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AQ1

Abstract. In recent years, graph convolution networks (GCN) have
been proposed as semi-supervised learning approaches. In this paper, we
introduce a new objective function to train a GCN in order to adapt it
in unsupervised learning context. More precisely, we propose a loss func-
tion composed only of unsupervised terms, the first term is the kernel
k-means objective function used to capture the shared features informa-
tion between nodes, and the second is a regularization term that imposes
the smoothness of the predicted clusters of the whole data. Thanks to the AQ2

proposed objective function, we are able to keep the advantages of the
classical semi-supervised GCN, while using it in an unsupervised way.
Experiments on benchmark datasets show that our proposed unsuper-
vised GCN achieves superior performance compared to state-of-the-art
clustering algorithms.

Keywords: Graph convolution network · Unsupervised learning ·
Kernel k-means · Spectral clustering · Regularization term

1 Introduction

Graphs are powerful forms of describing and modeling complex systems. In recent
years, the problem of graph clustering has been well studied [1–3]. Several meth-
ods have been proposed to achieve this goal, some of them rely only on the
structure of the graph in the learning process, [4,5], while others just rely on
data features.

One of the well-known methods in the clustering process is k-means clus-
tering [6,7] where the number of clusters is initially needed to know. k-means
clusters graph by considering node features only. After that, the spectral clus-
tering algorithm [8] was introduced where the graph clustering is done based
on the structure of the graph built from data features. Then, other methods
combining auto-encoders with the clustering algorithm [9,10] were proposed to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hamlich et al. (Eds.): SADASC 2022, CCIS 1677, pp. 1–10, 2022.
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2 M. Al Jreidy et al.

give better solutions with high-dimensional databases. For example, adversari-
ally regularized variational graph autoencoder (ARVGE) [11], that learns node
embedding by graph autoencoder and graph variational autoencoder. The spec-
tral embedding network (SENet) [12] where the graph structure and node feature
information via higher-order graph convolution are used to train the model with
a spectral clustering loss function.

All these methods can be considered as unsupervised methods as they do not
impose prior knowledge of the fundamental truth label in their learning phase.

However, there are other graph-based methods which require a small part
of their inputs to be labelled, we can mention the Graph Convolution Network
(GCN) [13] which has a very important advantage where the structure of the
graph and the features of the data are convolved together in order to obtain the
final outputs, namely the soft labels. In this sense, a GCN processes nodes in a
graph based on their structure as well as their feature similarities. Yet, as said
before a GCN usually relies on prior knowledge of some labels that are often not
available for multiple databases, as data labeling is a tedious task to perform.

To keep the advantage of the GCN, and to be able to use it with unla-
beled data, unsupervised graph clustering using GCN model where proposed. In
[14] an unsupervised model for clustering graphs via a joint GCN has been intro-
duced. In [15] a label sampling method was introduced and used before the GCN
model. However, these methods are considered complex as they require labelling
generation techniques followed by the GCN to use it in an unsupervised way.

In this paper, we propose a new unsupervised learning framework based on
GCN only. The main contribution of our work is as follows: Without any prior
knowledge of node labels, we propose a GCN model trained with the kernel k-
means objective function where the kernel matrix K represents the data features,
integrated with a regularization term reflecting the graph structure. In other
words, our proposed loss has two clustering-friendly terms. In this case, if two
nodes share a larger proportion of neighbors and features, they have a higher
probability of belonging to the same cluster. Therefore, both network topology
and data features are considered during model training to obtain consistent
clustering.

The rest of this paper is organized as following. In Sect. 2, we introduce some
related work. In Sect. 3, we present some preliminary notations and formula-
tions related to this work. Section 4 gives a detailed description of the proposed
method. We present experimental results on various real-world networks to val-
idate the performance of the method proposed in Sect. 5, we also compare our
approach with other state-of-the-art algorithms. Finally, in Sect. 6, we give the
conclusion.

2 Related Work

Early graph clustering techniques merely grouped nodes based on the graph
topology. Such as, DeepWalk [4] and node2vec [16], which produce node
sequences using reduced random walks before obtaining node embeddings using
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Graph Convolution Networks for Unsupervised Learning 3

the Skip-gram model [17]. Different k-order proximities between nodes are cap-
tured by GraRep [18]. Then, models based on autoencoders were created in order
to capture the highly nonlinear graph structures [19]. In order to increase the
model strength and generalizability, ANE [20], a clustering technique that uses
adversarial learning to learn node representations, attempts to regularize the
embedding learning process.

The developed node-clustering techniques that use both node properties and
graph structure are referred to as the attributed methods. Some techniques
employ spectral clustering [8], random walks [21], matrix factorization, and
Bayesian models [22] on them to make use of both structure and feature infor-
mation. Other approaches [23] develop a trade-off distance metric between them.

Graph convolutional network (GCN) is a semi-supervised approach that was
recently presented for graph classification problems [13]. GCN-based algorithms
help to merge network topology and attribute information, but they depend on a
large number of node labels to classify unlabeled nodes, in contrast to most semi-
supervised methods that concentrate on maintaining network structure. Sun et
al. [24] suggested a network embedding framework for node clustering based on
a graph convolutional autoencoder. Additionally, few unsupervised techniques
have been recently developed. An unsupervised model for community detection
using GCN embedding was proposed by Jin et al. [25]. A spectral embedding
network for attributed graph clustering (SENet) was suggested in [12] and uses a
spectral clustering loss with GCN to learn node embeddings while also enhancing
graph structure. In this work,the GCN model formed with two loss functions
commonly used in clustering problems, which manages both data structure and
data attributes.

3 Preliminary

The section briefly presents the preliminary knowledge of this work, and the
architecture of convolution networks of graphs.

3.1 Weighted Kernel K-Means and Spectral Clustering

Weighted kernel k-means is a k-means clustering algorithm enhanced by the
use of a kernel function [26]. The kernel weighted k-means objective function is
defined as follows:

D({πj}k
j=1) =

k∑

j=1

∑

vi∈πj

w(xi)‖φ(xi) − mj‖2 (1)

with w(xi) is the weight of data xi, πj denote the clusters, k is the number

of clusters, φ a non-linear function and mj =
∑

xi∈πj
w(xi)φ(xi)

∑
xi∈πj

w(xi)
the i-th cluster

center.
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4 M. Al Jreidy et al.

According to [26], there is a direct relationship between the trace maximiza-
tion of the normalized cut in spectral clustering and the kernel k-means problems.
Therefore, the objective function represented in (1) can be written as follows:

D({πj}k
j=1) = trace(W

1
2 φT φW

1
2 ) − trace(Y T W

1
2 φT φW

1
2 Y ) (2)

where, W is the diagonal matrix of all the weights. Y is the N ∗ k orthonormal
cluster assignment matrix, i.e., Y T Y = I.

Considering that φT φ is simply the kernel matrix K of the data, and
trace(W

1
2 φT φW

1
2 ) is a constant term, the minimization of the objective function

in (2) is equivalent to the minimization of − trace(Y T W
1
2 KW

1
2 Y ).

In situations where computing the spectral clustering algorithm is difficult,
the weighted-kernel k-means algorithm is particularly useful as an alternative
algorithm.

3.2 Graph Convolution Network Overview

A graph is represented by G = (V, E, X) where V is a set of N nodes, and E
a set of edges such as an edge (vi, vj) is a link connecting the nodes vi and vj .
X = [x1;x2; ...;xN ], ∈ RN∗d is a node feature matrix, where xi ∈ Rd denotes a
feature vector of node vi [12]. The structure of a graph G can be represented by
two principal matrices: the adjacency matrix A ∈ RN∗N where aij = 1 if there is
an edge between nodes vi, vj , and aij = 0 otherwise, and the similarity matrix
S which is a square matrix of N ∗ N and symmetric (sij = sji), sij represents
the weight of the edge (vi, vj).

The GCN presented in [13] uses a semi-supervised learning approach on data
structured in graphs. It handles the challenge of labeling nodes in a network
where labels are only known for a limited portion of nodes by estimating labels
for unlabeled data, for that it is referred to as semi-supervised learning technique.
A GCN model learns hidden layer representations that encode both local graph
structure and node characteristics.

The layer-wise propagation rule of the GCN for semi-supervised learning is:

Hi = σ(ÂHi−1W i) (3)

Hi: output matrix of the i-th inner layer of the GCN, Hi ∈ RN∗hi with hi the
number of features of the inner-layer i. Hi−1: the input of the i-th inner layer
of the GCN, Hi−1 ∈ RN∗hi−1 . For the first layer, Hi−1 is the features matrix X
of the graph. A: indicates the adjacency matrix of the graph. Â its normalized
matrix calculated as follows: Â = D̂

−1
2 (A + I)D̂

−1
2 where, D =

∑
i(A + I)ij ,

and I the identity matrix. W i: the weight of the layer i, W i ∈ Rdi−1∗di . σ is an
activation function of internal layers such as rectified linear unit (ReLu) [13].

Then, the Softmax activation function, defined in [13] is applied in order to
obtain the predicted label matrix F ∈ RN∗k where k is the number of classes.

The GCN network is usually trained with the cross-entropy loss function
which is typically used in classification problems. In Kejani, Dornaika & Talebi
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Graph Convolution Networks for Unsupervised Learning 5

(2020) [27], multiple regularization loss was added to the cross-entropy loss func-
tion to give better clustering results. The loss equation then becomes:

Loss = −
l∑

i=1

k∑

c=1

yic log(Fic) + λ trace(FT LF ) (4)

where yic represents the true label of the dataset, Fic is the estimated probability
of the i-th sample to be in class c. l denotes the total number of labels samples,
λ is a hyper-parameter, and L denotes the Laplacian matrix of the graph. The
model parameters W i of GCN can be trained by minimizing Eq. (4) with gradient
descent.

4 The Proposed Method

Given a graph G(V, E, X), and its adjacency matrix A, our goal is to partition
the nodes of this graph into k different clusters using GCN in an unsupervised
way.

4.1 Model Architecture

To achieve our goal, we design a three-layer GCN as shown in Fig. 1. We first
feed the node feature matrix X ∈ RN∗d into the network, then learn the first
propagation layer output H1 ∈ RN∗h1 , and H2 ∈ RN∗h2 for the second layer by:

H1 = ReLu(ÂXW 1) (5)

H2 = ReLu(ÂH1W 2) (6)

where ReLu() is an activation function, Â the normalized adjacency matrix of
the graph, W 1 ∈ Rd∗h1 , and W 2 ∈ Rh1∗h2 are the trainable weight matrices of
the inner layers and h1, h2 the number of features in the hidden layers.

In the output layer H3, we map H2 to a k-dimensional space, where k indi-
cates the number of clusters:

H3 = H2W 3 (7)

W 3 ∈ Rh2∗k is a learnable model parameter matrix. Then, to be able to use the
output of the GCN in an unsupervised learning strategy, we perform a cholesky
decomposition [12] on (H3)T H3, i.e. (H3)T H3=QT Q, where Q ∈ Rk∗k is a lower
triangular matrix. Finally, we obtain the orthogonal form of the GCN output
which also represents the soft clustering assignment matrix output of the model:

H = H3(Q−1)T (8)

After getting the orthogonalized output, our clustering loss function will be
applied to it in order to train the model parameters.
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6 M. Al Jreidy et al.

Fig. 1. The model architecture of the graph convolution neural network.

4.2 Model Loss Function and Clustering

As mentioned before, our main goal is to train the GCN in an unsupervised
manner, i.e. the training process does not include any prior information about
the ground truth labels. To achieve it, we have merged the rectified version of
the kernel k-means objective function given by-trace(Y T W

1
2 KW

1
2 Y ) with the

classic spectral loss that use the graph. IN the rectified version of the kernel k-
means loss we replace W by I (Identity matrix) and Y by H the model output.
the model output. In this case, our proposed model is trained by minimizing the
following loss function:

Loss = − trace(HT KH) + λ trace(HT LH) (9)

where H is the model orthogonalized output, L the Laplacian graph matrix, λ is a
hyper-parameter used to balance between the two terms, usely λ ∈ [0, 1]. K is the
kernel matrix, in our case, we choose K the Gaussian kernel matrix given by: K =
exp(−‖xi−xj‖2

s2 ), xi, xj ∈ X and s2 is equal to the average value of the distance
between the data points. Using this loss function, the main advantage is that no
prior knowledge is needed to train the parameters of our model. Therefore, our
GCN model is an unsupervised model. Moreover, the use of kernel k-means loss
function allows us also to acquire the advantages of spectral clustering as already
mentioned in paragraph Sect. 3.1. The objective function of spectral clustering
and kernel k-means are similar. Furthermore, during the feature propagation
phase and the learning phase, the model adapts both the structure and the
features of the graph.

The parameters of the model W 1,W 2,W 3 are trained by minimizing equation
(9) with gradient descent. After finishing the model training process, we perform
k-means on its output H to obtain the partitions of nodes.

With the proposed loss function (9), two interesting and friendly clustering
types of constraints are imposed on the unknown representation matrix H: (i)
the kernel K-means loss enforces compactness in the space induced by the kernel
matrix (information derived from features) and (ii) the spectral clustering term
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Graph Convolution Networks for Unsupervised Learning 7

enforces smoothness of the representation over the graph (information derived
from data structures).

5 Experiments

We evaluate our model on three datasets widely used for the analysis of
attributed graphs: Cora, Citeseer, Pubmed [28].

These datasets are citation networks where the nodes correspond to publica-
tions and are connected by an edge if one cites the other. Each node is associated
with a feature vector, which represents the content of the document. Informa-
tions of these datasets are summarized in Table 1.

Table 1. Datasets Information

Datasets Nodes Edges Features Clusters

Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

Pubmed 19717 44338 500 3

5.1 Baselines

We compare our methods with two different types of baselines:
The first type is methods that use only node features or graph structure:

k-means partition nodes using the graph features matrix [7], spectral clustering
[8] which takes the adjacency matrix of nodes hence the structure of graph.

The second type is methods adopting both node characteristics and graph
structure: such as variational graph autoencoder (ARVGE) [11], and SENet [12]
method which improves graph structure by leveraging the information of shared
neighbors, and learns node embedding with the help of a spectral clustering loss.

5.2 Evaluation Metrics and Experimental Setups

To assess the clustering performance of our method, we use three performance
measures [29]: clustering accuracy (Acc), normalized mutual information (NMI),
and adjusted rand index (ARI). Acc is the ratio of correctly predicted data. NMI
assesses cluster quality by measuring the match between true and predicted
labels. ARI measures the separation ability between clusters and the recognition
ability for each cluster.

For our model, we build the network with randomly initialized weights with
16 hidden units and two internal layers as in [12]. We adopt the Adam optimizer
[30] with a 0.001 learning rate and run experiments on Pytorch. The λ hyper-
parameter in the proposed loss function is fixed to 0.5.
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8 M. Al Jreidy et al.

5.3 Result Analysis

Tables 2, 3, and 4 show the clustering and standard deviation results obtained
after running each method 10 times on each dataset. The best results are in
bold. The interpretations are as follows: U-GCN, the algorithm proposed in this
paper, outperforms clustering approaches that just use node attributes or graph
structure such as k-means and spectral clustering, as it effectively incorporates
and captures both kinds of information.

Furthermore, U-GNC improves the results of methods that use the attributes
and structure of the graph at the same time, since U-GCN adapts the structure
and attributes of the graph in the propagation of features in the model and in the
training process not as ARVGE as it only uses them both during the propagation
phase. In addition, the use of the weighted kernel k-means objective loss function
which is similar to the spectral clustering objective loss function facilitates the
transmission of information about the cluster structure at each layer.

Table 2. Clustering results on Cora

Methods ACC NMI ARI

k-means 0.3465 ± 0.0136 0.1673 ± 0.0154 0.0958 ± 0.0107

Spectral 0.3419 ± 0.0203 0.1949 ± 0.0194 0.0181 ± 0.0186

ARVGE [11] 0.6380 ± 0.0096 0.4500 ± 0.0083 0.3740 ± 0.0071

SENet [12] 0.7192 ± 0.0066 0.5508 ± 0.0065 0.4896 ± 0.0109

U-GCN(this paper) 0.73±0.00872 0.56±0.00569 0.495±0.00859

Table 3. Clustering results on Citeseer

Methods ACC NMI ARI

k-means 0.3849 ± 0.0237 0.1702 ± 0.0206 0.1243 ± 0.0192

Spectral 0.2591 ± 0.0109 0.1184 ± 0.0168 0.0012 ± 0.0137

ARVGE [11] 0.5440 ± 0.0139 0.2610 ± 0.0172 0.2450 ± 0.0164

SENet [12] 0.6752 ± 0.0075 0.417±0.0082 0.4237 ± 0.0097

U-GCN(this paper) 0.68±0.00617 0.417±0.00632 0.43±0.00859

Table 4. Clustering results on Pubmed

Methods ACC NMI ARI

k-means 0.5732 ± 0.0381 0.2912 ± 0.0352 0.2505 ± 0.0346

Spectral 0.3974 ± 0.0267 0.0346 ± ± 0.0309 0.0018 ± 0.0291

ARVGE [11] 0.5822 ± 0.0100 0.2062 ± 0.0057 0.2045 ± 0.0065

SENet [12] 0.6759 ± 0.0062 0.3061 ± 0.0145 0.2966 ± 0.0113

U-GCN(this paper) 0.68±0.00527 0.3105±0.0102 0.31±0.0010
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Graph Convolution Networks for Unsupervised Learning 9

6 Conclusion

In this work, we proposed an unsupervised method based on GCN for the parti-
tioning problem in graphs without prior knowledge. Inspired by the mechanism
of GCN and the relationship between kernel weighted k-means and spectral clus-
tering, we integrated two objective functions to achieve clustering of nodes by
merging structural and feature information. The proposed loss function is suit-
able for training the GCN model when there is no information available on the
labels. This approach is also a new solution for clustering graphs in an unsu-
pervised way. The experimental results demonstrate that the proposed method
achieves better performance on three citation networks, compared to state-of-
the-art algorithms. In future work, we aim to study the effect of changing the
trade-off hyper-parameter λ.
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