and waterproof vertical joints are used between adjacent slabs. At the bottom of the geometrical model of the Tankeng CFRD, the displacements are fixed to zero along the normal direction. In the numerical simulation, the eight-node hexahedron element is used for face slab and rockfill materials, while the arbitrary-node hexahedron element is used for elements in the transition zone. The studied slab and in the areas near the face slab such as cushion, waterproof joints, and so on (Fig. 9). The face slab elements size is less than 2 m and there are 82308 elements in the refined meshes, about 90 % of the total elements. The concrete slab and rockfill body are described by an elasto-plastic model and a nonlinear elastic model, respectively. Moreover, goodman elements [START_REF] Goodman | A model for the mechanics of jointed rock[END_REF]) are applied on the interface between the concrete face slab and the cushion layer. The vertical and peripheral joints are simulated by a pair of nodes, which could be combined into a single node under compressive stress and separated into two independent nodes under tensile stress. 

Results and discussion

Fig. 10 shows the distribution of displacement components in the maximum cross-section after impounding. It can be seen the vertical settlement near the half-dam height is quite high. The maximum settlement is quale to 116 cm, which is about 0.72% of the dam height. This value is in the same order of magnitude as the previous in-situ measurements [START_REF] Hunter | Rockfill modulus and settlement of concrete face rockfill dams[END_REF][START_REF] Özkuzukiran | Settlement behaviour of a concrete faced rock-fill dam[END_REF][START_REF] Wen | A statistical review of the behaviour of concrete face rockfill dams based on case histories[END_REF]. The horizontal displacement of the dam body is affected by the upstream hydraulic pressure, resulting in the maximum displacement near the downstream in the dam body. Due to the gravity of the dam body and hydraulic pressure, the stress field in the dam body increases with the decrease of the dam height, and the maximum stress should occur at the bottom of the dam body (see Fig. 11). The maximum value of the major principal stress is 2.3 MPa, and the maximum value of the minor principal stress is 1.09 MPa. After impounding, the stress evolution in the face slab elements (where the compressive stress is defined as positive) is given in Fig. 13. Since the slabs move to the middle of the face slab along the dam's axial direction, the slabs squeeze each other and the stresses along the axial direction of the dam are compressive in most areas of the face slab. Meanwhile, as the deformation of the face slab is restricted by the valley, tensile stress appears on the face slab near the dam abutment and bank slope, and the maximum tensile stress attains 2.8MPa. The maximum concrete stress of 13.3MPa along the dam axial direction induced in the 0+252m~0+264m slab (elevation of 68 m) is marked by the contour distribution (Fig. 13a). Along the slope direction, compression is observed in most areas of the face slab, while the tensile stress only appears on the face slab near the bank slope with the maximum magnitude of order 2.4MPa (see Fig. 13b). Along the slope direction in the 0+324m slab located at the elevation of 95m, the maximum stress of 5.2MPa is observed in Fig. 13b. Obvious discontinuous distributions of stress along the slope direction can be observed in the face slab. At the bottom of a single slab near the bank slope, the tensile and compressive stresses appear on two sides of the slab respectively. This observation may be related to the development of the bending deformation in two directions of the slab.

Fig. 14 shows the deformation characteristics of the concrete face slab along the slope. Under hydraulic pressure, the bending deformation of the slab located at the dam sides results in large compressive stress in the middle of the slab, and the tensile stress zone occurs at the bottom of the slab near the bank slope, due to the strong restriction from bedrock on the bottom of the slab. At the same time, since the slabs tend to move towards the riverbed (Fig. 12a), the single slab near the bank slope has a bending deformation to the middle of the face slab (Fig. 14). Therefore, the bottom of a single slab near the bank slope is in tension on the side near the middle part of the face slab and in compression on the other side.

Meanwhile, the bending deformation also results in the compressive stress in the middle of a single slab on the side near the riverbed, which is less than that on the other side.

In order to study the local crack/failure in the concrete slab, the distribution of the plastic hardening parameter is illustrated in Fig. 15. The maximum compressive stresses in both the axial and slop directions appear near the middle part of the face slab. However, they are far less than its compressive strength of 39.7MPa. Therefore, the most important plastic hardening observed in concrete face slab does not occur in the middle of the face slab, but appears in the face slab near the bank slope. This observation is coherent with the distribution of tensile stress in the face slab. The maximum value of plastic hardening reaches up to 0.72 in the 0+444m slab at an elevation of 119m where the face slab is in a bi-directional tension state (Fig. 13). To reduce the plasticity of the concrete slab, the reinforcing bars can be added in this zone. As shown in Fig. 15, due to the use of refined meshes, the magnitude of plastic hardening of different regions in each slab is different. Consequently, it is necessary to prevent the face slab damage in the region, having important plastic hardening. Moreover, some discontinuous distribution zones are also observed in the numerical results (Fig. 13 and 15). Although coarse meshes could provide an average effect on the magnitude of stress and plastic hardening of concrete face slabs, some interesting phenomena may be ignored. To sum up, the obtained numerical results are in good agreement with the previous studies [START_REF] Sigtryggsdóttir | Statistical model for dam-settlement prediction and structural-health assessment[END_REF][START_REF] Wen | A statistical review of the behaviour of concrete face rockfill dams based on case histories[END_REF], which confirms the good performance of the proposed numerical method. 

Conclusions

In the present work, a cross-scale finite element method, in which the arbitrary-node hexahedron element is used to link the differently scaled elements, is proposed. The performance of the proposed method is verified by comparing the numerical results of the CFRD section using uniform fine mesh and inhomogeneous mesh. The obtained results confirm that the proposed method is capable of getting a good prediction of load transfer between the fine elements of the face slab and the coarse elements of the rockfill dam body.

The proposed method is also applied in the 3D FE calculation of the Tankeng CFRD, in which the mechanical behaviors of rockfill and concrete are described by a nonlinear elastic model and an elastoplastic model, respectively. Since the concrete face slab in CFRDs plays the most important role as the main anti-seepage structure, the meshes comprising the face slab were refined adequately. The plastic hardening parameter  in the elastoplastic model of concrete is used to characterize the damage of the concrete face slab. The cross-scale finite element method proposed in this paper aims to deal with the mesh discontinuity between the concrete face slab and dam body. The obtained results exhibit that the proposed method is capable of providing a satisfactory prediction of the concrete face slab with fine mesh and dam body with coarse mesh. Although different sizes of mesh are applied on face slab and dam body in the proposed method, the stress gradient and the local damage in the concrete slab are the same as those of the conventional finite element analysis with fine mesh. Moreover, the cross-scale finite element method introduces a new element type into the conventional finite element code and possesses strong versatility, practicality and robustness. When the proposed method is used to perform the cross-scale simulation, the calculation efficiency mainly depends on the degree of freedom. As a result, the cross-scale finite element method has high computational efficiency. In the present work, the cross-scale simulation method is only used to analyze the working behavior of concrete face rockfill dams during construction and operation (i.e. water storage) phases. In the near future, the proposed method will be used to study various complex engineering problems, such as the dynamic analysis of earth-rock dams, the stress analysis of tunnel lining, and the structural analysis of underground powerhouses.
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 2 Fig. 2. Explanatory graph for the determination of local coordinates of hanging nodes

  and obtained by fitting the stress-strain curve of an isotropic compression test.
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  The stress-dilatancy equation D[START_REF] Liu | A microstructure-based elastoplastic constitutive model for coarse-grained materials[END_REF] can consider the typical stress-strain characteristic and the microstructure change of granular materials, expressed as and m is an experimentally fitting constant; M is the stress ratio   corresponding to the phase transformation point from contraction to dilatation. parameters and can be determined by using a series of triaxial tests; f M is the peak stress ratio under conventional triaxial condition;

  with those of classical FEM analysis. The Tankeng CFRD, 162m in height, is located on the middle reaches of the Oujiang River, Zhejiang Province, China. The typical cross-section of Tankeng CFRD is shown in Fig.4. The upstream slope of the dam body is 1:1.4, while the average slope of the downstream is 1:1.55. The thickness d of the concrete face slab is 0.3 m at the top elevation of 167 m and varies linearly with a function of 0 .3 0 .0 0 3 5 dH  downwards the slope, where H is the vertical
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 4 Fig. 4. Typical cross section of Tankeng CFRD
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 5 Fig. 5. Numerical schemes of Tankeng CFRD: (a) Scheme 1; (b) Scheme 2
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 67 Fig. 6. Calculated results of the dam body after water storage (displacement unit: cm; stress unit: MPa): (a) Vertical
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 8 Fig. 8. Construction stages and three-dimensional mesh of Tankeng CFRD
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 1011 Fig. 10. Deformation distribution of dam body at the maximum section after water storage (unit: cm): (a) Vertical
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 12 Fig. 12. Deformation distribution of concrete face slab at the maximum section after water storage (unit: cm): (a) Axial
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 131415 Fig. 13. Stress distribution of concrete face slab at the maximum section after water storage (unit: MPa): (a) Stress
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