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Automatic Spinal Canal Breach Detection During Pedicle Screw
Placement

L. Leblanc1, E. Saghbini1,3, J. Da Silva1,2, A. Harlé1, S. Vafadar1, T. Chandanson2

R. Vialle3, G. Morel1, and B. Tamadazte1 .

Abstract— Precise pedicle screw placement is imperative for
a range of spinal procedures, demanding exact geometric
alignment while also carrying inherent risks. The literature
reports a complication rate in the case of screw mispositioning
of up to 18%. To increase the accuracy of pedicle screw
placement, we developed a robotic setup and a breach detection
algorithm that could detect a possible perforation of the spinal
canal. The robotic setup includes a robotic arm, a drilling
system, and specific sensors, e.g., electrical conductivity at the
drill bit’s tip. The breach detection algorithm consists of a
Bayesian-based method providing online and real-time analysis
of the electrical conductivity signal to predict a breach. The
robotic setup and the perforation detection algorithm were
assessed in two ex-vivo experiments. First, data collection was
performed by drilling 80 fresh pig vertebrae pedicles, followed
by precise data labelling by a surgeon. The evaluation of the
proposed algorithm was conducted numerically. Finally, the
assessment was performed online by automatically drilling into
pedicles in conditions similar to the operating room. The results
demonstrated that the algorithm could predict perforations
and prevent the robotic setup from going through in 100% of
24 drilled vertebrae. Results demonstrate that using electrical
conductivity combined with a robotic setup allows the detection
of imminent perforations of the spinal canal during pedicle
drilling. This was the first study to evaluate spinal canal
perforation detection during ex-vivo pig pedicle drilling.

I. INTRODUCTION
Pedicle screw (PS) placement in spine surgery has been

considered a standard surgical procedure for the past forty
years. It is widely used for various spinal procedures, espe-
cially in the case of spinal deformities, e.g., scoliosis [1].
Different forms of scoliosis can occur in both young and
adult patients. Clinical grading of scoliosis is based on the
severity of the angular deformity, measured by the Cobb
angle [2], defined as the angle between the endplates of
the most tilted vertebrae of the curve [3]. Scoliosis can
be idiopathic, creating pathologies like neuromuscular disor-
ders, malformations, and other syndromes [4]. It can cause
muscular pain associated with a continuous effort to maintain
the spine’s balance or even neurological pain associated with
narrowing the spinal canal. From 70◦ not 75◦ angulation
onwards, there are repercussions on respiratory function [5].
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Fig. 1. Different scenarios for screw insertion into the vertebrae: a) leading
to a medial perforation (i.e. spinal canal perforation), b) leading to a lateral
perforation and c) well-placed screw.

Scoliosis treatment depends on the angular deformity’s
aetiology and severity. In young patients, the risk of evolution
and angulation determines the treatment. For instance, when
the deformation is below 20◦, the patient will typically
require only regular monitoring. For curves between 20◦

and 50◦, the patient is treated with a brace to limit the
progression of the disease. However, surgical intervention
is usually indicated for more severe deformities, i.e., those
greater than 50◦. The surgical treatment, also known as
arthrodesis, consists of spinal fusion by implantation of
PS and rods [6]. The PS should be positioned correctly to
obtain maximum stability of the bone-screw interface while
avoiding a perforation in the spinal canal during insertion
(Fig. 1). This highlights that the success of spinal surgery
depends substantially on the ability to position the PS safely
and accurately [7].

Drilling the pedicles for screw positioning is a challenging
procedure. Failure can lead to injuries to major vessels (aorta,
vena cava) or the spinal cord [8]. The literature reports a
complication rate in the case of screw mispositioning of up
to 18% [9]. The screw insertion task is performed free-hand,
with intraoperative X-ray control or navigation guidance.
Patient-specific guides are used to increase accuracy [10].
In some cases, a passive robot is used to immobilize the
screw trajectory at the entry point while allowing the surgeon
to perform the drilling task [11]. However, the most estab-
lished techniques are navigation systems combined with a
preoperative registration phase and robotic solutions. A well-
known technical limitation of these solutions is the loss of
accuracy due to imaging [12] and registration errors [13],
[14] in addition to the risk of radiation exposure resulting
from X-ray imaging.



II. MOTIVATION AND CONTRIBUTIONS

Although navigation approaches have contributed to im-
proving spine surgical procedures, they present several limi-
tations, particularly in terms of usability and accuracy. Accu-
racy is reduced because of the patient’s breathing movement.
Furthermore, a slight change in the patient’s position during
the pedicle preparation is sufficient to introduce registration
errors [12], [15].

One of the advantages of a robotic approach in PS
placement, beyond the functional accuracy it provides, is
safety. Indeed, the use of a robotic system during the
drilling phase allows instantaneous reaction (e.g., stopping
the drilling) in tens of milliseconds, compared with manual
drilling performed by a surgeon who may be slower to
react. This is particularly true in certain procedures (e.g.,
on adult patients), where the surgeon has to apply relatively
great force to drill into the bone. Additionally, drilling
parameters (rotation speed, applied force and torque, etc.)
can be precisely defined and kept constant (or adapted to suit
the patient) throughout the procedure contrary to a manual
procedure.

In the remainder of the paper, we will demonstrate that
the use of the robot combined with an automatic breach
detection method enables drilling to be stopped very early,
i.e., within the first milliseconds of a change in the electrical
conductivity signal used in our algorithm. In this spirit, we
have proposed a robotic platform for PS insertion equipped
with specific sensors, including the electrical conductivity
sensor (hereinafter referred to as DSG sensor) developed by
SpineGuard SA [16], [17] and many other sensors (force,
position, vibrations, etc.). We then investigate the use of
signals recorded by the mentioned sensors to detect perfo-
rations early during pedicle drilling. Real-time perforation
detection is performed using a Bayesian-based method to
detect changes in the behavior of the DSG signal. The de-
veloped robotic setup and the perforation detection algorithm
are extensively evaluated, numerically and experimentally,
based on the Gertzbein-Robbins classification of PS place-
ment errors [18]. According to this classification, grade ”A”
indicates no spinal canal perforation, grade ”B” indicates
less than 2 mm of perforation in the spinal canal, grade ”C”
indicates 2–4 mm spinal canal perforation and grade ”D”
indicates more than 4 mm of perforation. Higher grades are
associated with a higher risk of neurological complications.
Grades ”A” and ”B” are considered clinically satisfactory.
This paper extrapolates the Gertzbein and Robbins classifi-
cation scale to pedicle drilling since no screw insertion is
performed.

The numerical validation is achieved using a database
created by performing 80 drillings. The results obtained
are promising. Regarding the detection rate, an imminent
perforation point, which corresponds to a deformation of the
periosteal tissue that occurs just before the actual perforation,
was detected in 25% of the drilling signals. Perforation was
detected less than 2 mm after the actual perforation point in
the 75% remaining signals. In total, 100% of perforation

alerts were raised in a zone corresponding to the grades
”A” and ”B” for pedicle drilling. Regarding accuracy, the
perforation point was detected with an average error of
0.50 mm (standard deviation = 0.71 mm) over the 80 drilled
lumbar vertebrae.

An experimental validation run completes these first re-
sults. Twenty-four (24) vertebrae are drilled. For all ver-
tebrae, the drilling process was automatically stopped just
before perforation, exhibiting a 100% success rate. The
experimental results reinforce those obtained in simulation
and fully meet the requirements of such a surgical procedure.

III. RELATED WORKS AND BACKGROUND

Bone drilling is a routine procedure in various surgical
disciplines (orthopaedics, neurosurgery, traumatology). As
discussed, the drilling task is a delicate and challenging
procedure that requires accuracy and safety. Detecting a
potential breach when drilling a bone has consequently
become an active research field. Various sensors are used
to measure the drilling progress (force, speed, position,
etc.). Therefore, identifying a possible breach is equivalent
to detecting an unexpected change in the measured signal.
Promising methods have been proposed in the literature.
For instance, Brett et al. [19] proposed an algorithm for
stapedotomy based on detecting the simultaneous increase
of torque and the decrease of the feed force during the
drilling procedure. Another similar work suggested tracking
the gradient of the force signal (after filtering) to detect
unexpected variations in the signal, meaning that the drill
is breaching a femur bone [20]. Lee et al. [21] proposed
using the trend and a threshold on both the torque and
feed rate on various bone types (e.g., scapula, skulls, and
femurs). Although these methods are promising, qualitative
and quantitative evaluations are not provided. More recently,
Hu et al. [22] suggested using feature functions based on the
measured force for different drill shapes. For this purpose,
cattle vertebrae drilling signals are used to identify threshold
values which are then used to stop the drilling when the force
reaches the transitional zone from the cancellous tissue into
the cortical tissue. This study performed six experimental
drillings; however, only one drilling hole was evaluated,
demonstrating that the drilling stopped automatically at
0.97 mm before the breach. Besides, monitoring the electrical
current through the drill motor [23] was used to detect un-
expected changes in the signal to identify a potential breach
within the safety zone. However, no metric evaluation is
reported on sample size, success rate, or detection accuracy.
The use of audio signal has also been investigated for breach
detection purposes [24] demonstrating that processing the
audio signal allowed discriminating cortical and cancellous
bone tissue by analyzing the power spectral density. It is
reported that using audio signals provides an 88% success
rate in finding potential breaches over 35 drillings performed
in pig vertebrae. However, no information on accuracy is
provided in this study.

Preliminary work on breach detection [25] shows that the
DSG signal can provide very interesting results. The reported



breach detection algorithm was tested on 104 lamb vertebrae,
giving a 100% success rate. However, the drilling was car-
ried out in the spinous processes emerging perpendicularly
into the canal, thereby avoiding the tangential breaches that
can occur when the pedicles are drilled. Furthermore, the
proposed breach detection algorithm includes signal filtering
and calibration phases. This method uses several parame-
ters which must be defined beforehand such as absolute and
relative conductivity thresholds and the definition of the ex-
pected local conductivity gradient (thresholds). Furthermore,
it also includes an online filtering phase (moving averaging)
of the DSG signal, which may introduce a delay in breach
detection.

The following section describes the proposed method,
which consists of Bayesian distribution for online inference.
This method does not require a filtering phase or calibration
parameters.

IV. BREACH DETECTION METHODOLOGY

A suitable and effective perforation detection algorithm
should identify meaningful changes in the trend of signals of
interest, operate in real-time, be accurate, robust to measure-
ment noise (regardless of the sensor type), and have minimal
parameter tuning. The latter indicates that the surgeon should
not need to perform complex parameterization before or dur-
ing the surgical procedure, e.g., depending on the vertebral
bone quality.

Probabilistic and recursive methods are suitable candidates
for the accurate detection of an abrupt change in a time
series. Such change occurs at so-called changepoints (CPs),
i.e., time instants when the probability distribution of a time
series changes. The Bayesian Online Change Point Detection
(BOCPD) algorithm [26] is one of the most promising CP
detection methods and has been demonstrated in different
fields (e.g., finance and environment). It has been found to
be one of the best-performing methods for offline and online
CP detection [27], [28].

A. Bayesian Online Changepoint Detection

Let x = (x1, x2, ...., xn)
⊤ denote the data samples ob-

served over time. In the present work, x is univariate, but
the method can be extended to multivariate cases. Let x1:t

denote the data samples observed between the initial time
instant 1 and time instant t. CPs occur at unknown time
instants between the initial time instant t = 1 and final
time instant t = n. These CPs divide x into production
partitions [26]. For each partition ρ, it is assumed that
the data samples within that partition are independent and
identically distributed and sampled from some probability
distribution P (xt|ηρ), where the parameters ηρ are also
considered independent and identically distributed.

BOCPD relies on computing the probability distribution
of an intermediate variable, the ”run length”, i.e., the time
since the most recent CP occurred [26]. The run length at
time instant t is denoted as rt. Observing rt = 0 indicates
that a CP occurred at time instant t. Arbitrarily, the first data
sample observed is considered an additional CP occurring

at initial time instant t = 1, implying that r1 = 0. Let xr
t

denote the subset of observations associated with the run rt.
Between two consecutive time instants, the run length can
either be reset to 0 if a CP occurred or be incremented by 1
if no CP occurred:

rt =

{
0 if a CP occurred
rt−1 + 1 otherwise

(1)

An illustration is provided in Fig. 2. A hypothetical
univariate signal x is plotted in Fig. 2.a. As long as no
CP occurs, rt is incremented as shown in Fig. 2.b where
solid lines indicate that the run length grows at the next time
instant. Significant changes in the distribution of x occur at
time instant 4 and time instant 9. At these time instants, rt
resets to 0, as illustrated in Fig. 2.b, where the dotted lines
indicate that the current run is truncated and the run length
drops to 0.

Once a new observation xt is observed, we determine
whether the run length rt is incremented or reset to 0. To
this end, we compute the posterior probability distribution
P (rt|x1:t). In other words, BOCPD aims at finding the run
length rt at every time instant that best matches the data x1:t

observed so far. In Bayesian terms, for every time instant t,
one wants to find rt = argmax

r
P (rt = r|x1:t) where:

P (rt|x1:t) =
P (rt, x1:t)

P (x1:t)
(2)

Since in (2) only the joint distribution over the run length
and observed data P (rt, x1:t) depend on rt, one can focus
on this distribution and rewrite it recursively [26]:

P (rt, x1:t) =
∑
rt−1

P (rt|rt−1) P (xt|rt−1, x
r
t ) P (rt−1, x1:t−1)

(3)
Equation (3) exhibits that P (rt, x1:t) can be expressed

as a function of P (rt−1, x1:t−1). This provides a recursive
message-passing algorithm for the joint distribution over the
current run length and the data, assuming two other factors
are computed: the CP prior and the posterior predictive.
Fig. 2.c illustrates this message-passing algorithm. In this
plot, the circles represent run-length hypotheses. The lines
between the circles show the recursive transfer of probabil-
ity mass between consecutive time instants. A probability
distribution is associated with each circle, i.e., run-length
hypothesis. For each hypothesis, the probability distribution
parameters are obtained by updating the initial parameters
prior using every data sample observed since the beginning
of the run.

B. Changepoint Prior

P (rt|rt−1) is the prior over rt given rt−1. This prior is
non-zero at only two outcomes, since rt only changes to 2
possible values, as shown in (1). This provides computational
efficiency to the method and the prior simplifies to (4), where
H is referred to as a hazard function.

P (rt|rt−1) =

 H(rt−1 + 1) if rt = 0
1−H(rt−1 + 1) if rt = rt−1 + 1
0 otherwise

(4)



Fig. 2. Illustration of the BOCPD method for a) hypothetical univariate signal with distribution changes occurring at time instants t = 4 and t = 9.
b) The most probable run length rt drops to 0 when a changepoint is met. c) The trellis on which the passing algorithm lives: at each time instant, the
probability of every run length is computed based on the data observed so far during the said run.

C. Posterior Predictive

P (xt|rt−1, x
r
t ) is the posterior predictive, i.e., the prob-

ability that the most recent datum belongs to a given run.
Computing this posterior predictive can be challenging.
Using conjugate exponential models can allow for more
computational efficiency since they provide a closed-form
expression of the posterior predictive. For instance, exponen-
tial families, which include many of the most common distri-
butions, are good candidates and allow sequentially updating
the distribution parameters as new data are observed [26].

D. Changepoint Detection

The original literature does not explicitly specify a de-
termination criterion to declare a CP at a specific time
instant [26]. Identifying a CP after a single sample of a new
distribution may be challenging in certain cases, making it
necessary to ”wait” for N samples and evaluate the prob-
ability of a change happening N samples prior. Therefore,
in terms of run length, detecting that rt drops to 0 after a
new observation is not an efficient criterion for accurate CP
detection. Instead, we detect that rt drops in a [0, N ] range.

E. Bayesian Online Perforation Detector

Building on the BOCPD approach, a Bayesian Online
Perforation Detector is proposed. The overall functioning
of the said detector is detailed in Algorithm 1. Regarding
practical implementation, the following hypotheses are made:

1) A CP is declared if the run length drops in a [0, 19]
range.

2) P (rt|rt−1) is assumed to be constant both for simplic-
ity and since no other prior information is available.
Therefore, in Equation 4, H(rt) = λ−1, where λ is a
parameter to adjust the algorithm sensitivity. A value
of λ = 250 is empirically established.

3) As a generic assumption, normal distribution unknown
mean and variance is assumed as a likelihood. The
corresponding conjugate prior is a Normal-Inverse-
Gamma distribution. The resulting posterior distribu-
tion is a generalized Student’s T distribution with
center µt, precision Λ = αtκt

βt(κt+1) , and degree of
freedom 2αt [29]:

P (xt|rt−1, x
r
t ) = t2αt(xt|µt,

βt(κt + 1)

κtαt
) (5)

Parameters µt, κt, αt, and βt are initialized with pre-
perforation distribution priors µ0, κ0, α0, and β0 at
time instant t = 0. Then, at each time instant t,
we want to model a new possible run of length 0,
corresponding to the possibility of a CP. In this case,
posterior predictive is computed using post-perforation
distribution priors µprior, κprior, αprior, and βprior.
These priors may be different from the initial values
µ0, κ0, α0, and β0 to encompass the knowledge that a
strong rise in the conductivity signal is expected upon
perforation. The values of the distribution parameters
priors used in the Bayesian Online Perforation Detector
are provided in Table I.

TABLE I
DISTRIBUTION PARAMETERS PRIORS USED IN THE BAYESIAN ONLINE

PERFORATION DETECTOR

Distribution
parameter

Pre-perforation
distribution

Post-perforation
distribution

µ µ0 = 800 µprior = 10000
κ κ0 = 1 κprior = 10
α α0 = 10−6 αprior = 10−6

β β0 = 0.6 βprior = 0.6

At each time instant t, we also model the growth for
already existing runs. This is achieved by computing
the posterior predictive using parameters µt, κt, αt

and βt for each run length value before updating these
values with the latest datum observed:

µt+1 =
κtµt + xt+1

κt+1
(6)

κt+1 = κt + 1 (7)
αt+1 = αt + 0.5 (8)

βt+1 = βt +
κt(xt − µt)

2

2(κt + 1)
(9)

V. DATA ACQUISITION SETUP AND PROTOCOL

To assess the proposed perforation detection algorithm,
we conducted an ex-vivo experiment for data acquisition (to
create a comprehensive database) and evaluated the proposed
method. The experiments are done in conditions close to
those of an operating room by drilling fresh pedicles and
mimicking the physiological behaviour of the cerebrospinal
fluid filling the spinal canal.



A. Drill bit and drilling system

Fig. 3. a) Used drill bit equipped with an electrical conductivity sensor
designed by SpineGuard SA, b) zoom on the ”threaded” part of the drill
and c) represent the drill bit mounted on the robotic arm.

The used drill bit is derived from instruments developed
by SpineGuard SA (Fig. 3.a. It consists of a 3 mm diameter
drill bit for cutting purposes with a pyramidal tip embedding
a conductivity sensor and a threaded shaft (Fig. 3.b). The
threaded shape of the drill continuously maintains the contact
between the drill and the bone and avoids unwanted motion
along the z-axis (i.e., the drilling axis). The drilling is carried
out by a custom-made power drilling unit delivering 1.5 Nm
nominal torque and a maximum speed of 922 rpm (revo-
lutions per minute), able to perform drilling and screwing
tasks. Finally, the drilling system is mounted on the robot’s
end-effector with an angle of 30◦ concerning the last robot
axis (Fig. 3.c).

B. Robotic Setup and Embedded Sensors

The drilling system is rigidly fixed on a robotic arm, with
an angle of 30◦, as can be seen in Fig. 4. This robotic
arm consists of a KUKA LBR Med 7 R800 robot adapted
to medical requirements. It is equipped with built-in joint

Algorithm 1 Bayesian Online Perforation Detector using the
electrical conductivity signal

Input: xt, DSG (electrical conductivity) signal in mV
Output: Alert, flag used to stop the drilling

1: Initialization: P (r1 = 0)← 1, DetectionF lag ← False,
2: for xt do
3: Calculate posterior predictive:

P (xt|rt−1, xr
t )

4: Calculate growth probability:
P (rt = rt−1+1, x1:t) = (1−λ−1

prior)P (xt|rt−1, xr
t )P (rt−1, x1:t−1)

5: Calculate changepoint probability:
P (rt = 0, x1:t) =

∑
rt−1

λ−1
priorP (xt|rt−1, xr

t )P (rt−1, x1:t−1)

6: Calculate marginal probability:
P (x1:t) =

∑
rt

P (rt, x1:t)
7: Calculate run length distribution:

P (rt|x1:t) = P (rt, x1:t)/P (x1:t)
8: Find rt = argmax

r
P (rt = r|x1:t)

9: Check that run length has exceeded the detection threshold once:
10: if rt > threshold then
11: DetectionF lag ← True
12: end if
13: Evaluate whether a change occurred:
14: if DetectionF lag & rt < threshold then
15: Alert← True
16: end if
17: Update distribution parameters
18: end for

Fig. 4. Photography of the developed robotic set-up for spine surgery.

torque sensors allowing it to operate in a collaborative mode.
It has a payload of 7 kg, featuring position accuracy of
±0.15 mm and joint redundancy (7 degrees of freedom). The
DSG sensor of the drilling system allows for distinguishing
the different layers the drill bit passes through during the
drilling process. The conductivity signal is low in the cortical
layers compared to the one detected in the cancellous layers.
However, the signal increases significantly once it intersects
body fluid. Fig. 5 depicts an example of a typical DSG
(proportional to the electrical conductivity) signal acquired
by drilling a fresh pig vertebra. These tissue discrimination
characteristics are suitable for detecting perforations (lateral
or medial).

Fig. 5. An example of DSG signal acquired during a vertebra drilling
process.

Although only the conductivity signal is used in the
perforation detection algorithm, different signals issued from
various embedded sensors (torque, position, velocity, time,
video, etc.) are recorded and added to the database.

C. Drilling Workflow

We designed a drilling box where the vertebra (Fig. 6.a)
is rigidly fixed in the drilling box. To simulate experimental
conditions close to actual pedicle drilling in the operating
room, the vertebra is submerged in a saline solution that
approximately reproduces the electrical conductivity of cere-
brospinal liquid contained in the spinal canal (Fig. 6.b). The
saline solution is obtained by mixing 7g of salt per litre of
tap water at a temperature in a [19.7, 24.6]◦ C range.



Fig. 6. Illustration of the data acquisition workflow: a) fixing the vertebra
in salty water for drilling, and b) view of the frontal camera monitoring the
drilling progress.

A camera is placed in front of the spinal canal to record
the whole drilling procedure (Fig. 6.c).

D. Vertebrae Collection and Data Acquisition

To assess the developed methods and material, we col-
lected fresh pig lumbar vertebrae from the butcher (Fig. 6.a).
The fresh vertebrae were collected one day before the lab
experiments and placed only in a refrigerator (since a freezer
could have changed the properties of the bones or soft
tissues).

For each drill, the surgeon collaboratively manipulated
the robot to place the drill bit at the desired entry point
and voluntarily aim for the spinal canal. They then adapted
the contact force and drilling rotational speed according
to the bone quality of the vertebrae. The force controller
was developed earlier in another study [30]. Principally, the
required force for drilling was empirically determined and
set to fd = 25 N. However, based on the bone’s mechanical
properties, the force fd could reach up to 100 N. The drilling
rotational speed was set at 60 rpm for all the performed
drillings.

We recorded several additional signals such as torque,
position (depth penetration of the drill bit), velocity, and time.
Moreover, the camera filmed the spinal canal and captured
the exact instant when the drill perforated into the canal.

A posteriori, three people independently watched the
recorded video to identify the perforation time to avoid
potential bias. The surgeon then labelled the exact time
instant the perforation started. This allowed us to label all
the other signals to build the database (see range highlighted
in green in Fig. 7). This provides the ground truth for further
assessment of the proposed perforation detection algorithms.

In total, 80 lumbar vertebrae were drilled.

VI. NUMERICAL AND EXPERIMENTAL
VALIDATIONS

The first evaluation of the proposed perforation detection
algorithm was carried out on the collected data. Hence, we
evaluated offline the electrical conductivity signals recorded
for each drilling (80 in total). Note that for each signal, the
surgeon defined the exact time instant of perforation by a
posteriori visualizing the videos recorded during the drilling.
This task allows grading perforation detection according to

our derivation of the Gertzbein-Robbins classification [18].
Detecting an imminent perforation before the actual point
of perforation corresponds to grade ”A,” while declaring a
perforation less than 2 mm after the actual perforation point
corresponds to grade ”B.” In other words, the detection is
considered acceptable if a perforation alert is raised before
the right-most limit blue line of the green area in Fig. 7.

A. Numerical Validation

Fig. 7. Four examples of detected perforations (see vertical red lines) on
the recorded DSG signals. A ±2 mm green zone (delimited by the vertical
blue lines) centred on the perforation instant (dotted lines) is plotted for
visualization. Detection must occur before the upper limit of the green zone
to be considered satisfactory (i.e. grade ”A” or ”B” perforations).

For the 80 drilled vertebrae, the success rate of the
perforation detection is 100% meaning that the perforation
was detected before it actually occurred or just at the instant
of deformation of the periostal tissue (inner surface covering
the spinal cord). From a clinical point of view, this corre-
sponds to grades ”A” and ”B” according to the Gertzbein-
Robbins classification [18]. In detail, 25% of the drillings are
classified as ”A” (imminent perforation is detected before the
actual perforation point) and 75% as ”B”.

In terms of accuracy, our algorithm allows stopping the
drilling with an average error (i.e., distance from the perfo-
ration point) of 0.50 mm with a standard deviation (STD) of
0.71 mm.

Figure 7 shows some examples of electrical conductivity
signals for which the perforation is detected. As can be seen,
the detection of the perforation (red lines shown in Fig. 7)
corresponding to the abrupt change in the signal can occur
before or slightly after the perforation point. Variability in
the electrical conductivity signals can lead to detection af-
ter the perforation point, but always less than 2 mm after
said point. The perforation detection over the whole set of
the 80 performed drilling is summarized in Fig. 8, where
Fig. 8.a depicts the distance of the automatic stop to the
perforation point for each drilled vertebra, and Fig. 8.b shows
the histogram of all the computed distances.

B. Experimental Results

We experimentally assessed the robotic setup and the
perforation detection algorithm based on the numerical eval-



Fig. 8. Qualitative analysis over the 80 performed drillings. a) distance of the automatic stop to the bone interface for each drilled vertebra according to
our derivation of the Gertzbein-Robbins classification (the boundaries of the ”A” and ”B” grades are represented by a red line) and b) the histogram of
the resulting computed distances over the 80 drilled vertebrae.

uation and obtained promising results regarding accuracy and
safety during the drilling procedure.

The experimental procedure is identical to the one used
to build our database. For this purpose, we used another
group of fresh vertebrae. The surgeon moved the drill bit to
the entry point of the pedicle (by manipulating the robotic
arm), and the drilling was automatically performed. The
robot drilled 24 fresh lumbar pig vertebrae. The perforation
detection algorithm stopped the drilling online automatically
(without any calibration or pre-setting procedure compared
to the numerical validation procedure (Section VI-A)). Once
the vertebrae were drilled, the surgeon cut the pedicles along
the drilled hole to verify where the drilling stopped. After
investigation, it was shown that for all 24 drilled vertebrae,
the drilling process was automatically stopped just before the
perforation, i.e., exhibiting a 100% success rate.

Figure 9.a shows an example of an automatic stop of a
drilling task before the perforation on the spinal canal with
a safety margin of approximately 1 mm (Fig. 9.b).

Fig. 9. Illustration of an automatic stop of a drilling process before per-
foration.

Figure 10 depicts a sample of 5 (among a total of 24)
drilled vertebrae after cutting the pedicles along the drilled
holes. Fig. 10.a shows a global view of the 5 vertebrae and
Fig. 10.b shows the corresponding zoom on the drilled holes,
while Fig. 10.c depicts the CT-scan images realized retro-
spectively. It can be seen on the CT-scan images that the pro-
posed algorithm, coupled with the robotic platform, makes
it possible to stop just at the moment of deformation of the
periostal tissue covering the inside of the spinal canal. This
means that although the detection error of the perforation is

within a [0, +2] mm range according to our metric, this does
not necessarily indicate an actual perforation in the canal.
The retrospective inspection (CT scan) of the 24 vertebrae
drilled under real conditions also showed a 100% success
rate in avoiding a breach in the canal.

Furthermore, the robotic platform and the breach detec-
tion method were evaluated in another context, i.e. drilling a
fresh sheep skull. It was shown that breaches were avoided
(several drillings were carried out) without any change to the
algorithm parameters or any further calibration phase being
required.

VII. CONCLUSION
Spinal canal perforation can be associated with screw

instability and neurological complications during PS place-
ment. To avoid such perforations, we developed a robotic
setup equipped with a multitude of sensors as well as a
perforation detection algorithm using the electrical conduc-
tivity signal. This method was based on a Bayesian approach,
allowing for accurate real-time perforation detection without
filtering the signal or prior calibration.

To evaluate the proposed materials and methods, we
created a database including 80 drillings in fresh pig lumbar
vertebrae. This database contains different types of signals
(electrical conductivity, torque, velocity, and position). Nu-
merical and experimental validation on perforation detection
was convincing (perforations were avoided in 100% of
cases). The results show that electrical conductivity allows
the detection of imminent perforations of the spinal canal
during actual ex-vivo pedicle drilling. Combined with a
robotic drilling setup, this permitted reliably stopping the
drilling upon detection in real-time.

Future work will evaluate the method’s robustness through
in-vivo tests. These will involve a pig whose spine is
subjected to physiological motions such as breathing and
deformations resulting from the pressure of the drill on the
pedicle. The other future task will be to extend the drilling
database and make it open-source by including several other
signals (position, speed, force, time, video, etc.).
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