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Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK
Grenoble, 38000, France

ABSTRACT

Distributionally robust optimization has emerged as an attractive way to train ro-
bust machine learning models, capturing data uncertainty and distribution shifts.
Recent statistical analyses have proved that generalization guarantees of robust
models based on the Wasserstein distance have generalization guarantees that do
not suffer from the curse of dimensionality. However, these results are either ap-
proximate, obtained in specific cases, or based on assumptions difficult to verify
in practice. In contrast, we establish exact generalization guarantees that cover a
wide range of cases, with arbitrary transport costs and parametric loss functions,
including deep learning objectives with nonsmooth activations. We complete our
analysis with an excess bound on the robust objective and an extension to Wasser-
stein robust models with entropic regularizations.

1 INTRODUCTION

1.1 WASSERSTEIN ROBUSTNESS: MODELS AND GENERALIZATION

Machine learning models are challenged in practice by many obstacles, such as biases in data, adver-
sarial attacks, or data shifts between training and deployment. Towards more resilient and reliable
models, distributionally robust optimization has emerged as an attractive paradigm, where training
no longer relies on minimizing the empirical risk but rather on an optimization problem that takes
into account potential perturbations in the data distribution; see e.g., the review articles Kuhn et al.
(2019); Blanchet et al. (2021a).

More specifically, the approach consists in minimizing the worst-risk among all distributions in a
neighborhood of the empirical data distribution. A natural way (Mohajerin Esfahani & Kuhn, 2018)
to define such a neighborhood is to use the optimal transport distance, called the Wasserstein distance
(Peyré & Cuturi, 2019). Between two distributions Q and Q′ on a sample space Ξ, the Wasserstein
distance is defined as the minimal expected cost among all coupling probability π on Ξ× Ξ having
Q and Q′ as marginals:

Wc(Q,Q
′) = inf

π∈P(Ξ×Ξ)
[π]1=Q,[π]2=Q

′

E(ξ,ζ)∼π[c(ξ, ζ)], (1)

where c : Ξ × Ξ → R is a non-negative transport cost over the sample space Ξ. For a class of
loss functions F , the Wasserstein distributionally robust counterpart of the standard empirical risk
minimization (ERM) then writes

min
f∈F

sup
Q∈P(Ξ),Wc(P̂n,Q)≤ρ

Eξ∼Q[f(ξ)], (2)

for a chosen radius ρ of the Wasserstein ball centered at the empirical data distribution, denoted P̂n.
This procedure is often referred to as Wasserstein Distributionally Robust Optimization (WDRO).
In the degenerate case ρ = 0, we have Q = P̂n and (2) boils down to ERM. If ρ > 0, the training
captures data uncertainty and provides more resilient learning models; see e.g. the discussions and
illustrations in Shafieezadeh-Abadeh et al. (2015); Sinha et al. (2018); Zhao & Guan (2018); Kwon
et al. (2020); Li et al. (2020); Taskesen et al. (2021); Gao et al. (2022); Arrigo et al. (2022); Belbasi
et al. (2023).
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To support theoretically the modeling versatility and the practical success of these robust models,
some statistical guarantees have been proposed in the literature. For a population distribution P ,
i.i.d. samples ξ1, . . . , ξn drawn from P , and the associated empirical distribution P̂n := 1

n

∑n
i=1 δξi ,

the best concentration results for the Wasserstein distance (Fournier & Guillin, 2015) gives that if
the radius ρ is large enough, then the Wasserstein ball around P̂n contains the true distribution
P with high probability, which in turn gives directly (see Mohajerin Esfahani & Kuhn (2018)) a
generalization bound of the form

sup
Q∈P(Ξ),Wc(P̂n,Q)≤ρ

Eξ∼Q[f(ξ)] ≥ Eξ∼P [f(ξ)]. (3)

This bound is exact in the sense that it does not introduce approximate term, contrary to standard
generalization bounds allowed by ERM (see e.g. Boucheron et al. (2013); Wainwright (2019)).
This property (3) is particularly attractive: the left-hand-side, which is the quantity that we compute
from data and optimize by training, provides a control on the right-hand-side which is the idealistic
population risk. This theoretical feature is specific to WDRO and highlights its potential to give
more resilient models.

In order to obtain such an attractive guarantee, Mohajerin Esfahani & Kuhn (2018) needs to take a
large radius ρ. Indeed, the direct application of concentration results of Fournier & Guillin (2015)
requires a radius scaling as O(1/n

1
d ), where d is the data dimension. Due to the exponential depen-

dence, in high dimension, this value is almost constant with respect to n, hence suggesting that the
exact bound (3) can hold only for conservative values of ρ.

Recent works have proposed various statistical guarantees for WDRO by establishing generalization
bounds that do not suffer from the above curse of the dimension; we further discuss them in the
related work section in section 1.3. These results generally feature a radius ρ scaling as O(1/

√
n),

which is the standard rate in ERM generalization bounds. Yet, no existing result on robust models
precisely retrieve the original exact bound (3) with the 1/

√
n rate, in a general setting.

1.2 CONTRIBUTIONS AND OUTLINE

In this paper, we establish exact generalization guarantees of the form (3) under general assumptions
that cover many machine learning situations. Our results apply to any kind of data lying in a metric
space (e.g. classification and regression tasks with mixed features) and general classes of continuous
loss functions (e.g. from standard regression tasks to deep learning models) as long as standard
compactness conditions are satisfied. For instance, our results cover nonsmooth objectives that
are particularly present in deep learning with the use of ReLU activation function, max-pooling
operator, or optimization layers.

To avoid using concentration results of Fournier & Guillin (2015) involving a radius scaling as
O(1/n

1
d ), we develop a novel optimization-based proof, directly tackling the nonsmoothness of

the robust objective function (2) with tools from variational analysis (Clarke, 1990; Rockafellar &
Wets, 1998; Aliprantis & Border, 2006). We thus obtain general results with ρ scaling as O(1/

√
n),

capturing all possible nonsmoothness and coinciding with previous study for robust linear models
(Shafieezadeh-Abadeh et al., 2019).

Moreover, our approach is systematic enough to (i) provide estimates of the excess errors quantifying
by how much the robust objective may exceed the true risk, and (ii) extend to the recent versions of
Wasserstein/Sinkhorn distributionally robust problems that involve (double) regularizations (Azizian
et al., 2023b; Wang et al., 2023). We thus complete the only existing analysis of regularized WDRO
(Azizian et al., 2023a) by obtaining generalization results for double regularization (Azizian et al.,
2023b) when dealing with arbitrary costs and nonsmooth objectives.

The paper is structured as follows. First, Section 2 introduces and illustrates the setting of this work.
Then Section 3 presents and discusses the main results: the generalization guarantees (Theorem 3.1
and Theorem 3.2), the excess risk bounds (Proposition 3.1 and Proposition 3.3) and the specific
case of linear models (Section 3.2). This section ends with Section 3.4 discussing the limitations of
our study and potential extensions. Finally, Section 4 highlights our proof techniques, combining
classical concentration lemma and advanced nonsmooth analysis.
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1.3 RELATED WORK

The majority of papers studying generalization bounds of Wasserstein distributionally robust models
establish approximate generalization bounds. These approximate bounds introduce vanishing terms
depending on n and ρwhich embody the bias of WDRO. One of the first papers on such approximate
bounds is Lee & Raginsky (2018), and important results in this direction include Blanchet et al.
(2021b); Blanchet & Shapiro (2023) about asymptotical results for smooth losses, and Chen &
Paschalidis (2018) about non-asymptotically results for linear models and for smooth loss functions.
Let us also mention Yang & Gao (2022) which deals with 0-1 loss, and Gao (2022) which focuses
on Wasserstein-1 uncertainty and the connection with Lipschitz norm regularization. In this paper,
we rather focus of exact bounds of the form of (3), which are out of reach of ERM-based models,
and thus capture the essence of WDRO.

The literature about exact bounds is scarcer than the one about approximate bounds and signifi-
cantly different in terms of proof techniques. Let us mention Shafieezadeh-Abadeh et al. (2019)
which establishes exact guarantees for linear regression models, and Gao (2022) which proposes
tighter results for linear regression and Wasserstein-1 uncertainty. The closest work to our paper is
Azizian et al. (2023a), which initiates a general study on exact bounds. There, the authors establish
generalization results similar to ours, namely: exact bounds (3) in a regime where ρ > O(1/

√
n). In

sharp contrast with our work, the results from Azizian et al. (2023a) rely on restrictive assumptions
to overcome the nonsmoothness of the robust objective: the squared norm for the cost c, a Gaussian
reference distribution, additional growth conditions, and abstract compactness conditions1. We will
further compare the setting and the results, in Section 3 and in the supplemental. In our work, we
directly deal with nonsmoothness, thanks to tools from nonsmooth analysis, and thus we are able to
alleviate extra assumptions and capture nonsmooth losses.

The only other work regarding nonsmooth objectives is An & Gao (2021) which derives results on
piece-wise smooth losses, at the price of abstract approximating constants. We underline that none
of the existing results properly covers nonsmooth losses, in particular deep learning objectives with
nonsmooth activations.

Finally, let us mention that there exist many works studying generalization guarantees for other
distributionally robust models, involving different uncertainty quantification. For instance, Zeng &
Lam (2022) studies nonparametric families and divergence-based ambiguity, and Bennouna et al.
(2023) considers deep learning models with ambiguity sets that combine KL divergence and ad-
versarial corruptions. Though duality is always an important tool, we face in our framework to
the specific difficulty of dealing with Wasserstein distances, so that the technicalities as well as the
results of our paper are essentially different and disjoint from these works.

1.4 NOTATIONS

On probability spaces. Given a measurable space Ξ, we denote the space of probability measures
on Ξ by P(Ξ). For all π ∈ P(Ξ×Ξ), i ∈ {1, 2}, we denote the ith marginal of π by [π]i. We denote
the Dirac mass at ξ ∈ Ξ by δξ. Given a measurable function g : Ξ → R, we denote the expectation
of g with respect to Q ∈ P(Ξ) by Eξ∼Q[g(ξ)] and we may also use the shorthand EQ[g].

On function spaces. In (X ,dist) a metric space, the uniform norm of a function f is ∥f∥∞ =
supx∈X |f(x)|. If F is a family of functions, we denote ∥F∥∞ = supf∈F ∥f∥∞. We say f is
Lipschitz with constant L if for all x, y ∈ X , |f(x) − f(y)| ≤ Ldist(x, y). For ϕ : R × X → R,
we denote ∂+λ ϕ the right-sided derivative with respect to λ ∈ R, and ∂λϕ its derivative, whenever
well-defined.

2 ASSUMPTIONS AND EXAMPLES

In this section, we present the general framework and illustrate it by standard examples. Throughout
the paper, we consider a family of loss functions F , a transport cost c, and a distance d on a sample
space Ξ, satisfying the following assumptions.

1We show in Proposition F.4 in the appendix that the compactness assumptions of Azizian et al. (2023a)
hide strong conditions on the maximizers.
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Assumption 2.1.

1. (Ξ, d) is compact.

2. c : Ξ×Ξ→ R is jointly continuous with respect to d, non-negative, and c(ξ, ζ) = 0 if and
only if ξ = ζ.

3. Every f ∈ F is continuous, (F , ∥ · ∥∞) is compact, and furthermore, IF , the Dudley’s
entropy2 of the family F , is finite.

This setting encompasses many machine learning scenarios, with parametric models, general loss
functions, and general transport costs, as illustrated in the two paragraphs below. We will come back
later in Section 3.4 on the assumptions to discuss their reach and limitations.

Parametric models and loss functions. Our setting covers a wide range of machine learning
models. Consider a parametric family F = {f(θ, ·) : θ ∈ Θ}, where the parameter space Θ ⊂ Rp
is compact and the loss function f : Θ×Ξ→ R is jointly Lipschitz continuous. If Ξ is compact, such
a family is compact regarding ∥ · ∥∞. This situation covers regression models, k-means clustering,
and neural networks. For example: least-squares regression

f(θ, (x, y)) = (⟨θ, x⟩ − y)2, Ξ ⊂ Rm × R,
logistic regression

f(θ, (x, y)) = log
(
1 + e−y⟨θ,x⟩

)
, Ξ ⊂ Rm × {−1, 1},

and support vector machines with hinge loss

f(θ, (x, y)) = max {0, 1− y⟨θ, x⟩} , Ξ ⊂ Rm × {−1, 1}.
Note that the latter is not differentiable, due to the max term. The k-means model also introduces a
non-differentiable loss function:

f(θ, x) = min
i∈{1,...,K}

∥θi − x∥22, Θ ⊂ RK×m, Ξ ⊂ Rm.

Finally, most deep learning models fall in our setting. Indeed, they involve loss functions of the form

f(θ, (x, y)) = ℓ(h(θ, x), y),

where ℓ is a dissimilarity measure and h is a parameterized prediction function, built as a compo-
sition of affine transformations (which are the parameters to train) with activation functions (see
e.g. Krizhevsky et al. (2012); LeCun et al. (2015); Redmon et al. (2016)). Our setting is gen-
eral enough to encompass all continuous activation functions, even non-differentiable ones (as
ReLU = max(0, ·)) as well as other nonsmooth elementary blocks (as max-pooling (He et al.,
2016), sorting procedures (Sander et al., 2023), and optimization layers (Amos & Kolter, 2017)).
As already underlined in introduction, these examples involving non-differentiable terms are not
covered by existing results.

Sample space and transport costs. The choice of the transport cost c depends on the nature of the
data and of the potential data uncertainty. For instance, if the variables are continuous with Ξ ⊂ Rm,
we consider the distance d = ∥ · − · ∥p induced by ℓp-norm (p ∈ [1,∞]) and the cost as a power
(q ∈ [1,∞)) of the distance

c(ξ, ξ′) = ∥ξ − ξ′∥qp.
If the variables are discrete with Ξ ⊂ {1, . . . , J}m, we consider the distance

d(ξ, ξ′) =

m∑
i=1

1{ξi ̸=ξ′i}

2Recall that Dudley’s entropy of the family F with respect to ∥ · ∥∞ is defined by (see e.g. Boucheron et al.
(2013))

IF :=

∫ ∞

0

√
logN(t,X , ∥ · ∥∞)dt

where N(t,X , ∥ · ∥∞) denotes the t-packing number of F , which is the maximal number of functions in F
that are at least at a distance t from each other.
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and the cost as a power of this distance. If we deal with mixed data, i.e. they contain both continuous
and discrete variables, a sum of the previous costs can be considered. In classification, for instance,
with the samples composed of features x ∈ Rm and a target y ∈ {−1, 1}, we may take

c((x, y), (x′, y′)) = ∥x− x′∥qp + κ1{y ̸=y′}

for a chosen κ > 0. This cost is obviously continuous with respect to

d((x, y), (x′, y′)) = ∥x− x′∥p + 1{y ̸=y′}.

This extends to mixed data with categorical, binary and continuous variables; see e.g. Belbasi et al.
(2023).

3 MAIN RESULTS

3.1 WASSERSTEIN ROBUST MODELS

Our main result establishes a generalization bound (3) for Wasserstein distributionally robust opti-
mization (WDRO). Given a distribution Q ∈ P(Ξ) and a loss f ∈ F , the robust risk around Q with
radius ρ > 0 is defined as

Rρ,Q(f) := sup
Q′∈P(Ξ),Wc(Q,Q′)≤ρ

Eξ∼Q′ [f(ξ)]. (4)

In particular, taking Q = P̂n and Q = P in the above expression, we consider the empirical robust
risk, R̂ρ(f), and the true robust risk, Rρ(f):

R̂ρ(f) := Rρ,P̂n
(f) and Rρ(f) := Rρ,P (f).

We also introduce the following constant, called the critical radius ρcrit,

ρcrit := inf
f∈F

Eξ∼P
[
min

{
c(ξ, ζ) : ζ ∈ argmax

Ξ
f

}]
. (5)

Note that ρcrit is defined from the true distribution P , which makes it independent from sample
randomness. In our results, we will make the further assumption that ρcrit > 0, which excludes
losses that remain constant across all samples from the ground truth distribution P . This assumption
reasonably aligns with practice and is also in line with the previous works An & Gao (2021); Az-
izian et al. (2023a). For instance, obtaining a predictor that precisely interpolates the ground truth
distribution (leading to a loss equal to zero everywhere) is unrealistic.

In this context, our main result then establishes the generalization bound when n is large enough,
for ρ scaling with the standard 1/

√
n rate.

Theorem 3.1 (Generalization guarantee for Wasserstein robust models). If Assumption 2.1 holds
and ρcrit > 0, then there exists λlow > 0 such that when n > 16(α+β)2

ρ2crit
and ρ > α√

n
, we have with

probability at least 1− δ,

R̂ρ(f) ≥ Eξ∼P [f(ξ)] for all f ∈ F ,
where α and β are the two constants

α = 48

(
∥F∥∞+

1

λlow

)(
IF +

2

λlow

)
+

2∥F∥∞
λlow

√
2 log

2

δ
, β =

96IF
λlow

+
4∥F∥∞
λlow

√
2 log

4

δ
.

This result with ρ scaling with the dimension-free 1/
√
n rate is similar to (Azizian et al., 2023a,

Th. 3.1), but guaranteed now in the wide setting of Assumption 2.1. We achieve this result through
a novel proof technique that combines nonsmooth analysis rationale with classical concentration
results; as depicted in Section 4.

The critical radius ρcrit can be interpretated as a degeneracy threshold of the robust problem; we
discuss it below in Remark 3.1. The quantity λlow is a positive constant related to the geometry of
the Wasserstein ambiguity set; we discuss it in Section 4.2. Interestingly, in the case of linear and
logistic regressions, we can establish estimates of these two quantities; see Section 3.2.

We now extend the previous result to derive the following excess risk bound.
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Proposition 3.1 (Excess risk for Wasserstein robust models). Let α be given by Theorem 3.1. Under
Assumption 2.1, if ρcrit > 0, n > 16α2

ρ2crit
and ρ ≤ ρcrit

4 −
α√
n

, then with probability at least 1− δ,

R̂ρ(f) ≤ Rρ+ α√
n
(f) for all f ∈ F .

In particular, if c = d(·, ·)p with p ∈ [1,∞) and every f ∈ F is LipF -Lipschitz, then

R̂ρ(f) ≤ Eξ∼P [f(ξ)] + LipF

(
ρ+

α√
n

) 1
p

.

Remark 3.1 (The critical radius as a degeneracy threshold). The critical radius ρcrit defined in (5)
plays the role of a degeneracy threshold for the problem, as follows. We can show that if ρ ≥ ρcrit,
there exists f ∈ F satisfying Rρ(f) = maxξ∈Ξ f(ξ). Furthermore, for ρ ≥ ρcrit +

α√
n

, with high

probability, there exists f ∈ F such that R̂ρ(f) = maxξ∈Ξ f(ξ). In other words, if the radius
is chosen too high compared to ρcrit, both generalization and excess bounds (Theorem 3.1 and
Proposition 3.1) are vacuous. A proof of this result is found in Appendix, Proposition F.1.

3.2 GENERALIZATION GUARANTEES OF WASSERSTEIN ROBUST LINEAR MODELS

We now illustrate how our generalization guarantees from Section 3.1 apply to linear models. In this
part, we assume the support of P to be contained in a ball of diameter D centered at 0.

We recover estimates similar to the ones from the study of linear models (Shafieezadeh-Abadeh
et al., 2019), hence showing the tightness of our approach. We consider the setting from
Shafieezadeh-Abadeh et al. (2019) where the parameter space is assumed to be bounded away from
zero (Shafieezadeh-Abadeh et al., 2019, Assumption 4.5):
Assumption 3.1 (Hypothesis domain). F = {f(θ, ·) : θ ∈ Θ}, where Θ ⊂ Rp is a compact subset
and c = ∥ · − · ∥2. There exists ω > 0 satisfying one of the following:

1. (Linear regression). f(θ, (x, y)) = (⟨θ, x⟩ − y)2 and infθ∈Θ ∥(θ,−1)∥2 ≥ ω.

2. (Logistic regression). f(θ, (x, y)) = log(1 + e−y⟨θ,x⟩) and infθ∈Θ ∥θ∥2 ≥ ω.

Under this assumption, we obtain estimates for the constants λlow and ρcrit.
Proposition 3.2 (Linear models dual bound and critical radius). Under Assumption 3.1, let Ω :=
supθ∈Θ ∥θ∥2. Theorem 3.1 and Proposition 3.1 hold with ρcrit ≥ D2 and

1. (Linear regression) λlow ≥ ω
2 under Assumption 3.1.1.

2. (Logistic regression) λlow ≥ ω

8
(
1+eDΩ

) under Assumption 3.1.2.

These specific results show that we retrieve the constants from Shafieezadeh-Abadeh et al. (2019),
for normalized data in the case of logistic regression. In particular, our constant α is proportional
to 1/ω2 for the linear regression. Remark that the tails parameters of f(ξ) and ξ ∼ P from
Shafieezadeh-Abadeh et al. (2019) correspond in our case to ||F||∞ and D respectively, and Dud-
ley’s constant is proportional to

√
p. In the case of linear regression, the dual lower bound is directly

related to the parameter bound ω from Shafieezadeh-Abadeh et al. (2019). In more advanced set-
tings (e.g. deep learning), the positivity of λlow can be seen as an implicit definition of the hypothesis
bound ω.

3.3 REGULARIZED WASSERSTEIN ROBUST MODELS

Part of the success of optimal transport in machine learning is the use of regularization, and specifi-
cally entropic regularization, opening the way to nice properties and efficient computational schemes
(Cuturi, 2013; Peyré & Cuturi, 2019). Recall that the entropy-regularized Wasserstein distance
writes, for a reference coupling π0 ∈ P(Ξ×Ξ) as

W τ
c (P,Q) = min

π∈P(Ξ×Ξ)
[π]1=P,[π2]=Q

{Eπ[c] + τDKL(π∥π0)} (6)

6
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where DKL(·∥π0) is the Kullback-Leibler divergence w.r.t. π0:

KL(π∥π0) =

{∫
Ξ×Ξ

log dπ
dπ0

dπ when π ≪ π0
∞ otherwise.

Note that the minimum (6) is well defined, attained at some coupling πP,Q ≪ π0, see e.g. Peyré
& Cuturi (2019). Regularization have been recently studied in the context of WDRO: Wang et al.
(2023) introduces an entropic regularization in constraints for computational interests, Azizian et al.
(2023a) considers an entropic regularization in the objective for generalization, and Azizian et al.
(2023b) studies a general regularization in both constraints and objective.

Following the most general case Azizian et al. (2023b) we consider the robust risk with double
regularization

Rτ,ϵρ,Q(f) := sup
π∈P(Ξ×Ξ), [π]1=Q
Eπ [c]+τ KL(π∥π0)≤ρ

{
E[π]2 [f ]− ϵDKL(π∥π0)

}
with two parameters ϵ > 0 and τ ≥ 0. We introduce the conditional moment3 of π0

mc := max
ξ∈Ξ

Eζ∼π0(·|ξ)[c(ξ, ζ)],

and the regularized critical radius

ρτ,ϵcrit := inf
f∈F

Eξ∼P
[
E
ζ∼πf/ϵ

0 (·|ξ)

[τ
ϵ
f(ζ) + c(ξ, ζ)

]
− τ logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
, (7)

where dπ
f/ϵ
0 (·|ξ) ∝ ef/ϵdπ0(·|ξ). In this setting, the generalization guarantee states as follows.

Theorem 3.2 (Generalization for double regularization). Under Assumption 2.1, there exist ατ,ϵ > 0

and βτ,ϵ > 0 depending on F ,Ξ, c, ϵ, τ and δ, such that if ρτ,ϵcrit > 4mc, when n > 16(ατ,ϵ+βτ,ϵ)2

(ρτ,ϵcrit−4mc)2

and ρ > max
{
mc,

ατ,ϵ
√
n

}
, we have with probability at least 1 − δ, for all Q ∈ P(Ξ) such that

W τ
c (P,Q) ≤ ρ,

R̂τ,ϵρ (f) ≥ Eζ∼Q[f(ζ)]− ϵDKL(π
P,Q∥π0) for all f ∈ F ,

where πP,Q is the optimal coupling in (6).

This result is similar to the one of Theorem 3.1 and is also similar to the only other generaliza-
tion result existing for regularized WDRO (Azizian et al., 2023a). Let us explicit below the main
differences.

Unlike Wasserstein robust models (Theorem 3.1), regularization leads to an inexact generalization
guarantee, where the regularized empirical robust risk bounds a proxy for the true risk EP [f ]. This
is in line with the regularization in optimal transport that induces a bias in the Wasserstein metric,
preventing W τ

c (P, P ) from being null. In particular, given an arbitrary τ > 0, W τ
c (P, P ) may not

be lower than ρ.

The coefficients ατ,ϵ and βτ,ϵ exhibit similar relations with λτ,ϵlow, ∥F∥∞, and IF to their counter-
parts α and β from Theorem 3.1. Their complete expressions can be found in the extended version
of Theorem 3.2 (in Appendix, Theorem E.2). In particular, the expression of ατ,ϵ suggests mc, ϵ, τ
and ρ should be of comparable order. Compared to the standard setting, we have an estimate of the
lower bound λτ,ϵlow (Lemma D.2) showing dependence on the loss family: λτ,ϵlow = O

(
e−

∥F∥∞
ϵ

)
.

Compared to Azizian et al. (2023a), we underline that our result covers the double regularization
case. Moreover, it is valid for an arbitrary π0 whereas the one from Azizian et al. (2023a) relies on
the specific form of π0 involving a Gaussian term. Our result is thus more flexible, allowing freedom
in the choice of π0.

As for the standard case (Proposition 3.1), we obtain an excess risk bound. The main difference in
this setting is that we lose the explicit control of the true risk. This is mainly due to the inexactness
brought by regularization.

3E.g.,if c(ξ, ζ) = 1
2
∥ξ−ζ∥2 and π0(·|ξ) is a truncated Gaussian π0(·|ξ) ∝ e

− ∥·−ξ∥2

2σ2 1Ξ, we have mc ∝ σ2.

7
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Proposition 3.3 (Excess risk for doubly regularized robust models). Let ατ,ϵ be given by Theo-
rem 3.2. Under Assumption 2.1, if ρτ,ϵcrit > 4mc, n > 16ατ,ϵ2

(ρτ,ϵcrit−4mc)2
and mc < ρ ≤ ρτ,ϵcrit

4 −
ατ,ϵ
√
n

, then
with probability at least 1− δ,

R̂τ,ϵρ (f) ≤ Rτ,ϵ
ρ+ατ,ϵ

√
n

(f) for all f ∈ F .

3.4 LIMITATIONS AND POTENTIAL EXTENSIONS

In the previous sections, we presented our results and their universality, to underline that they are
widely applicable in machine learning. In this section, we discuss three relative limitations of our
results: the assumption of the compactness of sample space, the assumption of finite Dudley entropy,
and the expression of constants.

Compactness of the sample space Ξ (Assumption 2.1.1) is essential to control worst-case distri-
butions of the robust objective (2), given our level of generality. This assumption is in line with
some recent studies Azizian et al. (2023a); Blanchet & Shapiro (2023); see also Gao et al. (2022)
which uses bounded growth assumptions. Such assumptions are reasonable, as standard statistical
frameworks involving Gaussian or heavy tail distributions could be covered by truncating.

In our study, considering loss families with finite Dudley’s entropy (Assumption 2.1.3) is crucial
to limit the dependence on the sample dimension. This assumption is satisfied for Lipschitz para-
metric losses with bounded parameter space, and it is not clear if a dimension-free generalization
could be established for non-parametric losses. For instance, Zeng & Lam (2022) dealing with non-
parametric losses, exhibits generalization guarantees with exponential dependence in the dimension.

Finally, regarding the generalization constants, we could improve them in several ways. For instance,
leveraging the structure of specific models would allow to obtain estimates of the constants λlow,
ρcrit; this is what we did for the linear models in Section 3.2. Taking into account the optimization
procedure which selects a small set of solutions could also be interesting in order to have sharper
constants on the class F .

4 SKETCH OF THE PROOF

This section presents our strategy to prove the generalization results of Section 3 (Theorems 3.1 and
3.2). The strength of our approach is to use flexible nonsmooth analysis arguments, able to cover
the general situation of arbitrary (continuous) cost and objective functions. We present the main
approach in Section 4.1, based on a duality formula and a lower bound λlow on the dual variable. In
Section 4.2, we focus on the latter and shed lights on its role. Finally, we explain in Section 4.3 the
extension to regularized models.

4.1 MAIN APPROACH

Compared to the original formulation (4), the dual representation significantly diminishes the prob-
lem’s degrees of freedom, and is usually the starting point of most studies of WDRO; see e.g. Kuhn
et al. (2019); Azizian et al. (2023b). Given any distribution Q ∈ P(Ξ) and radius ρ > 0, it holds
that

Rρ,Q(f) = inf
λ≥0
{λρ+ Eξ∼Q[ϕ(λ, f, ξ)]} ,

where the dual generator ϕ is a convex function with respect to λ, and Lipschitz continuous with
respect to f . For Wasserstein robust models, ϕ has the expression (see e.g. Blanchet & Murthy
(2019))

ϕ(λ, f, ξ) = sup
ζ∈Ξ
{f(ζ)− λc(ξ, ζ)} .

Observe that ϕ is naturally convex in λ, but also nonsmooth. The originality of our approach is to
build on this nonsmoothness by using a rationale of nonsmooth analysis, which allows us to cover
the case of other dual generators as for the regularized versions; see next section.

Let us then outline the main steps to establish Theorem 3.1:

8
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1. Dual lower bound. Given β > 0 appearing in Theorem 3.1, We establish the existence of
a dual lower bound λlow > 0, which holds with high probability for all f ∈ F , for a small
enough radius ρ ≤ ρcrit

4 −
β√
n

:

R̂ρ(f) = inf
λ∈[λlow,∞)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
.

This is done in Appendix E.1.
2. Concentration of the radius. Let us write for all λ ≥ λlow and f ∈ F

λρ+ EP̂n
[ϕ(λ, f)] ≥ λ

(
ρ−
(EP [ϕ(λ, f)]− EP̂n

[ϕ(λ, f)]

λ

))
+ EP [ϕ(λ, f)]

≥ λ(ρ− αn) + EP [ϕ(λ, f)], (8)
where we define the uniform gap αn by

αn = sup
{
EP [µϕ(µ−1,f)]− EP̂n

[µϕ(µ−1,f)] : (µ, f) ∈ (0, λ−1
low]×F

}
. (9)

This quantity can be bounded with high probability by α√
n

– where α > 0 is the constant
from Theorem 3.1. To obtain such a bound, we rely on known uniform concentration
theorems for Lipschitz functions Boucheron et al. (2013). Concentration constants are
computed Appendix C.

3. Generalization bound. We can now obtain the result. Taking the infimum over λ ≥ λlow
in (8), we obtain with high probability for all f ∈ F ,

R̂ρ(f) ≥ Rρ−α/√n(f) ≥ Eξ∼P [f(ξ)],

whenever α√
n
< ρ ≤ ρcrit

4 −
β√
n

. This interval is nonempty if n > 16(α+β)2/ρ2crit. Since

R̂ρ(f) is non-decreasing with respect to ρ, we have R̂ρ(f) ≥ Eξ∼P [f(ξ)] for any ρ > α√
n

as long as n > 16(α+ β)2/ρ2crit.

4.2 DEFINITION OF THE LOWER BOUND

λlow defines a dual lower bound on the true risk Rρ(f), making it independent from samples ran-
domness. In our proof, we then show that this lower bound holds with high probability on the
empirical robust risk R̂ρ(f) using the convexity of ϕ. This is done in Proposition E.2 in Appendix.

Figure 1: A central object of our analysis: the
maximal radius ρmax, defined from the lower
envelope of derivatives of ϕ.

We now explain the definition of λlow more precisely.
We consider the maximal radius function

ρmax(λ) = inf
f∈F

Eξ∼P [−∂+λ ϕ(λ, f, ξ)].

At a given λ, this function indicates the maximum
value ρ can take for the dual solution of Rρ(f) to be
higher than λ. In particular, by convexity of ϕ, we can
easily verify that if ρ ≤ ρmax(λ) for all λ ∈ [0, 2λlow],
then the dual bound 2λlow holds on the true robust
risk:

Rρ(f) = inf
λ≥2λlow

{λρ+ Eξ∼P [ϕ(λ, f, ξ)]} .

As illustrated by Figure 1, ρmax reaches its highest
value at zero, which is actually the critical radius,
ρcrit. The crux of the proof is to show there exists
a value λlow allowing to choose radius values of order
ρcrit:
Lemma 4.1. limλ→0+ ρmax(λ) = ρcrit. In particular, there exists λlow > 0 such that if ρ ≤ ρcrit

4 ,
then for all f ∈ F ,

Rρ(f) = inf
λ≥2λlow

{λρ+ Eξ∼P [ϕ(λ, f, ξ)]} .

Such a result may be surprising since ϕ is a nonsmooth function and ρmax, defined from the lower
envelope of (discontinuous) derivatives of ϕ is in general highly discontinuous. In order to establish
it, we use tools from nonsmooth analysis (Appendix A.1) and leverage compactness of the class F .

9
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4.3 EXTENSION TO (DOUBLE) REGULARIZATION

The strategy of Section 4.1 is flexible enough to be extended to the regularized setting of Section 3.3.
Indeed, the regularized problem also has a dual representation, with a dual generator defined by

ϕτ,ϵ(λ, f, ξ) = (ϵ+ λτ) logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
,

where ϵ > 0 and τ ≥ 0. Strong duality has been shown in Azizian et al. (2023b). We explain in
Appendix B, Proposition B.2 how it applies to our general setting. This regularized dual generator
leads to a smooth counterpart of the key function ρmax from the proof and to the regularized critical
radius (7). In particular, we can show the regularized version of Lemma 4.1.

Lemma 4.2. limλ→0+ ρ
τ,ϵ
max(λ) = ρτ,ϵcrit. In particular, there exists λτ,ϵlow > 0 such that if ρ ≤ ρτ,ϵcrit

4 ,

Rτ,ϵρ (f) = inf
λ≥2λτ,ϵ

low

{λρ+ Eξ∼P [ϕτ,ϵ(λ, f, ξ)]} for all f ∈ F .

Then we obtain Theorem 3.2 by repeating the proof scheme of Section 4.1. The core results that
simultaneously lead to Theorems 3.1 and 3.2 are gathered in Appendix E.1. Due to the smoothness
of ρτ,ϵmax an expression of λτ,ϵlow can also be obtained; see Lemma D.2.

The key difference brought by regularization is that Lipschitzness of µϕ(µ−1,f, ξ) is lost when
µ → 0. This prevents us from using the concentration result – essential to bound the gap αn (9) –
unless we can set a lower bound on µ, or equivalently an upper bound on λ. This issue is inherent
to the regularized setting and may occur over the whole family F and the space Ξ; we provide
an example in Proposition F.3 to illustrate this. The next lemma aims to overcome this issue by
establishing the existence of such an upper bound for any distribution (see Lemma D.3 for a proof).

Lemma 4.3. Let Q ∈ P(Ξ), ρ > mc and λup := 2∥F∥∞
ρ−mc

. Then for all f ∈ F ,

Rτ,ϵρ,Q(f) = inf
λ∈[0,λup]

{λρ+ Eξ∼Q[ϕτ,ϵ(λ, f, ξ)]} .

5 CONCLUDING REMARKS

In this work, we provide exact generalization guarantees of (regularized) Wasserstein robust models,
without restrictive assumptions (on the Wasserstein metric or the class of functions). We achieve
these universal results by directly addressing the intrinsic nonsmoothness of robust problems. Our
results thus give users freedom when choosing the radius ρ: it is not necessary to consider specific
regimes for ρ in order to expect good generalization from robust models. Further research can now
focus on practical aspects: it would be of premier interest to design efficient procedures for selecting
ρ, and more generally, scalable algorithms for solving distributionally robust optimization problems.
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Supplemental material

This supplemental gathers recalls, technical lemmas and definitions, examples, and detailed proofs
of the results from the main text. The core of our contributions is presented in Appendices D and E.
The whole supplemental is organized as follows:

– In Appendix A, we recall some essential mathematical tools. They include continuity notions in
nonsmooth analysis, the envelope formula to differentiate supremum functions (Theorem A.1) and
a uniform concentration inequality (Theorem A.2).

– In Appendix B, we present strong duality results for WDRO and its regularized version. We
explain in particular how the duality theorem from Azizian et al. (2023b) can be easily adapted to
our setting.

– Appendix C contains preliminary computations in view of applying the uniform concentration
theorem.

– In Appendix D, we demonstrate the existence of a dual lower bound in the standard and regularized
cases. In particular, the proofs involve the maximal radius introduced in Section 4.2.

– By using these preliminary results, in Appendix E, we prove our main results. They include the
generalization theorems (Theorem 3.1 and 3.2), the excess bounds (Proposition 3.1 and Proposi-
tion 3.3) and the constants of the linear models (Proposition 3.2).

– Appendix F contains results supporting several remarks of the main. They include the interpreta-
tion of the critical radius in the regularized case, a counter-example justifying the upper bound in the
regularized case and the interpretation of the restrictive compactness assumptions used in Azizian
et al. (2023a).

NOTATIONS

Throughout, the proofs will use the following notations:

In Wasserstein robust models:

• ϕ(λ, f, ξ) = supζ∈Ξ {f(ζ)− λc(ξ, ζ)}
• ψ(µ, f, ξ) = µϕ(µ−1, f, ξ)

• ρcrit = inff∈F Eξ∼P [min {c(ξ, ζ) : ζ ∈ argmaxΞ f}] .

In Wasserstein robust models with double regularization:

• ϕτ,ϵ(λ, f, ξ) = (ϵ+ λτ) logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
• ψτ,ϵ(µ, f, ξ) = µϕτ,ϵ(µ−1, f, ξ)

• ρτ,ϵcrit = inff∈F Eξ∼P
[
E
ζ∼πf/ϵ

0 (·|ξ)

[
τ
ϵ f(ζ) + c(ξ, ζ)

]
− τ logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
.

Given a measurable function h : Ξ→ R and π ∈ P(Ξ) the Gibbs distribution πh is defined as

dπh ∝ ehdπ.

A RECALLS AND TECHNICAL PRELIMINARIES

A.1 NONSMOOTH ANALYSIS

In this part, we use the notation G : X ⇒ Y to denote a function G defined on X and valued in the
set of subsets of Y .

Semicontinuity notions will be necessary to understand the proof of Lemma D.1. They are regularity
notions recurrently arising when manipulating nonsmooth convex functions.
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Definition A.1 (Lower and upper semicontinuity (Aliprantis & Border, 2006, 2.42)). Let (X ,dist)
be a metric space and let f : X → R. Then

1. f is called lower semicontinuous if for all x ∈ X , lim infy→x f(y) ≥ f(x).

2. f is called upper semicontinuous if for all x ∈ X , lim supy→x f(y) ≤ f(x).

In particular, if f is lower semicontinuous, then −f is upper semicontinuous.

Outer semicontinuity can be seen as the set-valued counterpart of upper semicontinuity:

Definition A.2 (Outer semicontinuity). Let X and Y two metric spaces. Then a measurable and
compact-valued map G : X ⇒ Y is called outer semicontinuous at x ∈ X if for all open subset
V ⊂ Y containing G(x), there exists a neighborhood U of x which is such that for all w ∈ U ,
G(w) ⊂ V .

Semicontinuity of maximum and argmax functions are central to the proof of Lemma D.1:

Lemma A.1 (Semicontinuity of maximum value (Aliprantis & Border, 2006, 17.30)). Let X and Ξ
be two metric spaces and let G : X ⇒ Ξ be outer semicontinuous with nonempty compact values,
h : Ξ× Ξ→ R continuous. Then the function

x 7→ max{h(x, v) : v ∈ G(x)}

is upper semicontinuous. In particular, u 7→ min{h(u, v) : v ∈ G(x)} is lower semicontinuous.

Lemma A.2 (Semicontinuity of maximizers (Aliprantis & Border, 2006, 17.31)). If X is a metric
space, (Ξ, d) is a compact metric space, and h : X × Ξ → R is continuous, then the function
x 7→ maxz∈Ξ h(x, z) is continuous, and the set-valued map x 7→ argmaxz∈Ξ h(x, z) is outer
semicontinuous.

We recall the definition of gradient for a nonsmooth convex function. This the subdifferential.

Definition A.3 (Subdifferential of convex function). Let ϕ : Rm → R be a convex function. Then
we call subdifferential of ϕ the set-valued map ∂ϕ : Rm ⇒ Rm such that for all x ∈ Rm and
y ∈ Rm,

ϕ(y) ≥ ϕ(x) + ⟨v, y − x⟩ for all v ∈ ∂ϕ(x).

In particular, we may apply the envelope formula to compute the subdifferential of a maximum
function:

Theorem A.1 (Envelope formula (Clarke, 1990, Cor. 1, Chapter 2.8)). Let (Ξ, d) be a compact
metric space and g : Rm × Ξ→ R such that

1. For all x ∈ Rm, g(x, ·) is continuous.

2. For all ζ ∈ Ξ, g(·, ζ) is convex with subdifferential ∂xg(·, ζ).

Then G := supζ∈Ξ g(·, ζ) is convex on Rm, and its subdifferential is given for all x ∈ Rm by

∂G(x) := conv{v : v ∈ ∂xg(x, ζ), ζ ∈ argmax
Ξ

g(x, ·)}.

where conv denotes the convex hull of a set.

A.2 UNIFORM CONCENTRATION INEQUALITY

We recall concentration inequalities that gives a high probability uniform bound for a family of
bounded and Lipschitz functions. We refer the reader to Boucheron et al. (2013) for a complete
reference on concentration inequalities, and Lemma G.2 in Azizian et al. (2023a) for the proof of
such a result.
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Theorem A.2 (Uniform concentration (Azizian et al., 2023a, Lem. G.2)). Let (X , dist) be a (totally
bounded) separable metric space, P a probability distribution on a probability space Ξ, and P̂n =
1
n

∑n
i=1 δξi with ξ1, . . . , ξn

i.i.d.∼ P . Consider a measurable mapping X : X × Ξ → R and assume
that,

(i) There is a constant L > 0 such that, for each ξ ∈ Ξ, x 7→ X(x, ξ) is L-Lipschitz.

(ii) X(·, ξ) almost surely belongs to [a, b].

Then, for any δ ∈ (0, 1), we respectively have

1. With probability at least 1− δ,

sup
x∈X

{
Eξ∼P̂n

[X(x, ξ)]− Eξ∼P [X(x, ξ)]
}
≤ 48LI(X ,dist)√

n
+ (b− a)

√
2
log 1

δ

n
.

2. With probability at least 1− δ,

sup
x∈X

{
Eξ∼P [X(x, ξ)]− Eξ∼P̂n

[X(x, ξ)]
}
≤ 48LI(X ,dist)√

n
+ (b− a)

√
2
log 1

δ

n
.

The quantity I(X ,dist) is defined as follows:

Definition A.4. Given a compact metric space (X ,dist), Dudley’s entropy integral, I(X ,dist), is
defined as

I(X ,dist) :=
∫ ∞

0

√
logN(t,X ,dist)dt

where N(t,X , dist) denotes the t-packing number of X , which is the maximal number of points in
X that are at least at a distance t from each other.

We may recall some properties of Dudley’s entropy for Cartesian products and segments from R.
These are known results, see e.g. Wainwright (2019) and Lemmas G.3 and G.4 from Azizian et al.
(2023a) for proofs.

Lemma A.3 (Dudley’s integral estimates).

1. (on Cartesian products) Let (X1,dist1) and (X2,dist2) be two metric spaces. Consider
the product space X := X1 × X2 equipped with the distance dist := dist1 +dist2. Then
we have the inequality

I(X ,dist) ≤ I(X1,dist1) + I(X2,dist2).

2. (on R) Let c > 0. Then we have the inequality

I([0, c], | · |) ≤ 3c

2
.

B STRONG DUALITY

In this section, we recall duality results for WDRO Blanchet & Murthy (2019); Gao & Kleywegt
(2023); Zhang et al. (2022) and its regularized version Azizian et al. (2023b). We recall the Wasser-
stein distance with cost c for (Q,Q′) ∈ P(Ξ)× P(Ξ):

Wc(Q,Q
′) = inf

{
E(ξ,ζ)∼π[c(ξ, ζ)] : π ∈ P(Ξ× Ξ), [π]1 = Q, [π]2 = Q′} .

Proposition B.1 (Strong duality, standard WDRO). Under Assumption 2.1, for any Q ∈ P(Ξ) and
ρ > 0, then

sup
Wc(Q,Q′)≤ρ

Eξ∼Q′ [f(ξ)] = inf
λ≥0
{λρ+ Eξ∼Q[ϕ(λ, f, ξ)]} .
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Proof. This is an application of Theorem 1 from Blanchet & Murthy (2019). In particular, Assump-
tions 1 and 2 from Blanchet & Murthy (2019) are satisfied through Assumption 2.1.

Proposition B.2 (Strong duality, regularized WDRO). Under Assumption 2.1, for any Q ∈ P(Ξ)
and ρ > 0, if there exists π ∈ P(Ξ× Ξ) such that Eπ[c] + τDKL(π∥π0) < ρ, then

sup
π∈P(Ξ×Ξ),[π]1=Q

Eπ [c]+τ KL(π∥π0)≤ρ

{
Eξ∼[π]2 [f(ζ)]− ϵKL(π∥π0)

}
= inf
λ≥0
{λρ+ Eξ∼Q[ϕτ,ϵ(λ, f, ξ)]} . (10)

In particular, if ρ > mc, (10) holds.

Proof. This is an application of Theorem 3.1 from Azizian et al. (2023b), which is a corollary to
Theorem 2.1 Azizian et al. (2023b). In particular, if ρ > mc the coupling π0 satisfies Eπ0 [c] +
τDKL(π0∥π0) = Eπ0 [c] ≤ mc < ρ.

Note that the proofs of Theorems 2.1 and 3.1 from Azizian et al. (2023b) can be easily extended to a
general compact metric space (Ξ, d), without being rewritten entirely. Precisely, only two arguments
in their proofs rely on the real-valued setting Rockafellar & Wets (1998) but can be directly extended
to a general metric space as follows:

• In the proof of Theorem 2.1 from Azizian et al. (2023b), one needs to justify

sup {Eξ∼P [φ(ξ, ζ(ξ))] : ζ : Ξ→ Ξ measurable} ≥ Eξ∼P

[
sup
ζ∈Ξ

φ(ξ, ζ)

]
. (11)

To this end, the authors use the notion of normal integrand from Rockafellar & Wets (1998).
Actually, (11) holds true in a compact metric space: if φ is continuous, then by compactness
of Ξ, the set-valued map ξ 7→ argmaxζ∈Ξ φ(ξ, ζ) admits a measurable selection ζ∗, by the
measurable maximum theorem, see 18.19 in Aliprantis & Border (2006). Such a selection
ζ∗ then satisfies φ(ξ, ζ∗(ξ)) = supζ∈Ξ φ(ξ, ζ) for all ξ ∈ Ξ, hence the result.

• In the proof of Theorem 3.1 from Azizian et al. (2023b), gφ = supζ∈Ξ φ(·, ζ) is actually
continuous by Lemma A.2 and the approximation by the infimal convolutions (gφk )k∈N
need not be done.

Note that the convexity of Ξ is not required (although stated in Assumption 1 from Azizian et al.
(2023b)).

C CONCENTRATION CONSTANTS

In this part, we compute some constants in view of applying Theorem A.2 for the main proofs of
Appendix E.

C.1 STANDARD WDRO

For standard WDRO, we compute bounds (i) and global Lipschitz constants (ii) for ϕ and ψ.

Lemma C.1 (Concentration conditions for WDRO). we have the following:

1. (i) For all λ ≥ 0, f ∈ F and ξ ∈ Ξ, ϕ(λ, f, ξ) ∈ [−∥F∥∞, ∥F∥∞].

(ii) For all λ ≥ 0 and ξ ∈ Ξ, f 7→ ϕ(λ, f, ξ) is Lipschitz continuous on F with constant
1.

2. (i) Given λlow > 0, for all µ ∈ (0, λ−1
low] and f ∈ F , ψ(µ, f, ξ) ∈

[
−∥F∥∞

λlow
, ∥F∥∞
λlow

]
.

(ii) For all ξ ∈ Ξ, (µ, f) 7→ ψ(µ, f, ξ) is Lipschitz continuous on (0, λ−1
low] with constant

∥F∥∞ + λ−1
low.
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Proof. 1. (i) Let (λ, f, ξ) ∈ R+ × F × Ξ. Recall that ϕ(λ, f, ξ) := supζ∈Ξ {f(ζ)− λc(ξ, ζ)}.
Since c is nonnegative, we have ϕ(λ, f, ξ) ≤ ∥F∥∞. On the other hand, since c(ξ, ξ) = 0, we also
have ϕ(λ, f, ξ) ≥ f(ξ) ≥ −∥F∥∞. Finally, we have ϕ(λ, f, ξ) ∈ [−∥F∥∞, ∥F∥∞].

(ii) Let λ ≥ 0, ξ ∈ Ξ and (f, f ′) ∈ F × F . For all ζ ∈ Ξ, we have

f(ζ)− λc(ξ, ζ)− ϕ(λ, f ′, ξ) ≤ f(ζ)− λc(ξ, ζ)− (f ′(ζ)− λc(ξ, ζ))
≤ f(ζ)− f ′(ζ)
≤ ∥f − f ′∥∞.

Taking the supremum over ζ ∈ Ξ on the left-hand side gives ϕ(λ, f, ξ)− ϕ(λ, f ′, ξ) ≤ ∥f − f ′∥∞.
Permuting the roles of f and f ′ yields |ϕ(λ, f, ξ) − ϕ(λ, f ′, ξ)| ≤ ∥f − f ′∥∞. We proved that
ϕ(λ, ·, ξ) is 1-Lipschitz continuous.

2. (i) Now, let λlow > 0 and let (µ, f, ξ) ∈ (0, λ−1
low]×F × Ξ be arbitrary. Then we have

µϕ(µ−1, f, ξ) = sup
ζ∈Ξ
{µf(ζ)− c(ξ, ζ)} ≤ ∥F∥∞

λlow
.

On the other hand, using c(ξ, ξ) = 0 we obtain

sup
ζ∈Ξ
{µf(ζ)− c(ξ, ζ)} ≥ µf(ξ) ≥ −∥F∥∞

λlow
,

whence we have µϕ(µ−1, f, ξ) ∈
[
−∥F∥∞

λlow
, ∥F∥∞
λlow

]
.

(ii) Toward a proof of 2. (ii), let λlow > 0, and ξ ∈ Ξ and µ ∈ (0, λlow]. Remark that
µϕ(µ−1, f, ξ) = supζ∈Ξ {µf(ζ)− c(ξ, ζ)}. The function (µ, f) 7→ µϕ(µ−1, f, ξ) write as a com-
position u ◦ v where u(h) := supζ∈Ξ {h(ζ)− c(ξ, ζ)} for h ∈ C(Ξ,R), and v(µ, f) := µf for
µ ∈ (0, λ−1

low]. u is 1-Lipschitz continuous with respect to ∥ · ∥∞. As to v, we can write

µf − µ′f ′ = µ(f − f ′) + f ′(µ− µ′),

whence v is clearly (∥F∥∞ + λ−1
low)-Lipschitz continuous on (0, λ−1

low]× F . By composition, u ◦ v
is Lipschitz continuous with constant ∥F∥∞ + λ−1

low.

C.2 REGULARIZED WDRO

We now compute the analogous constants of the regularized setting.

We will use the following convexity lemma repeatedly:
Lemma C.2 ((Azizian et al., 2023a, Lem. G.7)). Let g : Ξ→ R be a measurable bounded function
and Q ∈ P(Ξ). Then one has the inequality

logEζ∼Q
[
eg(ζ)

]
≤ Eζ∼Q[g(ζ)eg(ζ)]

Eζ∼Q[eg(ζ)]
.

The following is the regularized version of Lemma C.1:
Lemma C.3 (Concentration conditions for regularized WDRO). Let ξ ∈ Ξ. Then

1. (i) For all λ ≥ 0 and f ∈ F , ϕτ,ϵ(λ, f, ξ) ∈ [−∥F∥∞ − λmc, ∥F∥∞] .

(ii) For all λ ≥ 0, f 7→ ϕτ,ϵ(λ, f, ξ) is Lipschitz continuous with constant 1.

2. (i) Given λlow > 0, for all µ ∈ [λ−1
up , λ

−1
low] and f ∈ F , ψτ,ϵ(µ, f, ξ) ∈[

−∥F∥∞
λlow

−mc,
∥F∥∞
λlow

]
.

(ii) Given λup > 0, (µ, f) 7→ ψτ,ϵ(µ, f, ξ) is Lipschitz continuous on [λ−1
up , λ

−1
low] × F

with constant ∥F∥∞ + λ−1
low +

(
λupϵ

ϵ+λupτ

)
mc.
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Proof. 1. (i) Let (λ, f, ξ) ∈ R+ ×F × Ξ. For all ζ ∈ Ξ, e
f(ζ)−λc(ξ,ζ)

ϵ+λτ ≤ e
∥F∥∞
ϵ+λτ . This gives

ϕτ,ϵ(λ, f, ξ) ≤ (ϵ+ λτ) logEζ∼π0(·|ξ)

[
e

∥F∥∞
ϵ+λτ

]
= ∥F∥∞. (12)

On the other hand, e
f(ζ)−λc(ξ,ζ)

ϵ+λτ ≥ e
−∥F∥∞−λc(ξ,ζ)

ϵ+λτ , which gives

ϕτ,ϵ(λ, f, ξ) ≥ (ϵ+ λτ) log
(
e−

∥F∥∞
ϵ+λτ Eζ∼π0(·|ξ)

[
e−

λc(ξ,ζ)
ϵ+λτ

])
≥ −∥F∥∞ + (ϵ+ λτ) logEζ∼π0(·|ξ)

[
e−

λc(ξ,ζ)
ϵ+λτ

]
≥ −∥F∥∞ − λmc, (13)

where for the last inequality we used Jensen’s inequality on the convex function s 7→ e−
λs

ϵ+λτ .

Combining (12) and (13) gives

ϕτ,ϵ(λ, f, ξ) ∈ [−∥F∥∞ − λmc, ∥F∥∞].

(ii) Let ξ ∈ Ξ and λ ≥ 0. To compute the Lipschitz constant of f 7→ ϕτ,ϵ(λ, f, ξ), we compute the
derivative of hv : t 7→ ϕτ,ϵ(λ, f + tv, ξ) where t ∈ R and for an arbitrary direction v ∈ F . We have

hv(t) = (ϵ+ λτ) logEζ∼π0(·|ξ)

[
e

f(ζ)+tv(ζ)−λc(ξ,ζ)
ϵ+λτ

]
.

It is easy to verify that h′v(t) = E
ζ∼π

f+tv−λc(ξ,·)
ϵ+λτ

0 (·|ξ)
[v(ζ)] , whence |h′v(t)| ≤ ∥v∥∞. This means

that ϕτ,ϵ(λ, ·, ξ) has Lipschitz constant 1.

2. (i) Let λlow > 0 and (µ, f, ξ) ∈ (0, λ−1
low] × F × Ξ. λ. We deduce from (12) and (13), with

λ = µ−1, that

µϕτ,ϵ(µ−1, f, ξ) ∈
[
−∥F∥∞

λlow
−mc,

∥F∥∞
λlow

]
.

(ii) Now, let ξ ∈ Ξ. Our goal is to compute a Lipschitz constant of (µ, f) 7→ µϕτ,ϵ(µ−1, f, ξ) on
[λ−1

up , λ
−1
low]×F . We first compute a Lipschitz constant of

hf : µ 7→ µϕτ,ϵ(µ−1, f, ξ) = (µϵ+ τ) logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
on [λ−1

up , λ
−1
low], for an arbitrary f ∈ F . The derivative of hf is

h′f (µ) =
1

µϵ+ τ

Eζ∼π0(·|ξ)

[
(ϵc(ξ, ζ) + τf(ζ))e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
Eζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

] + ϵ logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
,

which we write

h′f (µ) = E
π

µf−c(ξ,·)
µϵ+τ

0 (·|ξ)

[
ϵc(ξ, ζ) + τf(ζ)

µϵ+ τ

]
+ ϵ logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
. (14)

We bound h′f (µ) above. By Lemma C.2 with Q = π0(·|ξ) and g = µf−c(ξ,·)
µϵ+τ , we have that

ϵ logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
≤ E

ζ∼π
µf−c(ξ,·)

µϵ+τ
0 (·|ξ)

[
ϵµf(ζ)− ϵc(ξ, ζ)

µϵ+ τ

]
which gives h′f (µ) ≤ E

ζ∼π
µf−c(ξ,·)

µϵ+τ
0

[f(ζ)] ≤ ∥F∥∞.

Now we bound h′f (µ) below. We start with the first term in (14). Since c is nonnegative, we clearly
have

E
π

µf−c(ξ,·)
µϵ+τ

0 (·|ξ)

[
ϵc(ξ, ζ) + τf(ζ)

µϵ+ τ

]
≥ −τ∥F∥∞

µϵ+ τ
(15)
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As to the second term of (14), we have by Jensen’s inequality,

ϵ logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
≥ −ϵµ∥F∥∞

µϵ+ τ
− ϵmc

µϵ+ τ
(16)

Combining (15) and (16) gives h′f (µ) ≥ −∥F∥∞ −
λupϵmc

ϵ+λupτ
. Finally, hf has Lipschitz constant

∥F∥∞ +
λupmc

ϵ+λupτ

Since ϕτ,ϵ(µ−1, ·, ξ) has Lipschitz constant 1, then µ ≤ λ−1
low, the function µϕτ,ϵ(µ−1, ·, ξ) has

Lipschitz constant λ−1
low.

Now, we can obtain a Lipschitz constant for

h : (µ, f) 7→ (µϵ+ τ) logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ+τ

]
= ψτ,ϵ(µ, f, ξ).

Indeed, for (µ, µ′) ∈ [λ−1
up , λ

−1
low]× [λ−1

up , λ
−1
low] and (f, f ′) ∈ F × F , we can write

|h(µ, f)− h(µ′, f ′)| ≤ |h(µ, f)− h(µ′, f)|+ |h(µ′, f)− h(µ′, f ′)|

≤
(
∥F∥∞ +

(
λupϵ

ϵ+ λupτ

))
|µ− µ′|+ λ−1

low∥f − f
′∥∞.

hence h has Lipschitz constant ∥F∥∞ + λ−1
low +

(
λupϵ

ϵ+λupτ

)
mc.

D DUAL BOUNDS AND MAXIMAL RADIUS

We establish the existence of a dual lower bound on the true robust risk (Lemma 4.1), for the standard
WDRO problem in D.1 and for regularized WDRO in D.2. The results involve the maximal radius
introduced in Section 4.2. For the regularized case, an estimate of the dual lower bound is provided.

D.1 STANDARD WDRO: CONTINUITY AT ZERO OF THE MAXIMAL RADIUS

For λ ≥ 0, we recall the expression of the maximal radius:

ρmax(λ) = inf
f∈F

Eξ∼P [−∂+λ ϕ(λ, f, ξ)].

Lemma D.1. ρmax(0) = ρcrit and limλ→0+ ρmax(λ) = ρcrit. In particular, there exists λlow > 0
such that ρmax(λ) ≥ ρcrit

4 for all λ ∈ [0, 2λlow].

Proof. For ξ ∈ Ξ, f − λc(ξ, ·) is continuous, hence we can apply the envelope formula
(Theorem A.1) and the right-sided derivative of ϕ with respect to λ is ∂+λ ϕ(λ, f, ξ) =
−min {c(ξ, ζ) : ζ ∈ argmaxΞ {f − λc(ξ, ·)}}. For convenience, we use the shorthand

c∗(ξ,K) := min{c(ξ, z), z ∈ K}

whenever K ⊂ Ξ is compact. By integration and taking the infimum over F we obtain

ρmax(λ) = inf
f∈F

Eξ∼P [c∗(ξ, argmax
Ξ

{f − λc(ξ, ·)})]. (17)

In particular, ρmax(0) = ρcrit.

To prove the result, it is sufficient to show that lim infk→∞ ρmax(λk) ≥ ρcrit for any positive
sequence (λk)k∈N converging to 0. Indeed, the functions Eξ∼P [ϕ(·, f, ξ)] are convex hence their
right-sided derivatives Eξ∼P [−∂+λ ϕ(·, f, ξ)] are nonincreasing, and ρmax is nonincreasing since it
is an infimum over nonincreasing functions. This means lim supk→∞ ρmax(λk) ≤ ρmax(0) for any
sequence λk → 0.

Now assume toward a contradiction that there exists ϵ > 0 and a sequence (λk)k∈N from R+, such
that λk → 0 as k →∞, and ρmax(λk) ≤ ρcrit − ϵ for all k ∈ N. From the expression of ρmax (17)
this means that for each k, there exists fk such that Eξ∼P [c∗(ξ, argmaxΞ fk−λkc(ξ, ·))] ≤ ρcrit− ϵ

2 .
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By compactness of F with respect to ∥ · ∥∞, we may assume (fk)k∈N to converge to some f∗ ∈ F .
In particular, for ξ ∈ Ξ, fk,−λkc(ξ, ·) converges to f∗ as k →∞.

Let ξ ∈ Ξ be arbitrary. (λ, f) 7→ argmaxΞ {f − λc(ξ, ·)} is outer semicontinu-
ous with compact values (Lemma A.2) and c is jointly continuous, hence (λ, f) 7→
c∗(ξ, argmaxΞ {f − λc(ξ, ·))} is lower semicontinuous, see Lemma A.1. We then have
lim infk→∞ c∗(ξ, argmaxΞ {fk − λkc(ξ, ·)}) ≥ c∗(ξ, argmaxΞ f

∗). By integration with respect
to ξ ∼ P , we obtain

Eξ∼P [c∗(ξ, argmax
Ξ

f∗)] ≤ Eξ∼P [lim inf
k→∞

c∗(ξ, argmax
Ξ

{fk − λkc(ξ, ·)})]

≤ lim inf
k→∞

Eξ∼P [c∗(ξ, argmax
Ξ

{fk − λkc(ξ, ·)})]

≤ ρcrit −
ϵ

2
.

Since, ρcrit ≤ Eξ∼P [c∗(ξ, argmaxΞ f
∗)], this yields a contradiction, and allows to conclude.

D.2 REGULARIZED WDRO: LIPSCHITZ MAXIMAL RADIUS AND UPPER BOUND

D.2.1 LIPSCHITZ CONTINUITY OF THE MAXIMAL RADIUS

For λ ≥ 0, we consider the regularized maximal radius,

ρτ,ϵmax(λ) = inf
f∈F

Eξ∼P [−∂λϕτ,ϵ(λ, f, ξ)].

The following result is the regularized version of Lemma D.1. Compared to the standard setting, the
maximal radius is Lipschitz continuous, leading to an estimate of the dual lower bound.
Lemma D.2. ρτ,ϵmax(0) = ρτ,ϵcrit and ρτ,ϵmax is Lipschitz continuous on R+ with constant

2

ϵ

(
τ2

ϵ2
∥F∥2∞ +m2,ce

∥F∥∞
ϵ +min{mc

τ ,
2∥F∥∞mc
(ρ−mc)ϵ

}
)
.

In particular, setting

λτ,ϵlow :=
3ϵρτ,ϵcrit

8
(
τ2

ϵ2 ∥F∥2∞ +m2,ce
∥F∥∞

ϵ +min{mc
τ ,

2∥F∥∞mc
(ρ−mc)ϵ

}
) , (18)

then ρτ,ϵmax(λ) ≥
ρτ,ϵcrit

4 for all λ ∈ [0, 2λτ,ϵlow].

Proof. ϕτ,ϵ is differentiable with respect to λ and we can verify that its derivative is given by

∂λϕ
τ,ϵ(λ, f, ξ) = −E

ζ∼π
f−λc(ξ,·)

ϵ+λτ
0 (·|ξ)

[
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

]
+ τ logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
.

This gives ρτ,ϵmax(0) = ρτ,ϵcrit For f ∈ F and ξ ∈ Ξ, our goal is now to compute the Lipschitz constant
of λ 7→ ∂λϕ

τ,ϵ(λ, f, ξ). The Lipschitz constant of ρτ,ϵmax will then be obtained by integration and
taking the infimum over Lipschitz functions. We compute the appropriate quantities:

1. We compute the derivative with respect to λ of u1 : (λ, ζ) 7→ −
(
τf(ζ)+ϵc(ξ,ζ)

ϵ+λτ

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ :

∂λu1(λ, ζ) =

(
τ2f(ζ) + ϵτc(ξ, ζ)

(ϵ+ λτ)2
+

(τf(ζ) + ϵc(ξ, ζ))2

(ϵ+ λτ)3

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ .

2. We compute the derivative with respect to λ of u2 : (λ, ζ) 7→ e
f(ζ)−λc(ξ,ζ)

ϵ+λτ :
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∂λu2(λ, ζ) = −
(
τf(ζ) + ϵc(ξ, ζ)

(ϵ+ λτ)2

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ .

3. We compute the derivative of U3 : λ 7→ τ logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
:

U ′
3(λ) = −

Eζ∼π0(·|ξ)

[(
τ2f(ζ)+τϵc(ξ,ζ)

(ϵ+λτ)2

)
e

f(ζ)−λc(ξ,ζ)

ϵ+λτ2

]
Eζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

] .

Combining 1, 2 and 3, we are able to compute the derivative of ∂λϕτ,ϵ:

∂2λϕ
τ,ϵ(λ, f, ξ) = −

Eζ∼π0(·|ξ)[u1(λ, ζ)]Eζ∼π0(·|ξ)[∂λu2(λ, ζ)]

Eζ∼π0(·|ξ)[u2(λ, ζ)]
2

+ U ′
3(λ)

=
Eζ∼π0(·|ξ)

[
(τf(ζ)+ϵc(ξ,ζ))2

(ϵ+λτ)3 e
f(ζ)−λc(ξ,ζ)

ϵ+λτ

]
Eζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
−

Eζ∼π0(·|ξ)

[(
τf(ζ)+ϵc(ξ,ζ)

(ϵ+λτ)2

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
Eζ∼π0(·|ξ)

[(
τf(ζ)+ϵc(ξ,ζ)

ϵ+λτ

)
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
Eζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
=

1

ϵ+ λτ
Var

ζ∼π
f−λc(ξ,·)

ϵ+λτ (·|ξ)

(
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

)
,

where Var
ζ∼π

f−λc(ξ,·)
ϵ+λτ (·|ξ)

is the variance with respect to π
f−λc(ξ,·)

ϵ+λτ (·|ξ).

Note that all quantities can be differentiated under the (conditional) expectation since the derivatives
with respect to λ involve functions that are continuous on the compact sample space Ξ (they are
therefore bounded by a constant), see e.g. Theorem A.5.3 from Durrett (2010). By the property of
the variance, we obtain

|∂2λϕτ,ϵ(λ, f, ξ)| ≤
1

ϵ+ λτ
E
ζ∼π

f−λc(ξ,·)
ϵ+λτ

0 (·|ξ)

[(
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

)2
]

≤ 2

ϵ3
E
ζ∼π

f−λc(ξ,·)
ϵ+λτ

0 (·|ξ)

[
τ2∥F∥2∞ + ϵ2c(ξ, ζ)2

]
. (19)

Now we bound the right-hand side of the last inequality. First, we have

Eζ∼π0(·|ξ)

[
c(ξ, ζ)2e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≤ m2,ce

∥F∥∞
ϵ (20)

On the other hand, by Jensen’s inequality, we have

Eζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≥ e−

λmc
ϵ+λτ − ∥F∥∞

ϵ (21)

We have the alternatives λmc

ϵ+λτ ≤
λupmc

ϵ = 2∥F∥∞mc

(ρ−mc)ϵ
in any case, and λmc

ϵ+λτ ≤
mc

τ whenever τ > 0.

This means λmc

ϵ+λτ ≤ min
{
mc

τ ,
2∥F∥∞mc

(ρ−mc)ϵ

}
.

Dividing (20) by (21), we obtain E
ζ∼π

f−λc(ξ,·)
ϵ+λτ

0 (·|ξ)

[
c(ξ, ζ)2

]
≤ m2,ce

min{mc
τ ,

2∥F∥∞mc
(ρ−mc)ϵ

}e
2∥F∥∞

ϵ .

Reinjecting this inequality in (19) gives

|∂2λϕτ,ϵ(λ, f, ξ)| ≤
2

ϵ

(
τ2

ϵ2
∥F∥2∞ +m2,ce

2∥F∥∞
ϵ +min{mc

τ ,
2∥F∥∞mc
(ρ−mc)ϵ

}
)

:= L. (22)
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This means that for f ∈ F , the function g : (λ, f) 7→ Eξ∼P [−∂λϕτ,ϵ(λ, f, ξ)] is L-Lipschitz where
L is given by (22).

We then show that ρτ,ϵmax := inff∈F g(·, f) is L-Lipschitz continuous. Let (λ, λ′) ∈ R2, and let
(fk)k∈N be a sequence from F such that g(λ′, fk) →

k→∞
ρτ,ϵmax(λ

′). Then by definition of ρτ,ϵmax, we

have for all k ∈ N,

ρτ,ϵmax(λ)− g(λ′, fk) ≤ g(λ, fk)− g(λ′, fk) ≤ L|λ− λ′|.
Taking the limit as k →∞ gives ρτ,ϵmax(λ)− ρτ,ϵmax(λ

′) ≤ L|λ− λ′|. Exchanging the roles of λ and
λ′ gives |ρτ,ϵmax(λ)− ρτ,ϵmax(λ

′)| ≤ L|λ− λ′|, hence ρτ,ϵmax is L-Lipschitz.

Now, set 2λτ,ϵlow := sup {λ ∈ R+ : ρτ,ϵmax(λ) ≥ ρ
τ,ϵ
crit/4}. Then either λτ,ϵlow =∞ (in which case any

value λτ,ϵlow satisfies the desired property), or by continuity of ρτ,ϵmax, ρτ,ϵmax(2λ
τ,ϵ
low) = ρτ,ϵcrit/4 and we

have ρτ,ϵcrit − 2Lλτ,ϵlow ≤ ρmax(2λ
τ,ϵ
low) = ρτ,ϵcrit/4. Finally, we obtain (18).

D.2.2 DUAL UPPER BOUND

The following result allows to bound the dual solution above. This step is specific to the regularized
setting, see in particular Proposition F.3 which illustrates this requirement.
Lemma D.3 (Upper bound for the regularized problem Lemma 4.3). Assume ρ > mc and let
λup := 2∥F∥∞

ρ−mc
. For all f ∈ F and Q ∈ P(Ξ),

inf
λ∈[0,∞)

{λρ+ Eξ∼Q[ϕτ,ϵ(λ, f, ξ)]} = inf
λ∈[0,λup)

{λρ+ Eξ∼Q[ϕτ,ϵ(λ, f, ξ)]} .

Proof. Let ξ ∈ Ξ be arbitrary. Recall that

∂λϕ
τ,ϵ(λ, f, ξ) = −E

ζ∼π
f−λc(ξ,·)

ϵ+λτ
0 (·|ξ)

[
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

]
+ τ logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
.

We bound −∂λϕτ,ϵ(λ, f, ξ) above, uniformly in f ∈ F and ξ ∈ Ξ. For readability of the proof, we

set π̃0 = π
f−λc(ξ,·)

ϵ+λτ

0 with a slight abuse of notation. In this case, we have

Eζ∼π̃0(·|ξ)

[
τf(ζ) + ϵc(ξ, ζ)

ϵ+ λτ

]
= Eζ∼π̃0(·|ξ)

[
λτf(ζ) + λϵc(ξ, ζ)− ϵf(ζ) + ϵf(ζ)

λ(ϵ+ λτ)

]
=

1

λ
Eζ∼π̃0(·|ξ) [f(ζ)]−

ϵ

λ
Eζ∼π̃0(·|ξ)

[
f(ζ)− λc(ξ, ζ)

ϵ+ λτ

]
≤ ∥F∥∞

λ
− ϵ

λ
logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≤ ∥F∥∞

λ
− ϵ

λ(ϵ+ λτ)

(
Eζ∼π0(·|ξ)[f(ζ)− λc(ξ, ζ)]

)
≤ ∥F∥∞

λ
+

ϵ∥F∥∞
λ(ϵ+ λτ)

+
ϵmc

ϵ+ λτ
, (23)

where for the third line, we used Lemma C.2, and for the fourth line, we used Jensen’s inequality.
On the other hand,

−τ logEζ∼π0(·|ξ)

[
e

f(ζ)−λc(ξ,ζ)
ϵ+λτ

]
≤ − τ

ϵ+ λτ
Eζ∼π0(·|ξ)[f(ζ)− λc(ξ, ζ)]

≤ λτ

λ(ϵ+ λτ)
∥F∥∞ +

λτ

ϵ+ λτ
mc (24)

Summing (23) and (24) gives

−∂λϕτ,ϵ(λ, f, ξ) ≤
2∥F∥∞
λ

+mc,

whence assuming ρ > mc, and taking λ = λup := 2∥F∥∞
ρ−mc

, we obtain for all f ∈ F and all ξ ∈ Ξ,

0 ≤ ρ+ ∂λϕ
τ,ϵ(λup, f, ξ).
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Integrating with respect to a distribution Q ∈ P(Ξ) yields
0 ≤ ρ+ Eξ∼Q[∂λϕτ,ϵ(λup, f, ξ)],

which is the derivative at λup of the convex function λ 7→ λρ+ Eξ∼Q [ϕτ,ϵ(λ, f, ξ)]. This means

inf
λ∈[0,∞)

{λρ+ Eξ∼Q [ϕτ,ϵ(λ, f, ξ)]} = inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕτ,ϵ(λ, f, ξ)]
}
.

E PROOF OF THE MAIN RESULTS

In this section, we prove the main results of the paper. First, we establish the core concentration
results in E.1 that apply to standard and regularized WDRO. In particular, we establish the dual
lower bound with high probability on the empirical robust risk. We deduce Theorems 3.1 and 3.2 in
E.2 by computing the generalization constants. In E.3 we obtain the excess bounds (Proposition 3.1
and Proposition 3.3). Finally, the results on linear models (Proposition 3.2) are found in E.4.

E.1 DUAL BOUNDS WITH HIGH PROBABILITY ON THE EMPIRICAL PROBLEM

All the results of this subsection hold for both standard and regularized cases. The proofs hold as
is, replacing ϕ, ψ, ρcrit, ρmax and λlow by ϕτ,ϵ, ψτ,ϵ, ρτ,ϵcrit, ρ

τ,ϵ
max and λτ,ϵlow respectively.

For λ ≥ 0, we recall the expression of the maximal radius:
ρmax(λ) = inf

f∈F
Eξ∼P [−∂+λ ϕ(λ, f, ξ)].

Problem’s constants. Before proving the next results, we introduce several quantities:
Proposition E.1 (Dual lower bound in the true problem). Under Assumption 2.1, there exists λlow >
0 such that for all λ ∈ [0, 2λlow], ρmax(λ) ≥ ρcrit

4 . In particular, Eξ∼P [∂+λ ϕ(λ, f, ξ)] ≤ −
ρcrit
4 for

all f ∈ F .

Proof. This comes from limλ→0+ ρmax(λ) = ρcrit. See lemma D.1 for standard WDRO and
lemma D.2 for the regularized case.

Remark E.1 (Refining the degeneracy threshold). The constant λlow may be refined to fix another
threshold than ρcrit

4 . More precisely, for any η ∈ (0, 1), we may also find λlow > 0 such that for all
λ ∈ [0, 2λlow], ρmax(λ) ≥ ηρcrit. We choose η = 1

4 in Proposition E.1 to be consistent with the
study of linear models from Section 3.2.

Figure 2: Bounding from below the empirical
dual solution λ∗ expresses as a slope condition
(thanks to convexity of the objective).

For the next results, we define the following quantities:

• Φ is the length of a segment I such that ϕ(λ, f, ξ) ∈ I
for all λ ∈ {λlow, 2λlow}, f ∈ F and ξ ∈ Ξ.

• Ψ is the length of a segment J such that ψ(µ, f, ξ) ∈
J for all µ ∈ (0, λ−1

low], f ∈ F and ξ ∈ Ξ.

• Lψ and λup ∈ [0,∞] are such that ψ(·, ·, ξ) is Lψ-
Lipschitz on [λ−1

up , λ
−1
low]×F for all ξ ∈ Ξ.

Let λlow > 0 be the dual lower bound given by Proposi-
tion E.1. We now to show this quantity is a lower bound
on the empirical robust risk:
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Proposition E.2 (Dual lower bound with high probability). Under Assumption 2.1, let λlow be
given by Proposition E.1, and λup ∈ [λlow,∞]. If ρ ≤ ρcrit

4 −
C(δ)√
n

where C(δ) := 96I(F,∥·∥∞)
λlow

+

2Φ
λlow

√
2 log 4

δ , then with probability 1− δ
2 , for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(, λ, f, ξ)]
}
= inf
λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
.

Proof. The proof consists in using the convexity of ϕ(·, f, ξ). Indeed, given a convex function g
over R+, the infimum of g has to occur on an interval [λlow,+∞] if g has a negative slope between
λlow and 2λlow (Figure 2):

g(2λlow)− g(λlow)
λlow

≤ 0 =⇒ inf
λ≥λlow

g(λ) = inf
λ≥0

g(λ).

We want this condition satisfied for the empirical Lagrangian function g(λ) = λρ + EP̂n
[ϕ(λ, f)]

with high probability. For convenience, this can be expressed with the slope of EP̂n
[ϕ(·, f)]:

ŝ(f) :=
EP̂n

[ϕ(2λlow, f)]− EP̂n
[ϕ(λlow, f)]

λlow
≤ −ρ. (25)

This is the condition we aim to obtain. To this end, we proceed by comparing the empirical
slope to the true one, that is s(f) := EP [ϕ(2λlow,f)]−EP [ϕ(λlow,f)]

λlow
. We can show that any func-

tion (f, ξ) 7→ ϕ(λ, f, ξ), with λ ∈ R+, satisfies the requirements for the concentration theorem
Theorem A.2, which is done in Lemma C.1 and Lemma C.3. Consequently, we can apply the
concentration theorem twice, on each function ϕ(2λlow, ·, ·) and ϕ(2λlow, ·, ·), to obtain that ŝ(f)
approximates s(f) with probability at least 1− δ

2 ,

∀f ∈ F , ŝ(f) ≤ s(f) + β√
n
,

where C(δ) > 0 will be computed afterwards. On the other hand, s(f) ≤ EP [∂+λ ϕ(2λlow, f)] by
convexity of ϕ, hence s(f) ≤ −ρcrit4 by Proposition E.1. This means ŝ(f) ≤ β√

n
− ρcrit

4 hence we

have the desired condition (25) when ρ ≤ ρcrit
4 −

C(δ)√
n
, and with probability at least 1 − δ

2 , for all
f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= inf
λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
.

Concentration constant C(δ). We now compute C(δ). Let λ ∈ {λlow, 2λlow}. By Theorem A.2,
we have with probability at least 1− δ

4 , for all f ∈ F ,

Eξ∼P̂n
[ϕ(2λlow, f, ξ)]− Eξ∼P [ϕ(2λlow, f, ξ)] ≤

48I(F , ∥ · ∥∞)√
n

+Φ

√
2 log 4

δ

n
(26)

and with probability at least 1− δ
4 , for all f ∈ F ,

Eξ∼P [ϕ(λlow, f, ξ)]− Eξ∼P̂n
[ϕ(λlow, f, ξ)] ≤

48I(F , ∥ · ∥∞)√
n

+Φ

√
2 log 4

δ

n
. (27)

We set C ′(δ) := 48I(F , ∥ · ∥∞)+Φ
√

2 log 4
δ . Intersecting the events (26) and (27), we obtain with

probability 1− δ
2 , for all f ∈ F ,
Eξ∼P̂n

[ϕ(2λlow, f, ξ)]− Eξ∼P̂n
[ϕ(λlow, f, ξ)]

λlow

≤ 1

λlow

(
Eξ∼P [ϕ(2λlow, f, ξ)]− Eξ∼P [ϕ(λlow, f, ξ)] +

2C ′(δ)√
n

)
≤ Eξ∼P [∂+λ ϕ(2λlow, f, ξ)] +

2C ′(δ)

λlow
√
n

≤ −ρcrit
4

+
2C ′(δ)

λlow
√
n
, (28)
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where we recall that for λlow > 0, satisfies for all λ ∈ [0, 2λlow] and all f ∈ F ,
Eξ∼P [∂+ϕ(λ, f, ξ)] ≤ −ρcrit4 . This means C(δ) = 2C ′(δ)/λlow and we have the desired ex-
pression.

This implies a generalization bound on the dual problem of (regularized) WDRO:

Proposition E.3 (Generalization bound on the dual problem). Under Assumption 2.1, let λlow > 0

be given by Proposition E.1. If B(δ)√
n
≤ ρ ≤ ρcrit

4 −
C(δ)√
n

where

• B(δ) = 48Lψ

(
I(F , ∥ · ∥∞) + 2

λlow

)
+Ψ

√
2 log 2

δ ,

• C(δ) = 96I(F,∥·∥∞)
λlow

+ 2Φ
λlow

√
2 log 4

δ ,

then with probability at least 1− δ, for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
≥ inf
λ∈[0,∞)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
.

Proof. We assume λup > λlow. By Theorem A.2, applied to (µ, f) 7→ µϕ(µ−1, f, ξ), we obtain
with probability at least 1− δ

2 ,

αn := sup
(µ,f)∈(λ−1

up ,λ
−1
low]×F

{Eξ∼P [ψ(µ, f, ξ)]− Eξ∼P̂n
[ψ(µ, f, ξ)]} ≤ B(δ)√

n
(29)

where B(δ) = 48LψI([0, λ−1
low] × F ,dist) + Ψ

√
2 log 2

δ and dist((µ, f), (µ′, f ′)) := |µ − µ′| +
∥f − f ′∥∞. Furthermore, we have the inequality

I([0, λ−1
low]×F) ≤ I(F , ∥ · ∥∞) +

1

2λlow
(1 + 2 log 2) ≤ I(F , ∥ · ∥∞) +

2

λlow
,

see Lemma A.3, hence we may refine B(δ) as B(δ) = 48Lψ

(
I(F , ∥ · ∥∞) + 2

λlow

)
+Ψ

√
2 log 2

δ .

By Proposition E.2, if ρ ≤ ρcrit
4 −

C(δ)√
n

, then with probability at least 1− δ
2 , for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= inf
λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
. (30)

Finally, combining (30) and (29), and if

B(δ)√
n
≤ ρ ≤ ρcrit

4
− C(δ)√

n
,

we can write with probability 1− δ, for all f ∈ F ,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= inf
λ∈[λlow,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}

≥ inf
λ∈[λlow,λup)

{
λρ+ Eξ∼P [ϕ(λ, f, ξ)]− λ

Eξ∼P [ϕ(λ, f, ξ)]− Eξ∼P̂n
[ϕ(λ, f, ξ)]

λ

}
≥ inf
λ∈[λlow,λup)

{λρ+ Eξ∼P [ϕ(λ, f, ξ)]− λαn}

≥ inf
λ∈[λlow,λup)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
≥ inf
λ∈[0,∞)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
,
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If λup ≤ λlow, this means, by convexity of the inner function,

inf
λ∈[0,λup)

{
λρ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
= λlowρ+ Eξ∼P̂n

[ϕ(λlow, f, ξ)]

≥ λlow(ρ− α′
n) + Eξ∼P [ϕ(λlow, f, ξ)]

≥ inf
λ∈[0,∞)

{
λ

(
ρ− B(δ)√

n

)
+ Eξ∼P [ϕ(λ, f, ξ)]

}
,

where we refined αn into α′
n = supf∈F

{
Eξ∼P [ψ(λ−1

low, f, ξ)]− Eξ∼P̂n
[ψ(λ−1

low, f, ξ)]
}

.

E.2 GENERALIZATION BOUNDS

We are now ready to prove the generalization bounds. The following is an extended version of the
generalization result in standard WDRO (Theorem 3.1). Note that the extended bound (31) involves
a control of Rρ− α√

n
(f), which means that R̂ρ(f) also generalizes well against distribution shifts.

Theorem E.1 (Generalization guarantee, standard WDRO). Under Assumption 2.1, there exists
λlow > 0 such that if

α√
n
< ρ ≤ ρcrit

4
− β√

n
,

where

• α = 48
(
∥F∥∞ + 1

λlow

)(
I(F , ∥ · ∥∞) + 2

λlow

)
+ 2∥F∥∞

λlow

√
2 log 2

δ

• β = 96I(F,∥·∥∞)
λlow

+ 4∥F∥∞
λlow

√
2 log 4

δ ,

then with probability at least 1− δ, for all f ∈ F ,

R̂ρ(f) ≥ Rρ− α√
n
(f) ≥ Eξ∼P [f(ξ)]. (31)

In particular, for any ρ > α√
n

and n > 16(α + β)2/ρ2crit, with probability at least 1− δ, R̂ρ(f) ≥
Eξ∼P [f(ξ)] for all f ∈ F .

Proof. Under Assumption 2.1, let λlow be given by Proposition E.2. Our goal is to apply Propo-
sition E.3 in the standard WDRO case and to compute its constants thanks to Lemma C.1. By
Lemma C.1, we have the following constants:

• Φ = 2∥F∥∞,

• Ψ = 2∥F∥∞
λlow

,

• λup =∞, and Lψ = ∥F∥∞ + λ−1
low.

α corresponds to B(δ) in Proposition E.3 and β corresponds C(δ), whence we obtain the desired
expressions for α and β with the quantities above.

By strong duality, Proposition B.1, Rϱ(f) and R̂ϱ(f) admit the representations

Rϱ(f) = inf
λ∈[0,∞)

{λϱ+ Eξ∼P [ϕ(λ, f, ξ)]}

R̂ϱ(f) = inf
λ∈[0,∞)

{
λϱ+ Eξ∼P̂n

[ϕ(λ, f, ξ)]
}
,

for any ϱ ≥ 0 and f ∈ F . By Proposition E.3, if α√
n
< ρ ≤ ρcrit

4 −
β√
n

, then with probability at

least 1− δ, we have for all f ∈ F , R̂ρ(f) ≥ Rρ− α√
n
(f), hence the first part of the result.
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As to the last statement, if n > 16(α+β)2/ρ2crit,
α√
n
< ρcrit

4 −
β√
n

. For any α√
n
< ρ ≤ ρcrit

4 −
β√
n

,

with probability at least 1 − δ, R̂ρ(f) ≥ Eξ∼P [f(ξ)] for all f ∈ F as shown previously. For
ρ ≥ ρcrit

4 −
β√
n

, since the quantity R̂ρ(f) is non-decreasing with respect to ρ, we also have R̂ρ(f) ≥
Eξ∼P [f(ξ)].

The next result corresponds to the generalization guarantee for WDRO with double regularization
(Theorem 3.2).
Theorem E.2 (Generalization guarantee, regularized WDRO). Under Assumption 2.1, there exists
λlow > 0 such that if

max

{
mc,

ατ,ϵ√
n

}
< ρ ≤ ρτ,ϵcrit

4
− βτ,ϵ√

n
,

where ατ,ϵ and βτ,ϵ are the two constants

• ατ,ϵ = 48

(
∥F∥∞ +

1

λτ,ϵlow

+
2∥F∥∞mcϵ

ϵ(ρ−mc) + 2τ∥F∥∞

)(
I(F , ∥ · ∥∞) +

2

λτ,ϵlow

)
+

(
2∥F∥∞
λτ,ϵlow

+mc

)√
2 log

2

δ

• βτ,ϵ =
96I(F , ∥ · ∥∞)

λτ,ϵlow

+ 4

(
∥F∥∞
λτ,ϵlow

+mc

)√
2 log

4

δ
,

then with probability at least 1− δ, for all f ∈ F ,

R̂τ,ϵρ (f) ≥ Rτ,ϵ
ρ−ατ,ϵ

√
n

(f) ≥ Eζ∼Q[f(ζ)]− ϵDKL(π
P,Q∥π0)

whenever W τ
c (P,Q) ≤ ρ.

In particular, if mc <
ρτ,ϵcrit

4 and n > 16(ατ,ϵ+βτ,ϵ)2

(ρτ,ϵcrit−4mc)2
, then for any ρ > max

{
mc,

ατ,ϵ
√
n

}
, with proba-

bility at least 1− δ, for all Q such that W τ
c (P,Q) ≤ ρ, R̂τ,ϵρ (f) ≥ Eζ∼Q[f(ζ)]− ϵDKL(π

P,Q∥π0)
for all f ∈ F .

Proof. Under Assumption 2.1, let λτ,ϵlow > 0 be given by Proposition E.2, and assume ρ > mc. As
for standard WDRO, our goal is to apply Proposition E.3 and to compute its constants thanks to
Lemma C.3. By Lemma C.3, and taking λup = 2∥F∥∞

ρ−mc
, we have the following constants:

• Φ = ∥F∥∞ − (−∥F∥∞ − 2λτ,ϵlowmc) = 2(∥F∥∞ + λτ,ϵlowmc)

• Ψ = 2∥F∥∞
λτ,ϵ
low

+mc

• λup = 2∥F∥∞
ρ−mc

and Lψ = ∥F∥∞ + 1
λτ,ϵ
low

+ 2∥F∥∞mcϵ
ϵ(ρ−mc)+2τ∥F∥∞

.

In Proposition E.3, ατ,ϵ corresponds toB(δ) and βτ,ϵ corresponds toC(δ) with the quantities above.
In this case, we easily verify that ατ,ϵ and βτ,ϵ have the desired expressions.

By strong duality, Proposition B.2, and by the dual upper bound, Lemma D.3, Rτ,ϵϱ (f) and R̂τ,ϵϱ (f)
admit the representations

Rτ,ϵϱ (f) = inf
λ∈[0,λup)

{λϱ+ Eξ∼P [ϕτ,ϵ(λ, f, ξ)]}

R̂τ,ϵϱ (f) = inf
λ∈[0,λup)

{
λϱ+ Eξ∼P̂n

[ϕτ,ϵ(λ, f, ξ)]
}
,

for any ϱ ≥ 0 and f ∈ F . Recall that ρ > mc. If furthermore ατ,ϵ
√
n
< ρ ≤ ρτ,ϵcrit

4 −
βτ,ϵ

√
n

, then with

probability at least 1 − δ, we have for all f ∈ F , R̂τ,ϵρ (f) ≥ Rτ,ϵρ− α√
n
(f) by Proposition E.3 hence

we obtain the first inequality.
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Now, toward the second inequality, let Q ∈ P(Ξ) such that W τ
c (P,Q) ≤ ρ. Let πP,Q ∈ P(Ξ× Ξ)

satisfying [πP,Q]1 = P , [πP,Q]2 = Q and E(ξ,ζ)∼πP,Q [c(ξ, ζ)] + τDKL(π
P,Q∥π0) = W τ

c (P,Q).
We finally obtain for all f ∈ F , Rτ,ϵρ− α√

n
(f) ≥ Eζ∼Q[f(ζ)]− ϵDKL(π

P,Q∥π0).

As to the last statement, if mc <
ρτ,ϵcrit

4 and n > 16(ατ,ϵ+βτ,ϵ)2

(ρτ,ϵcrit−4mc)2
, then max

{
mc,

ατ,ϵ
√
n

}
<

ρτ,ϵcrit

4 −
ατ,ϵ
√
n

.

For any max
{
mc,

ατ,ϵ
√
n

}
< ρ <

ρτ,ϵcrit

4 − βτ,ϵ

√
n

, the bound holds by the first part of the result. For

ρ ≥ ρτ,ϵcrit

4 −
βτ,ϵ

√
n

, since R̂τ,ϵρ (f) is non-decreasing with respect to ρ, the bound also holds.

E.3 EXCESS RISK BOUNDS

In this part, we prove the excess risk bounds (Proposition 3.1 and Proposition 3.3). The proofs
consist in adapting the previous proofs of the generalization bounds. For standard WDRO, the
general excess bound specializes in the case of Wasserstein-p costs and Lipschitz losses.
Theorem E.3 (Excess risk WDRO). Let α be given by Theorem E.1. Under Assumption 2.1, if
ρ ≤ ρcrit

4 −
α√
n

, then with probability at least 1− δ, for all f ∈ F ,

R̂ρ(f) ≤ Rρ+ α√
n
(f).

In particular, if c = d(·, ·)p, where p ≥ 1, and there exists LipF > 0 such that every f ∈ F is
LipF -Lipschitz with respect to d, then

R̂ρ(f) ≤ Eξ∼P [f(ξ)] + LipF

(
ρ+

α√
n

) 1
p

.

Proof. By definition of λlow and Proposition E.1 we can write for any 0 < ρ′ ≤ ρcrit
4 ,

Rρ′(f) = inf
λ∈[λlow,λup)

{λρ′ + Eξ∼P [ϕ(λ, f, ξ)]}

leading to
Rρ′(f) = inf

λ∈[λlow,λup)
{λρ′ + Eξ∼P [ϕ(λ, f, ξ)]}

≥ inf
λ∈[λlow,λup)

{
λρ′ + Eξ∼P̂n

[ϕ(λ, f, ξ)]− λ
Eξ∼P̂n

[ϕ(λ, f, ξ)]− Eξ∼P [ϕ(λ, f, ξ)]
λ

}
≥ inf
λ∈[λlow,λup)

{
λρ′ + Eξ∼P̂n

[ϕ(λ, f, ξ)]− λαn
}

≥ inf
λ∈[λlow,λup)

{
λ

(
ρ′ − B(δ)√

n

)
+ Eξ∼P̂n

[ϕ(λ, f, ξ)]

}
≥ inf
λ∈[0,∞)

{
λ

(
ρ′ − B(δ)√

n

)
+ Eξ∼P̂n

[ϕ(λ, f, ξ)]

}
= R̂

ρ′−B(δ)√
n

(f).

whenever ρ′ > B(δ)/
√
n, and the inequality holds with probability at least 1 − δ for all f ∈ F .

Recall also that B(δ) = α (see the proof of Theorem E.1). Taking ρ′ = ρ+ α√
n

leads to the desired
result as long as ρ+ α√

n
≤ ρcrit

4 .

Toward a proof of the last part, assume that any f ∈ F is Lipschitz with constant LipF , and c = dp

with p ≥ 1. For any couple (ξ, ζ) ∈ Ξ× Ξ, we have
f(ζ) ≤ f(ξ) + LipF d(ξ, ζ).

Integrating over an arbitrary coupling π with first marginal P and second marginal Q satisfying
Wc(Q,P ) ≤ ρ+ α/

√
n gives

EQ[f ] ≤ EP [f ] + LipF Eπ[d] ≤ EP [f ] + LipF Eπ[c]
1
p

where we used Jensen inequality. For any Q satisfying Wc(Q,P ) ≤ ρ+α/
√
n, taking the infimum

in the above inequality over such couplings π, gives

EQ[f ] ≤ EP [f ] + LipF (ρ+ α/
√
n)

1
p

hence we obtain the result by definition of Rρ+ α√
n
(f).
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Theorem E.4 (Excess risk for regularized WDRO). Let ατ,ϵ be given by Theorem E.2. Under
Assumption 2.1, if mc < ρ ≤ ρτ,ϵcrit

4 −
ατ,ϵ
√
n

, then with probability at least 1− δ, for all f ∈ F ,

R̂τ,ϵρ (f) ≤ Rτ,ϵ
ρ+ατ,ϵ

√
n

(f).

Proof. For ρ > mc, strong duality holds (Proposition B.2). The proof is then identical to that of the
standard WDRO setting (Theorem E.3).

E.4 GENERALIZATION CONSTANTS OF LINEAR MODELS

The two following results correspond to Proposition 3.2, which is the estimation of the constants
ρcrit and λlow for linear models in the framework of Shafieezadeh-Abadeh et al. (2019). We assume
the support of P to belong to an Euclidean ball of diameter D centered at zero. We then define Ξ as
the closed ball of diameter 3D centered at zero.

Proposition E.4 (Linear regression). Consider the parametric loss f(θ, (x, y)) = (⟨θ, x⟩ − y)2,
where θ belongs to a compact subset Θ ⊂ Rp, and the transport cost c = ∥ · − · ∥2. Assume there
exists ω > 0 such that

inf
θ∈Θ
∥(θ,−1)∥2 ≥ ω.

Then Theorem 3.1 and Proposition 3.1 hold with ρcrit ≥ D2 and λlow ≥ ω
2 .

Proof. In this setting, the expression of ρmax is

ρmax(λ) = inf
θ∈Θ

Eξ∼P

[
min

{
∥ξ − ζ ′∥2 : ζ ′ ∈ argmax

ζ∈Ξ
{f(w, ζ)− λ∥ξ − ζ∥2}

}]

For any ξ ∈ Ξ and θ ∈ Θ, the term inside the argmax writes

f(θ, ζ)− λ∥ξ − ζ∥2 = ζT (M − λI)ζ + 2λζT ξ − λ∥ξ∥2.

Consider ζ = (u, v), ξ = (u0, v0), u, u0 ∈ R, the representations in an orthonormal basis of Rp,
such that the first element (θ,−1)/∥(θ,−1)∥ is the eigen vector of M . We can write the above
equation with u and v terms:

f(θ, ζ)− λ∥ξ − ζ∥2 = (∥(θ,−1)∥2 − λ)u2 + 2λu · u0 − λ∥v∥2 + 2λ⟨v, v0⟩ (32)

If λ ≤ ω then we have ∥(θ,−1)∥2 − λ > 0, hence the maximum of f(θ, ζ) − λ∥ξ − ζ∥2 with
respect to ζ is only attained at the boundary of Ξ (otherwise we could increase the quadratic term
with respect to u). For all λ ≤ ω, we thus can bound from below

ρmax(λ) ≥ Eξ∼P [min ∥ξ − ζ∥2 : ∥ζ∥ = 3D/2] ≥ D2.

In particular, ρcrit ≥ D2. We also remark that ρcrit ≤ 4D2 hence we have 2λlow ≥ ω by definition
of λlow (Proposition E.1).

Proposition E.5 (Logistic regression). Consider the parametric loss f(θ, (x, y)) = log(1 +
e−y⟨θ,x⟩) where θ belongs to a compact subset Θ ⊂ Rp, and the transport cost c = ∥ · − · ∥2.
Assume there exists ω > 0 such that

inf
θ∈Θ
∥θ∥2 ≥ ω.

Then Theorem 3.1 and Proposition 3.1 hold with ρcrit ≥ D2 and λlow ≥ ω

8
(
1+eDΩ

) , where Ω =

supθ∈Θ ∥θ∥2.
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Proof. For the logistic regression, we have

f(θ, ζ)− λ∥ζ − ξ∥2 = log
(
1 + e⟨θ,ζ⟩

)
− λ∥ζ − ξ∥2. (33)

Consider the representation ζ = sθ + v, where s ∈ R and v is orthogonal to θ. Then we have

f(θ, ζ)− λ∥ζ − ξ∥2 = log
(
1 + es∥θ∥

2)
− s2λ∥θ∥2 + 2sλ⟨θ, ξ⟩ − λ∥v − ξ∥2.

The second order derivative with respect to s is

∥θ∥4(
1 + es∥θ∥2

)(
1 + e−s∥θ∥2

) − 2λ∥θ∥2. (34)

The term
(
1 + es∥θ∥

2)(
1 + e−s∥θ∥

2)
is lower than 2

(
1 + e|s|∥θ∥

2)
< 2
(
1 + eDΩ

)
. Hence we easily

deduce that (34) is positive for all ζ ∈ Ξ if λ < ω

4
(
1+eDΩ

) . If this condition holds, then maximizers

of f(θ, ζ)− λ∥ζ − ξ∥2 for ζ ∈ Ξ are included in the boundary of Ξ, meaning that ρmax(λ) ≥ D2 if
λ ≤ Ω

4
(
1+eDΩ

) . Since ρcrit ≤ 4D2, then 2λlow ≥ ω

4
(
1+eDΩ

) .

F SIDE REMARKS

This part contains results supporting various remarks made in the main text.

F.1 INTERPRETATION OF THE CRITICAL RADIUS

The results of this part justify the interpretation of the radius made in Remark 3.1.

Proposition F.1. If ρ ≥ ρcrit, then there exists f ∈ F such that

Rρ(f) = max
ξ∈Ξ

f(ξ).

In particular, in the setting of Theorem 3.1, if ρ ≥ ρcrit +
α√
n

, with probability at least 1− δ, there
exists f ∈ F such that

R̂ρ(f) = max
ξ∈Ξ

f(ξ).

Proof. The first part is identical to the square cost case, see (Azizian et al., 2023a, Remark 3.2 ). The
second part is obtained by Theorem E.1: in the setting of Theorem E.1, we have with probability at
least 1− δ, R̂ρ(f) ≥ Rρ−α/

√
n for all f ∈ F . Hence if ρ ≥ ρcrit + α/

√
n, we obtain the result by

applying the first part to the radius ρ− α/
√
n.

The following result gives an interpretation of the critical radius ρτ,ϵcrit in regularized WDRO appear-
ing in Theorem 3.2. We show that when the radius ρ is larger than this value, then some robust
losses become degenerated. Precisely, they become independent of ρ and are equal to a regularized
version of the worst-case loss maxΞ f .

Proposition F.2. Assume ρ ≥ ρτ,ϵcrit. Then there exists f ∈ F such that

Rτ,ϵρ (f) = sup
π∈P(Ξ×Ξ)
[π]1=P

{
Eζ∼[π]2 [f(ζ)]− ϵDKL(π∥π0)

}
.

In particular, in the setting of Theorem 3.2, if ρ ≥ ρτ,ϵcrit +
ατ,ϵ
√
n

, with probability at least 1− δ, there
exists f ∈ F such that

R̂τ,ϵρ (f) = sup
π∈P(Ξ×Ξ)
[π]1=P

{
Eζ∼[π]2 [f(ζ)]− ϵDKL(π∥π0)

}
.
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Proof. In the regularized case, we can verify that the critical radius has the expression

ρτ,ϵcrit = inf
f∈F

{
Eξ∼P

[
E
ζ∼πf/ϵ

0 (·|ξ)

[τ
ϵ
f(ζ) + c(ξ, ζ)

]
− τ logEζ∼π0(·|ξ)e

f(ζ)
ϵ

]}
, (35)

see for instance the proof of Lemma D.2. Let f ∈ F be arbitrary. Consider a coupling π∗ ∈
P(Ξ× Ξ) such that [π∗]1 = P and π∗(·|ξ) = π

f
ϵ
0 (·|ξ) for almost all ξ ∈ Ξ. We first verify that for

a good choice of f , it is included in the uncertainty set defining Rτ,ϵρ (f).

We compute DKL(π
∗∥π0). Below, we set Z(ξ) := Eζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]
.

DKL(π
∗∥π0) = Eξ∼P

[
E
ζ∼π

f
ϵ
0 (·|ξ)

[
log

(
e

f(ζ)
ϵ

Z(ξ)

)]]

= Eξ∼P
[
E
ζ∼π

f
ϵ
0 (·|ξ)

[
f(ζ)

ϵ

]
− logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
= E(ξ,ζ)∼π∗

[
f(ζ)

ϵ

]
− Eξ∼P

[
logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
. (36)

This leads to

Eπ∗ [c] + τDKL(π
∗∥π0) = Eξ∼P

[
E
ζ∼πf/ϵ

0 (·|ξ)

[τ
ϵ
f(ζ) + c(ξ, ζ)

]
− τ logEζ∼π0(·|ξ)e

f(ζ)
ϵ

]
which is the term in the infimum (35). Since f was chosen arbitrary, this means that if ρ > ρτ,ϵcrit,
then there exists f ∈ F such that the coupling π∗ defined above (depending on f ) satisfies
E(ξ,ζ)∼π∗ [c(ξ, ζ)] + τDKL(π

∗∥π0) ≤ ρ, and we obtain

Rτ,ϵρ (f) ≥ Eζ∼[π∗]2 [f(ζ)]− ϵDKL(π
∗∥π0).

On the other hand by the computation (36), we have

Rτ,ϵρ (f) ≥ Eζ∼[π∗]2 [f(ζ)]− ϵDKL(π
∗∥π0) = ϵEξ∼P

[
logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]]
. (37)

By Donsker-Varadhan variational formula Donsker & Varadhan (1975), for almost all ξ ∈ Ξ, we
have

logEζ∼π0(·|ξ)

[
e

f(ζ)
ϵ

]
= sup
ν∈P(Ξ)

{Eζ∼ν [f(ζ)/ϵ]−DKL(ν∥π0(·|ξ))} . (38)

Reinjecting (38) in (37) gives

Rτ,ϵρ (f) ≥ ϵEξ∼P

[
sup

ν∈P(Ξ)

{Eζ∼ν [f(ζ)/ϵ]−DKL(ν∥π0(·|ξ))}

]
≥ sup
π∈P(Ξ×Ξ)
[π]1=P

{
Eξ∼P

[
Eζ∼π(·|ξ)[f(ζ)]− ϵDKL(π(·|ξ)∥π0(·|ξ))

]}
= sup
π∈P(Ξ×Ξ)
[π]1=P

{
Eζ∼[π]2 [f(ζ)]− ϵDKL(π∥π0)

}
,

where we used the chain rule for DKL divergence (see e.g. Theorem 2.15
in Polyanskiy & Wu. (2023)): DKL(π∥π0) = Eξ∼P [DKL(π(·|ξ)∥π0(·|ξ))] +
DKL([π]1∥[π0]1) ≥ Eξ∼P [DKL(π(·|ξ)∥π0(·|ξ))]. Since we clearly have Rτ,ϵρ (f) ≤

sup
π∈P(Ξ×Ξ)
[π]1=P

{
Eζ∼[π]2 [f(ζ)]− ϵDKL(π∥π0)

}
, this yields the first part.

The second part is a direct consequence of the generalization bound Theorem E.2 as for the standard
case (see the proof of Proposition F.1).
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F.2 NECESSITY OF THE DUAL UPPER BOUND

We exhibit an example where the function µ 7→ ψτ,ϵ(µ, f, ξ) is not Lipschitz as µ→ 0. This justifies
the necessity of bounding the dual solution above in the regularized case, as done in Lemma D.3.

Proposition F.3. Consider τ = 0, ϵ > 0, Ξ = [0, 1], c(ξ, ζ) = |ξ− ζ| and assume that the reference
distribution is a truncated Laplace π0(dζ|ξ) ∝ e−|ξ−ζ|1[0,1](ζ)dζ. Assume furthermore F is a

family of functions from [0, 1] to R which satisfies e−
2∥F∥∞

ϵ ≥ ϵ.
Then for almost all ξ ∈ [0, 1] and all f ∈ F , µ 7→ ψτ,ϵ(µ, f, ξ) is not Lipschitz at 0+.

Proof. Let ξ ∈ (0, 1) and f ∈ F . The expression of the derivative of ψ0,ϵ with respect to µ is given
by (14):

∂µψ
0,ϵ(µ, f, ξ) = E

ζ∼π
µf−c(ξ,·)

µϵ
0 (·|ξ)

[
ϵc(ξ, ζ)

µϵ

]
+ ϵ logEζ∼π0(·|ξ)

[
e

µf(ζ)−c(ξ,ζ)
µϵ

]
.

In particular, it satisfies

∂µψ
0,ϵ(µ, f, ξ) ≤ e

2∥F∥∞
ϵ E

ζ∼π
− c(ξ,·)

µϵ
0 (·|ξ)

[
c(ξ, ζ)

µ

]
+ ϵ logEζ∼π0(·|ξ)

[
e−

c(ξ,ζ)
µϵ

]
+ ∥F∥∞. (39)

On the other hand, by Donsker-Varadhan formula Donsker & Varadhan (1975), we can write

logEζ∼π0(·|ξ)

[
e

−c(ξ,ζ)
µϵ

]
= E

ζ∼π
−c(ξ,ζ)

µϵ
0 (·|ξ)

[
−c(ξ, ζ)
µϵ

]
−DKL

(
π

−c(ξ,·)
µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ)) .

Reinjecting this in (39) and using e−
2∥F∥∞

ϵ ≥ ϵ gives

∂µψ
τ,ϵ(µ, f, ξ) ≤ ∥F∥∞ −DKL

(
π
− c(ξ,·)

µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ)) .

Consequently, to prove non-Lipschitzness of ψ0,ϵ(·, f, ξ) at 0, we show that

DKL

(
π
− c(ξ,·)

µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ))→∞

as µ → 0. We show that π
− |ξ−·|

µϵ

0 (·|ξ) converges in law to δξ. Let φ : R → R be of class C∞ with
compact support. With the change of variable u← ξ−ζ

µϵ , we have∫ 1

0

e−
|ξ−ζ|
µϵ φ(ζ)dζ = µϵ

∫
R
1[ ξ−1

µϵ ,
ξ
µϵ ]

(u)e−|u|φ(ξ + µϵu)du.

Also, we easily verify that∫ 1

0

e−
|ξ−ζ|
µϵ dζ =

∫ ξ

0

e−
ξ−ζ
µϵ dζ +

∫ 1

ξ

e−
ζ−ξ
µϵ dζ = µϵ(2− e−

ξ
µϵ − e

−(1−ξ)
µϵ ),

hence we obtain

E
ζ∼π

− |ξ−·|
µϵ

0

[φ(ζ)] =

∫
R 1[ ξ−1

µϵ ,
ξ
µϵ ]

(u)e−|u|φ(ξ + µϵu)du

2− e−
ξ
µϵ − e

−(1−ξ)
µϵ

. (40)

We then have the following:

• 2− e−
ξ
µϵ − e

−(1−ξ)
µϵ converges to 2 as µ→ 0,

• For all u ∈ R, 1[ ξ−1
µϵ ,

ξ
µϵ ]

(u)e−|u|φ(ξ + µϵu)du converges to e−|u|φ(ξ) as µ → 0, hence

its integral with respect to u converges to 2φ(ξ) by dominated convergence theorem.

32



Under review as a conference paper at ICLR 2025

Combining both limits in (40) gives E
ζ∼π

− |ξ−·|
µϵ

0 (·|ξ)
[φ(ζ)] → φ(ξ). This means that π

− |ξ−·|
µϵ

0 (·|ξ)

converges in law to δξ. We haveDKL(δξ∥π0(·|ξ)) =∞, hence by lower semicontinuity of theDKL-
divergence for the convergence in law (or weak convergence), see e.g. Theorem 4.9 from Polyanskiy

& Wu. (2023), we get DKL

(
π
− c(ξ,·)

µϵ

0 (·|ξ)
∥∥∥∥π0(·|ξ)) −→µ→0

∞. This means that ψ0,ϵ(·, f, ξ) is not

Lipschitz near 0.

F.3 ON CONTINUITY OF MAXIMIZERS

We justify the importance of relaxing Assumption 5.1 from Azizian et al. (2023a) which
corresponds to compactness of F with respect to the distance DF (f, g) := ∥f − g∥∞ +
dH(argmaxΞ f, argmaxΞ g). We show that this condition is actually equivalent to assuming con-
tinuity on f 7→ argmax f , which is a strong condition and difficult to verify in practice.
Proposition F.4. For (f, g) ∈ F × F , define

DF (f, g) := ∥f − g∥∞ + dH(argmax
Ξ

f, argmax
Ξ

g)

where dH is the Hausdorff distance on the set of compact subsets of Ξ, K(Ξ) . Assume (F , ∥ · ∥∞)
is compact. Then we have the equivalence

(F , DF ) is compact ⇐⇒ f 7→ argmax
Ξ

f is continuous from (F , ∥ · ∥∞) to (K(Ξ), dH).

Proof. We prove (⇒). Assume (F , DF ) is compact. Let f ∈ F , and let (gk)k∈N be an arbitrary
sequence from F such that gk converges to f for ∥ · ∥∞. We want to show that argmaxΞ gk
converges to argmaxΞ f for dH , proving the continuity of the arg max map. By compactness of
(F , DF ), (gk)k∈N admits accumulation points for DF . Let h be any one of them. We may extract a
subsequence from (gk)k∈N converging to h, say gnk

→
k→∞

h ∈ F . In particular, gnk
converges to h

for ∥ · ∥∞. We necessarily have h = f by definition of the sequence (gk)k∈N. It means that (gk)k∈N
admits only one possible accumulation point for DF , which is f . This implies gk converges to f for
DF , hence argmaxΞ gk converges to argmaxΞ f .

Now, we prove (⇐). Let (fk)k∈N be a sequence from F . By compactness of (F , ∥ · ∥∞), we may
extract a converging subsequence fnk

→
k→∞

f for ∥ · ∥∞. Assuming f 7→ argmaxΞ f is continuous

gives that argmaxΞ fnk
converges to argmaxΞ f , which is the desired result.
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