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We present an implementation of the rotationally invariant slave boson technique as an impurity
solver for density functional theory plus dynamical mean field theory (DFT+DMFT). Our approach
provides explicit relations between quantities in the local correlated subspace treated with DMFT
and the Bloch basis used to solve the DFT equations. In particular, we present an expression
for the mass enhancement of the quasiparticle states in reciprocal space. We apply the method
to the study of the electronic correlations in Sr2RuO4 under anisotropic strain. We find that the
spin-orbit coupling plays a crucial role in the mass enhancement differentiation between the quasi-
one-dimensional α and β bands, and on its momentum dependence over the Fermi surface. The
mass enhancement, however, is only weakly affected by either uniaxial or biaxial strain, even accross
the Lifshitz transition induced by the strain.

I. INTRODUCTION

The electronic properties of transition metal oxides
continue to be a central problem in condensed matter
physics. Part of the challenge is due to the sensitivity of
the low energy physics of these systems to the complex
interplay between the crystal structure, the amount of
hybridization between oxygens and the transition metal
[1], the Coulomb interaction, including the correct differ-
entiation between intraorbital e interorbital interactions
[2, 3], and the spin-orbit coupling (SOC) [4, 5]. This in-
terplay seems to be the key to understanding the normal
state, magnetic, and superconducting properties of some
of these compounds [6]. In particular, the role of the
SOC and of the proximity to a Lifshitz transition have
recently attracted much interest.

It has been reported that the SOC is crucial to ex-
plaining the insulating character of Sr2IrO4 [7], and the
magnetic properties of Ca2RuO4 [8] and Sr3Ru2O7 [9].
It may also be relevant to determine the nature of the
superconducting state in Sr2RuO4 [10, 11]. At the local
density approximation (LDA) level, its inclusion is nec-
essary to improve the Fermi surface shape of Sr2RuO4

and Sr2RhO4 as compared to ARPES data [4, 5, 12–14].
Recently, the possibility of inducing a Lifshitz transi-

tion in Sr2RuO4 by applying external strains has been
addressed experimentally [15, 16]. Single crystals under
a uniaxial strain applied in the [100] direction present
a peak in the superconducting critical temperature as
a function of the stress. The peak position seems to
coincide with the value of the stress at which the Lif-
shitz transition takes place and the associated Van Hove
singularity (VHS) crosses the Fermi level [15, 17]. This
transition has been observed in ARPES measurements
of epitaxial thin films of Sr2RuO4 and Ba2RuO4 grown
over different substrates [16]. Different values of the lat-
tice parameter a are obtained adjusting the lattice mis-

match and the results can be interpreted as the behavior
of Sr2RuO4 under a biaxial strain in the [100] and [010]
directions.

These experiments have triggered theoretical investi-
gations focused on understanding how the Lifshitz tran-
sition affects the pairing properties in the superconduct-
ing phase [18, 19] or the spin susceptibility in the normal
phase [20]. An interesting open question is to what ex-
tent this transition affects the electronic correlations in
the normal phase. Indeed, the proximity of the VHS to
the Fermi level has been found to be important to un-
derstand the anisotropic mass enhancement of quasipar-
ticles. The Fermi surface of this material is composed by
the sheets α, β and γ of mainly Ru t2g character, whose
respective renormalized masses, m∗/mLDA, have been
reported to be 3, 3.5, and 5, respectively [21]. Density
functional theory suplemented by dynamical mean field
theory (DFT+DMFT) calculations, have shown that the
larger renormalization of the γ sheet can be associated
with the proximity of the VHS to the Fermi level, and
Hund’s rule coupling effects [2].

The purpose of this article is twofold. First, to in-
troduce an implementation of the rotationally invariant
slave-boson (RISB) method [22–26] as an impurity solver
for DFT+DMFT. The RISB method is a low weight nu-
merical method geared to describe Fermi liquid behavior
and has been successfully used, supplemented by DFT
calculations, to describe the low energy correlations of
materials [9, 27–31]. Our approach provides an explicit
relation between the mass enhancement calculated in the
quantum impurity problem and the mass enhancement
that different quasiparticle states acquire after embed-
ding the impurity self-energy back in the lattice prob-
lem. This relation can also be applied when using other
techniques to solve the quantum impurity problem. Sec-
ond, we apply this methodology to Sr2RuO4. For the
unstressed compound, using the above mentioned rela-
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tion, we explain why Bloch states on the α and β sheets
of the Fermi surface, having mostly xz and yz character
(which correspond in the quantum impurity problem to
degenerated cubic Wannier orbitals), acquire a different
renormalization, as experimentally observed. To finalize,
motivated by the experiments of Ref. [15, 16], we analyze
how the electronic correlations, as measured by the mass
enhancement, evolve under biaxial or uniaxial stress, and
to what extent they are affected by the Lifshitz transi-
tion.

The rest of this paper is organized as follows. In
Section II we introduce our implementation of RISB as
an impurity solver for DFT+DMFT. In Section III we
analyze how the method describes the correlated metal
Sr2RuO4. In Section IV we present results for the ma-
terial under anisotropic stress. Finally, in Section V we
present our concluding remarks.

II. METHOD: DFT+DMFT USING RISB AS
IMPURITY SOLVER

In this section we first outline the DFT+DMFT
scheme as implemented in Refs. [32, 33] in order to de-
fine the notation. We next describe the implementation
of the RISB method as a multiorbital impurity solver
and its use for DMFT calculations. Finally, we derive
a relation between quantities in the correlated subspace
and the Bloch space which allows to determine the mass
renormalization of the Bloch states.

A. DFT+DMFT scheme.

The first step is the solution of the DFT Kohn-Sham
equations, which yield the Kohn-Sham energies, ε~kν , and
the corresponding states, |ψ~k,ν〉, classified by the crys-
tal momentum ~k and a band index ν. The second step
is the treatment of the strong local correlations using
DMFT. To that aim, a set of Wannier orbitals |χ~Rm〉 is
constructed, where ~R labels a lattice site and m denotes
the orbital and spin degrees of freedom [34]. We define
C as the space spanned by the set of correlated Wan-
nier orbitals at a given site, and we omit the site label
in the following. In the so-called projective method, only
Bloch bands whose energy lies within a predefined energy
window W are used in the construction of the Wannier
orbitals. We define K as the space spanned by all the
Bloch states whose energy lies within W, and K(~k) as
a subspace of K formed by states with a definite crystal
momentum ~k. We also define P (~k) as the transforma-
tion operator from K(~k) to C whose matrix elements are
Pm,ν(~k) = 〈χm|ψ~k,ν〉. Denoting by 1C and 1K(~k) the

identity matrices in C and K(~k) respectively, these trans-
formations satisfy: P (~k)P †(~k) = 1C , but the converse
(P †(~k)P (~k) = 1K(~k)) only is fulfilled if the number of

bands at ~k and withinW is equal to the number of Wan-
nier orbitals in C.

The lattice Green’s function in Matsubara representa-
tion reads:

G−1(~k, iωn) =
(
iωn + µ

)
1K(~k) − ε(~k)−Σ(~k, iωn), (1)

where ε(~k) is a diagonal matrix formed by the Kohn-
Sham eigenvalues of all the bands within W at a given ~k
point, and Σ(~k, iωn) is constructed by embedding in K a
local self-energy, Σimp(iωn), calculated through an aux-
iliary quantum impurity problem introduced by DMFT:

Σ(~k, iωn) = P †(~k)
(
Σimp(iωn)−Σdc

)
P (~k), (2)

where Σdc is a correction included to reduce the double
counting of interactions in the DFT+DMFT method.

The quantum impurity problem consists of a local
term, H loc, which includes one-body energies and inter-
action terms in C; and an hybridization term, which de-
scribes the coupling of these Wannier orbitals to an effec-
tive non-interacting fermionic bath, which is determined
selfconsistently. The local Hamiltonian reads

H loc =
∑
mm′

ε0mm′d
†
mdm′ +Hint, (3)

where Hint describes the interactions, and ε0 are the
one-body energies, which we compute as

ε0 =
1

N
∑
~k

P (~k)ε(~k)P †(~k)−Σdc. (4)

where N is the number of k-points. The effective bath is
described by an hybridization function, ∆(iωn), which is
determined at each step of the DMFT cycle.

From the lattice Green’s function [see Eq. (1)] we de-
fine a local Green’s function in C

Gloc(iωn) =
∑
~k

P (~k)G(~k, iωn)P †(~k), (5)

while the impurity Green’s function of the DMFT auxil-
iary problem reads

Gimp(iωn) = [(iωn+µ)1C−ε0−∆(iωn)−Σimp(iωn)]−1,
(6)

where Σimp(iωn) is determined solving the auxiliary
quantum impurity problem for a given ∆(iωn). The
DMFT self-consistency is fulfilled for a ∆(iωn) such that
Gimp = Gloc.

B. RISB as impurity solver

In the RISB formalism [22–25, 35] the physical
fermionic operators dm, which destroy an electron in the
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Wannier state |χm〉, are represented as a linear combina-
tion of an equal number of auxiliary fermionic operators
fm:

dm =
∑
m′

RCmm′ [{φAB}]fm′ . (7)

Here, the matrix RC is a function of a set of auxiliary
boson fields {φAB}, where the indices A and B refer to
the local multiplets, and describes the different processes
by which an electron can be destroyed. Its form ensures
that the matrix elements of the dm operators remain the
same in the new representation [23].

In the enlarged Hilbert space, spanned by the auxil-
iary fermion and boson fields, H loc is represented as a
quadratic form in the auxiliary boson operators:

H loc =
∑
AB

〈A|H loc|B〉
∑
n

φ†AnφBn. (8)

A one-to-one mapping with the original local Hilbert
space is obtained with the introduction of time-
independent Lagrange multipliers λ0 and ΛCmm′ that en-
force the following constraints:∑

A,B,C

φ†CAφCB〈B|Ô|A〉 = Ô, (9)

where Ô = {1, f†mfm′}.
In the saddle-point approximation, the boson fields are

replaced by classical numbers, and the self-energy ac-
quires a simple form

Σimp(iωn) = iωnΣimp
1 + Σimp

0 , (10)

where

Σimp
1 = 1C − [RCR

†
C ]
−1, (11)

effectively renormalizes the hybridization with the non-
interacting bath, and

Σimp
0 =

(
1C − [RCR

†
C ]
−1
)
µ+ R†−1

C ΛCR
−1
C − ε0,

(12)

renormalizes the level positions.
Replacing the self-energy of Eq. (10) in Eq. (6) the

impurity Green’s function reads

Gimp = RC

[(
iωn + µ

)
1C −ΛC −R†C∆(iωn)RC

]−1
R†C .

(13)
The auxiliary fermionic fields fm can be interpreted
as quasiparticle degrees of freedom with a quasiparticle
weight ZC = RCR

†
C . Their associated Green’s function

is [using Eq. (7)]

Gimp
qp =

[(
iωn + µ

)
1C −ΛC −R†C∆(iωn)RC

]−1
. (14)

C. RISB method in the DFT+DMFT scheme

When the RISB technique is used to solve DMFT’s
impurity problem, the relations between physical and
quasiparticle quantities (e.g. operators and correlators)
introduced in the subspace C are expected to have ana-
logues in K. In particular, the physical fermionic op-
erator c†~kν which creates an electron in the Kohn-Sham
state |ψ~k,ν〉 can be related to quasiparticle operators c̃kν
through transformation matrices RKνν′(~k):

c~kν =
∑
ν′

RKνν′(~k)c̃~kν′ . (15)

and accordingly, the lattice Green’s function [see Eq. (1)]
be written in terms of the quasiparticle lattice Green’s
function, Gqp(~k, iωn):

G(~k, iωn) = RK(~k)Gqp(~k, iωn)R†K(~k). (16)

In the RISB saddle-point approximation the lattice
self-energy reads:

Σ(~k, iωn) = iωnP
†(~k)Σimp

1 P (~k)

+ P †(~k)
[
Σimp

0 −Σdc
]
P (~k), (17)

which leads to

P †(~k)Σimp
1 P (~k) = 1K(~k) −Z−1K (~k),

and using Eq. (11) to

Z−1K (~k) = 1K(~k) − P †(~k)P (~k) + P †(~k)Z−1C P (~k), (18)

that accounts for the mass renormalization of the Bloch
states due to the electronic correlations [36].

Equation (18) gives the quasiparticle weight in mo-
mentum space in terms of the quasiparticle weights ob-
tained from DMFT’s auxiliary quantum impurity prob-
lem. Note that this relation was obtained using gen-
eral assumptions for the low energy behavior of the self-
energy in the Bloch and Wannier basis and can therefore
be used independently of the quantum impurity solver
employed to calculate ZC . Within this theory, the ~k de-
pendence of the mass enhancement stems from the dif-
ferent amplitudes the Bloch states have in the Wannier
states of the correlated subspace C.

The quasiparticle lattice Green’s function can be cal-
culated from Eqs. (1) and (16) (see Appendix B). We
have:

G−1
qp (~k, iωn) =

(
iωn+µ

)
1K−ΛK(~k)−R†K(~k)ε̃(~k)RK(~k),

(19)
where ΛK(~k) = P †(~k)ΛCP (~k) and ε̃(~k) = ε(~k) −
P †(~k)

(
ε0 + Σdc

)
P (~k). From the definition of ε0

[see Eq. (4)] it follows that the energies ε̃(~k) satisfy∑
~k P (~k)ε̃(~k)P †(~k) = 0, and the level energies are there-

fore controlled by ΛK(~k) while the transformation matrix
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RK(~k) renormalizes the bandwidth. In Appendix A we
show that RC and RK can be related by an equation
analogous to Eq. (18).

The quasiparticle wave-functions |ψQP~k,ν 〉 can be ob-

tained as the eigenvectors of G−1qp (~k, iωn → 0), and are
linear combinations of the Kohn-Sham basis provided by
the DFT calculation, |ψ~k,ν〉.

|ψQP~k,ν 〉 =
∑
ν′

U†ν,ν′(~k)|ψ~k,ν′〉. (20)

The mass renormalization of the quasiparticle states is
obtained applying the unitary transformation U to the
low energy expansion of the lattice self-energy function
[given by Eq. (2)], which leads to

ZQP
K (~k) = U(~k)ZK(~k)U†(~k). (21)

A point ~kF belongs to the renormalized Fermi surface
S if there is a state |ψQP~kF ,νF 〉 which is a zero energy eigen-

vector of the function G−1qp (~kF , iωn → 0). In the general
case, the matrix ZQP

K (~k) is non-diagonal. We may, how-
ever estimate the quasiparticle weight associated with a
Fermi sheet νF by projecting ZK(~k) onto the correspond-
ing quasiparticle states at the Fermi level:

ZQPνF (~kF ) = 〈ψQP~kF ,νF |ZK(~kF )|ψQP~kF ,νF 〉. (22)

The quasiparticle weight ZQP
K (~k) provides information

about the mass renormalization obtained at particular
line cuts of the Brilloin zone, which can be obtained
performing Angle Resolved Photoemission (ARPES) or
dHvA oscillations experiments.

As a benchmark of the method, in Appendix C we
present a comparison of results obtained by solving the
quantum impurity problem with RISB or with CTQMC
for the cubic perovskite SrVO3.

III. APPLICATION TO Sr2RuO4

The ruthenate Sr2RuO4 was analyzed in Ref. [2] using
LDA+DMFT(CTQMC) in the absence of SOC and more
recently in Ref. [13] including the SOC at the DFT level.
These studies show that the Hund’s rule coupling plays a
central role in explaining the magnitude of the quasiparti-
cle weight and its orbital differentiation. The magnitude
of the latter being also affected by the presence of a Van
Hove’s singularity near the Fermi level. These results
present a remarkable agreement with the experimental
effective masses and with ARPES and NMR data. Al-
though including the SOC reduces the degeneracy of the
local multiplet structure it does not change the Hund’s
correlated metal nature of the compound.

We apply below the DFT+DMFT(RISB) method de-
tailed in the previous section to analyze the electronic
structure of Sr2RuO4. We take the experimental crystal

structure extracted from Ref. [37] with lattice parame-
ters a = 3.862Å, c = 12.722Å. We use the wien2k code
[38] with the triqs interface for DFT+DMFT [32, 33, 39]
and consider the Local Density Approximation (LDA) for
the exchange and correlation potential at the DFT level
using a dense k mesh of 39 × 39 × 39 points [40]. To
construct the Wannier orbitals we take an energy win-
dow, Ws = [−3 eV, 1.3 eV], which basically contains the
t2g bands of the Ru atom as indicated in Fig. 1.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

-3 0

D
(ε
)
[e
V

−
1
]

ε [eV]

xy
xz

FIG. 1. LDA density of states of Sr2RuO4 projected on the
Ru-t2g orbitals and within the energy window Ws considered
in this work to construct the Wannier orbitals.

The Coulomb interaction within the t2g manifold is de-
scribed with the rotationally invariant Kanamori Hamil-
tonian:

Hint = U
∑
m

nm↑nm↓ + (U − 2J)
∑
m6=m′

nm↑nm′↓ +

+ (U − 3J)
∑

m>m′,σ

nmσnm′σ + (23)

+ J
∑
m 6=m′

(d†m↑d
†
m↓dm′↓dm′↑ − d

†
m↑dm↓d

†
m′↓dm′↑).

Here, nmσ = d†mσdmσ, U is the intraorbital interac-
tion and J is the Hund’s rule coupling. The values
of U and J have been estimated in Ref. [2] using the
constrained random phase approximation (U=2.3eV and
J=0.4eV, with J/U=0.17) and in Ref. [41] using the
constrained local density approximation (U=3.1eV and
J=0.7eV, J/U=0.23). If the SOC interaction is not in-
cluded in the calculations, the local multiplet structure is
formed by a doublet |xyσ〉 and a quartet {|xzσ〉, |yzσ〉},
the former having a lower energy. Upon inclusion of
the SOC in the DFT calculation, the degeneracy of the
quartet is broken leading to three doublets, |0〉, |1〉 and
|2〉. These were calculated by diagonalization of Eq.
4, and can be approximately associated with the states
|J = 3/2,mJ = ±1/2〉, |J = 1/2,mJ = ±1/2〉, and
|J = 3/2,mJ = ±3/2〉, respectively. The results for the
one body energies and the quasiparticle weights are pre-
sented in Table I for calculations using U = 3.1eV and
J/U = 0.2 and T = 5K [42].

Although the DFT-DMFT(RISB) results capture the
Hund’s metal behavior of the system, showing a strong
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orbital ε0 [eV] ZC n

Without SOC xy -0.44 0.61 1.34
xz, yz -0.36 0.56 1.33

With SOC
0 -0.48 0.62 1.38
1 -0.24 0.53 1.25
2 -0.42 0.58 1.37

TABLE I. Diagonal one-body energies (ε0), quasiparticle
weights (ZC), and occupancies (n) corresponding to Wan-
nier orbitals constructed using the energy window Ws =
[−3 eV, 1.3 eV], both with and without including the SOC.
Occupancies and quasiparticle weights correspond to the
LDA+RISB calculation with parameters U = 3.1 eV and
J/U = 0.2.

suppression of the charge fluctuations to states with spin
other than the maximum, it underestimates the enhance-
ment of quasiparticle renormalization compared to the
one obtained by other numerically exact impurity solvers
as CTQMC [43]. This has been established before [9]
and is a feature shared with other related techniques
like the Gutzwiller approximation [44–46], or the slave-
spins formalism [47]. One finds moderate enhancement
of the quasiparticle mass ∼ 2 with a slightly smaller en-
hancement in the xy orbital. This is different to what
is obtained using CTQMC where larger mass enhance-
ments ∼ 4 are found, even at smaller values of the in-
teraction parameters. Additionally, the fact that the
mass enhancement in the xy orbital is smaller may sug-
gest that the slave-bosons are more sensitive to the over-
all bandwidth than to the low-energy fine-structure in
the DOS. Later in the text we will see that in spite of
this discrepancies the material trends, as the epitaxial
strain is changed, are consistent with what is found us-
ing CTQMC.

As it was mentioned in Section I, the renormalized
masses (with respect to LDA) of the α and β sheets of the
Fermi surface have been reported to be ∼ 3 and ∼ 3.5, re-
spectively [21]. Note that this experimental finding sug-
gests that, altough possible smaller, there must be addi-
tional sources of momentum differentiation of the mass
enhacement. Indeed, the inequality m∗

mLDA
|α < m∗

mLDA
|β ,

or rather Zα > Zβ , is not evident since the Bloch states
that conform these sheets have mainly xz and yz sym-
metry and, as a result, their weight in the correlated sub-
space lies on degenerate cubic Wannier orbitals. In the
following, we show that the spin-orbit coupling enhances
the ~k dependence of ZQP

K (~k).
When the SOC is turned on, the doublet |2〉 is lower

in energy than the degenerate orbitals xz and yz in the
absence of SOC, as can be observed in Table I. Con-
sequently, while |2〉 increases its occupancy, which drives
the orbital away from half-filling and, in turn, gives place
to a larger quasiparticle weight, the opposite happens for
|1〉. To better compare with the calculation done without
SOC, it is naturally convenient to analyze the changes in
the basis of cubic Wannier functions. We find that both
the orbital polarization nxy − nxz and the quasiparticle

weights ZCxy and ZCxz remain essentially constant upon
inclusion of the SOC [48]. This agrees with the CTQMC
results of Ref. [13] and supports the conclusion that the
SOC does not affect the coherence scale of Sr2RuO4.

The SOC does, however, modify the way the quasi-
particle weight varies in K space. Figures 2(a) and 2(b)
present the projected quasiparticle weight ZQPνF (~kF ) (for
νF = α, β, γ) [see Eq. (22)] associated with the Fermi
surface Bloch states calculated without or with the SOC
turned on in the DFT calculations, respectively. In the
absence of SOC the only dependence on ~k comes from the
difference between ZCxy and ZCxz. Along each Fermi sur-
face sheet the quasiparticle weight is essentially constant.
The inclusion of the SOC leads to a richer momentum
differentiation, which is larger at kx = ky, consistently
with the stronger spin-orbital entanglement experimen-
tally observed by spin-resolved ARPES at that line cut
of the Brillouin zone [10, 14]. In particular, the relation
Zα > Zβ can only be accounted for in our calculations if
the SOC is included.

The effect of the SOC on ZQPνF (~kF ) can be understood
by analyzing the change in the local multiplets and the
subsequent induced charge redistribution. Figs. 2(c-e)
present the projections of the Bloch states of each sheet
onto the different SO multiplets |0〉, |1〉 and |2〉 along the
corresponding parametrized angles θα and θβγ , indicated
in Fig. 2(b). The γ band has most of its amplitude on
the state |0〉 along almost the whole range of θβγ . The
α sheet has a larger amplitude on the doublet |2〉, while
the β one has it on |1〉, specially at θα = π/4. The
charge redistribution produced by the SOC, which acts
to decrease the quasiparticle weight of |1〉 while incresing
that of |2〉 contributes, therefore, to obtaining Zα > Zβ .

IV. EFFECTS OF ANISOTROPIC STRAINS

Motivated by the recent experimental results reported
in Ref. [15] and [16], in this section we analyze how
the electronic correlations evolve in the presence of
anisotropic strains. An interesting question is to what
extent the Lifshitz transition, in which the Van Hove sin-
gularity (VHS) crosses the Fermi level, affects the elec-
tronic correlations. We study two situations that have
been experimentally addressed and can induce this tran-
sition: a biaxial tension that leads to an increase of the
lattice parameters a and b, and also the response of the
system to an uniaxial compression along the [100] direc-
tion. In all cases, we use the experimental lattice param-
eters a, b and c [49] and relax within LDA the internal
positions of the apical oxygen and of the transition metal
atom.

Figure 3(a) shows the evolution of h/d as a function
of a, where h is the calculated apical oxygen height and
d=a/2 the distance between the Ru and its next oxy-
gen neighbors. For both uniaxial and biaxial strains, h/d
evolves towards a more regular octahedron, from 1.07 to
1.03. In the biaxial case, consequently, the splitting be-
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FIG. 2. Quasiparticle weight on the Fermi surface calculated
without including the spin-orbit interaction (a) or including
it (b). (c) Projection of the Bloch states of the α sheet of
the Fermi surface on atomic multiplets, as a function of the
angle θα defined in (b). (d) and (e) present as a function of
the angle θβγ the projection on atomic multiplets of the Bloch
states from the β and γ sheets, respectively.

tween the t2g bands diminishes. That is, the on-site xy
energy decreases while the {xz, yz} increases, contribut-
ing to transfer charge from the {xz, yz} orbitals to the xy
one, as confirmed by the evolution of the corresponding
occupancies [see Fig. 3(b)] [50]. The uniaxial compres-
sion mainly transfers charge from xz to yz, the reason
being the increased level energy of the xz orbital due to
the shorter distances along x.

In the presence of a VHS, it is convenient to analyze
the strength of the correlations in terms of an effective
bandwidth Weff calculated through the second moment
of the density of states, as suggested in Ref. [51]. The
calculated Weff for the t2g bands are shown in Figs. 3(c)
and 3(d). It can be observed that, even for the xy orbital,
the Weff decreases smoothly with a. The relative change
is only slightly larger in the {xz, yz} bands than in the
xy one.

In the following, we present how the electronic corre-
lations, as measured by the quasiparticle weight, evolve
under the two kinds of deformation mentioned above.

A. Biaxial strain

Here we present results for strained Sr2RuO4 obtained
with the formalism introduced in Sec. II and DMFT
calculations using CTQMC as impurity solver.

Figures 4(a) and 4(b) show the evolution of the quasi-
particle weight associated with the {xz, yz} and xy or-
bitals, respectively, relative to the corresponding values
for the unstressed compound (noted as Z(0)

α ), as a func-
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FIG. 3. a) h/d as a function of a, where h is the height of
oxygen octahedron and d = a/2 the distance betwen the rute-
nium atom and its first neighbor oxygen. Empty circles and
red filled squares correspond to uniaxial and biaxial stress,
respectively. b) Occupancy of Wannier orbitals according to
LDA. Effective bandwidth of c) xz, yz and d) xy orbitals, as
defined in the text.

tion of the lattice parameter a. The RISB results depend
very weakly on the temperature for T . 30K. The inclu-
sion of the SOC introduces small changes in the quasi-
particle weight. In the range of lattice parameters con-
sidered, the observed reduction upon including the SOC
is less than 1%.

Both Zxy and Zxz,yz decrease monotonically as a in-
creases from the unstrained case, in line with the mono-
tonic reduction of Weff shown in Figs. 3(c) and 3(d).
The smaller variation rate of Zxy can be associated with
two effects. First, the bandwidth reduction of the xy
band is percentually smaller than that of the {xz,yz}
bands. Second, there is a compensating effect in the cor-
relations generated by the increase in the occupancy of
the xy orbital with a which drives it further away from
half-filling.

We also performed CTQMC calculations for Sr2RuO4

under biaxial strain. For these calculations we used the
parameters U=2.3eV and J=0.4eV. The obtained quasi-
particle weights, presented in Fig. 4, indicate, similarly
to the RISB results, that the biaxial stress has a stronger
effect on the xz, yz orbitals. The mass enhancement is
computed using a 4th order polynominal fit to the lowest
six Matsubara points of the self-energy shown in Fig. 4(c-
d). Typically, the values of mass renormalization fluctu-
ate by the order of 10% from DMFT iteration to itera-
tion, hence we present the data with such errorbar. At
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FIG. 5. Evolution of the renormalized Fermi surfaces (cal-
culated with SOC) for a= 3.862, 3.890, 3.929Å (from left to
right) showing that the system undergoes a Lifshitz transition
close to a= 3.890 Å.

T = 29K, the effective mass of xz–yz orbitals presents an
increment relative to the unstressed compound of ∼ 35%
(from 3.4 to 4.6), while that of the xy orbital is of the
order of the statistical error, ∼ 10%.

It is important to point out that the range of val-
ues of the lattice parameter a studied, includes the Lif-
shitz transition of this compound. Figure 5 shows the
Fermi surfaces calculated with RISB including the SOC
for three different values of a= 3.862, 3.890, 3.929Å. It
can be observed that while the electron–like β and the
hole–like α sheets shrink with increasing a, the γ one

(having mainly xy symmetry) undergoes a Lifshitz tran-
sition, changing its character from electron–like to hole–
like. This theoretical result agrees with the experimental
data reported in Ref. [16], obtained for thin films grown
on top of different substrates.

The Lifshitz transition occurs already at the LDA
level [18]. The effect of an improved treatment of the cor-
relations through RISB is to slightly decrease the value of
a at which the transition takes place (ac). More precisely,
LDA gives ac=3.98 Å, RISB ac=3.91 Å and RISB with
SOCac=3.89 Å. The value of ac naturally depends on U
because this parameter directly affects the occupancy of
the xy orbital.

The main conclusion to point out from these results is
that there is no significant effect on the electronic correla-
tions, as measured by Z, associated with the occurrence
of the Lifshitz transition (see also Ref. [3]). This obser-
vation is in qualitative agreement with the experimental
results of Ref. [16].

B. Uniaxial strain

In this section, we study the evolution of the corre-
lation strength as a function of the uniaxial compressive
stress εxx. As mentioned before, we use the experimental
lattice parameters a, b and c [15] and relax the internal
positions. The results are expected to be symmetric with
respect to tensile stress.

Overall, the effect of uniaxial stress on Z is much
weaker than in the biaxial case, basically because the
induced [100] relative distortion is smaller (up to 0.8 %).
On average, the quasiparticle weight of the t2g states
slightly increases with uniaxial pressure. Moreover, as
the case of biaxial distortion, the correlation strength
evolves monotonously through the Lifshitz transition.
Figures 6(a) y 6(b) show the evolution of the quasipar-
ticle weigth corresponding to the xz, yz and xy states,
respectively. We present only the RISB results without
SOC, since the effect of SOC is negligible for these small
values of compression.

It can be observed that, again, the variation rate of Zxy
is much smaller than that of Zxz,yz. This is consistent
with the almost constant behaviour of the corresponding
effective bandwidth and occupancy under uniaxial strain
in the former case [see Fig. 3 (d)].

V. CONCLUSIONS

In this article we presented an implementation of the
multiorbital slave-boson rotationally invariant (RISB)
quantum impurity solver within the LDA+DMFT ap-
proach to ab initio calculations of strongly correlated sys-
tems. The main disadvantage of the RISB solver is that
in general it can only be trusted at a qualitative level
and that it fails to describe non-Fermi liquid behaviors
besides trivial insulating phases. Its main advantages,



8

1

1.01

1.02

-0.8 -0.6 -0.4 -0.2 0

Z
/Z

(0
)

ε[%]

(a)

1

1.01

1.02

-0.8 -0.6 -0.4 -0.2 0

Z
/Z

(0
)

ε[%]

(b)

xz
yz xy

k
y
/
a

kx/a

0

1

0 1

(c)

kx/a
0 1

(d)

kx/a
0 1

(e)

FIG. 6. (a) Quasiparticle weight of the orbital {xz, yz} as
function of the stress εxx at T = 5K. (b) Quasiparticle weight
of the orbital xy as function of the stress εxx. c-e) Evolution
of the renormalized Fermi surfaces for the percentage uniaxial
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compared to other numerically exact solvers as Quantum
Monte Carlo, are its much lower computational cost at
low temperatures which allows to rapidly explore a wide
range of parameters and materials, and the abilty of eas-
ily handling off-diagonal hybridizations at arbitrary low
temperatures in problems that in general give place to a
sign problem in CTQMC. It can therefore be used as a
tool to explore and identify correlated regimes worth of a
more detailed study using other techniques as CTQMC
or numerical renormalization group approaches. An im-
portant result of our implementation is that we obtained
transformation relations between physical quantities, as
the quasiparticle mass renormalization, in the local corre-
lated space and their counterparts in Bloch space. This

transformation allows to obtain the momentum depen-
dence of the quasiparticle mass renormalization inde-
pendently of the quantum impurity solver used to treat
the DMFT equations. We applied the RISB approach
to study the electronic correlations, as measured by the
quasiparticle mass enhancement, of Sr2RuO4. We found
that it is necessary to include the spin-orbit coupling in
the DFT calculations to explain the experimentally ob-
served mass enhancement differentiation between the α
and β sheets of the Fermi surface. We also find that
the SOC strongly enhances the momentum dependence
of the quasiparticle weight on both sheets while the γ
sheet is largely unaffected.

A biaxial stretching of the compound on the a−b plane
leads to a monotonic increase of the mass enhancement
that is larger for the xz and yz orbitals, which determine
the mass enhancement of the α and β Fermi sheets, than
for the xy orbital, which determines the mass enhance-
ment of the γ Fermi sheet. While the sample suffers a
Lifshitz transition for a = b ∼ 3.9Å, we did not find any
significant change of behavior of the mass enhancement
across it. We also performed calculations using the nu-
merically exact CTQMC solver which confirmed the ab-
sence of any dramatic effect of the electronic correlations
at the Lifshitz transition.

Finally, we analyzed the behavior of the mass enhance-
ment when the sample is under uniaxial strain. As in the
biaxial case, we found a monotonic behavior with no sig-
nificant features across the Lifshitz transition.
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Appendix A: Inverse relations

The inverse of Eq. (18) can be obtained by applying
P (~k) and P †(~k) at left and right, respectively, and using
P (~k)P †(~k) = 1C , it reads:

P (~k)Z−1K (~k)P †(~k) = Z−1C (A1)

The asymmetry between Eqs. (18) and (A1) comes from
the fact that the transformations P (~k) are not unitary
in the general case.

Based on Eq. (18), we define:

R−1K (~k) = 1K(~k) − P †(~k)P (~k) + P †(~k)R−1C P (~k) (A2)

and in analogy with Eq. (A1) we obtain:

P (~k)R−1K (~k)P †(~k) = R−1C . (A3)

From Eq. (A2) it can be shown by direct calculation
that the quasiparticle mass renormalization in K space
satisfies

ZK(~k) = RK(~k)R†K(~k). (A4)

The relation between transformation matrices given by
Eq. (A2) is consistent with the relations between quasi-
particle and physical Green’s functions in both K and C
spaces. To show this we transform Eq. (16) to C space.
We first derive the following relation between the trans-
formation matrices in C and K.

P (~k)R−1K (~k) = R−1C P (~k), (A5)

by applying P (~k) to the left of Eq. (A2). Similarly, we
also obtain:

R†−1K (~k)P †(~k) = P †(~k)R†−1C . (A6)

From Eq. (16) it follows that:

Gqp(~k, iωn) = R−1K (~k)G(~k, iωn)[R†K]−1(~k). (A7)

We project this equation to C multiplying at left by P (~k),
at right by P †(~k) and summing over ~k:

Gloc
qp (iωn) =

∑
~k

P (~k)R−1K (~k)G(~k, iωn)R†−1K (~k)P †(~k).

Using Eqs. (A5) and Eq. (A6), we have:

Gloc
qp (iωn) =

∑
~k

R−1C P (~k)G(~k, iωn)P †(~k)R†−1C

= R−1C

(∑
~k

P (~k)G(~k, iωn)P †(~k)
)
R†−1C

= R−1C Gloc(iωn)R†−1C , (A8)

and finally

RCG
loc
qp (iωn)R†C = Gloc(iωn), (A9)

which is the expected relation between the physical and
the quasiparticle Green’s functions in C.

Appendix B: Derivation of Eq. (19).

The quasiparticle lattice Green’s function can be com-
puted using the DFT+DMFT equations and the self-
energy obtained in the RISB saddle-point approximation.
To this aim, we substitute in Eq. (1) the self-energy given
by Eq. (10). The terms linear in frequency and in the
chemical potential read (in the following we omit the de-
pendence in ~k of P and RK):

(iωn+µ)[1K(~k)−P
†(1C−Z−1C )P ] = (iωn+µ)Z−1K , (B1)

where we have used Eq. (18). The term proportional to
ΛC reads:

P †R†−1C ΛCR
−1
C P = R†−1K P †ΛCPR−1K , (B2)

where the equality follows using Eqs. (A5) and (A6).
The other terms are:

−ε(~k) + P †
(
ε0 + Σdc

)
P . (B3)

The summation of these terms and use of Eq. (16) leads
to Eq. (19).

Appendix C: Application to SrVO3

Here we present as a benchmark a comparison between
results obtained with LDA+RISB and LDA+DMFT
(CTQMC) for the compound SrVO3. We use values
of U = 4.5 eV and J = 0.6 eV, and construct Wannier
functions for the t2g bands within the energy window
[−1, 2] eV. Fig. 7 presents the spectral density as func-
tion of the energy for each of the three-fold degenerated
t2g Wannier orbitals. It can be observed that the RISB
method provides a reasonably good approximation at low
energies in spite of subestimating the bandwith renormal-
ization. The values of Z obtained are ∼ 0.5 and ∼ 0.65
for CTQMC and RISB, respectively.
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