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Abstract

We discuss the role of dynamical many-electron effects in the physics of iron and iron-

rich solid alloys under applied pressure on the basis of recent ab initio studies employing

the dynamical mean-field theory (DMFT). We review in details two particularly interesting

regimes: first, a moderate pressure range up to 60 GPa and, second, the ultra-high pressure

of about 360 GPa expected inside the solid inner core of Earth.

Electronic correlations in iron under the moderate pressure of several tens GPa are dis-

cussed in the first section. DMFT-based methods predict an enhancement of electronic cor-

relations at the pressure-induced body-centered cubic α → hexagonal close-packed ε phase

transition. In particular, the electronic effective mass, scattering rate and electron-electron

contribution to the electrical resistivity undergo a step-wise increase at the transition point.

One also finds a significant many-body correction to the ε-Fe equation of state, thus clarify-

ing the origin of discrepancies between previous DFT studies and experiment. An electronic

topological transition is predicted to be induced in ε-Fe by many-electron effects; its experi-

mental signatures are analyzed.

Next section focuses on the geophysically relevant pressure-temperature regime of the

Earth’s inner core (EIC) corresponding to the extreme pressure of 360 GPa combined with

temperatures up to 6000 K. The three iron allotropes (α, ε and face-centered-cubic γ) previ-

ously proposed as possible stable phases at such conditions are found to exhibit qualitatively

different many-electron effects as evidenced by a strongly non-Fermi-liquid metallic state of

α-Fe and an almost perfect Fermi liquid in the case of ε-Fe. A recent active discussion on

the electronic state and transport properties of ε-Fe at the EIC conditions is reviewed in

details. Estimations for the dynamical many-electron contribution to the relative phase sta-

bility are presented. We also discuss the impact of a Ni admixture, which is expected to be

present in the core matter. We conclude by outlining some limitation of the present DMFT-

based framework relevant for studies of iron-base systems as well as perspective directions

for further development.

Keywords: many-electron effects, first-principles calculations, iron, magnetism, conductivity,

high pressure-temperature conditions
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Figure 1: The pressure-temperature phase diagram of iron in the moderate pressure range up to

50 GPa. The superconducting transition temperature for ε-Fe is multiplied by 100. The yellow

horizontal dashed line in the α-Fe region indicates its ferromagnetic Tc.

Introduction

Iron is a key material for our civilization since the advent of ”Iron Age” at about 1000 BC. The

technological utility of iron is due to a vast phase space of iron-based alloys, which is the origin

of a great variety of steel microstructures obtained with small variations in the composition

and an appropriate thermal treatment. In particular, the rich zoo of steels is composed by

three stable phases - the ferrite (body-centered cubic, bcc, α) austenite (face-centered cubic, fcc,

γ) and cementite (orthorhombic carbide Fe3C) - in addition to various metastable phases, for

example, the body-centered tetragonal martensite α′ (see, e.g., [1]). This multitude of phases

observed in iron-based alloys and compounds stems from the complex physics of pure iron, which

features three distinct allotropes at the ambient pressure: ground-states bcc α-Fe transforms

into fcc γ-Fe at 1185 K; the fcc phase subsequently transforms to yet another bcc phase, δ-

Fe, at 1667 K. Though α and δ-Fe have the same bcc lattice, their physics is quite different,

with the vibrational entropy believed to be playing the key role in stabilization of the later

[2]. Iron is a classic itinerant ferromagnet, and the ferromagnetic order is well recognized to be

crucial in stabilizing α-Fe [3]. However, as noted above, the α phase still exists above the Curie

temperature of 1044 K. The fcc γ phase is thermodynamically stable only at high temperature;

this phase is paramagnetic. However, γ-Fe can be also stabilized in small precipitates in an fcc

matrix, e.g., in Cu, down to zero temperature, and at low temperatures it exhibits a complex

non-commensurate antiferromagnetic order [4].

Under applied pressure above 10 GPa α-Fe transforms into another allotrope, hexagonal

close-packed (hcp) ε-Fe [5, 6]. This phase is found to be stable at room temperature up to
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the highest pressure reached to date [7]; ab initio density-functional-theory (DFT) calculations

predict iron to remain in the ε phase up to a pressure of the order of 10 TPa [8]. Experimental

studies of ε-Fe reveal a superconducting dome in the range of pressure from 10 to 30 GPa with

the maximum value of superconducting Tc of about 2 K [9]; this superconductivity is likely of

non-conventional nature and mediated by spin-fluctuations [10]. No magnetic order has been

detected in ε-Fe down to temperatures as low as 8 K [11, 12]. A puzzling non-Fermi-liquid (nFL)

temperature scaling ∝ T 5/3 of the low-temperature resistivity of ε-Fe was also reported [13, 14].

This rich phase diagram (Fig. 1) with several allotropes exhibiting various magnetic orders,

a non-conventional superconductivity as well as instances of a nFL behavior in the ε-phase hint

at a complex many-electron physics of iron metal. Before concentrating on the main subject

of this review - correlation effects in this metal at high pressure conditions - let us summarize

the current picture for the role of these effects at the ambient pressure, for which theoretical

predictions can be more easily compared to various experimental probes.

Many-electron effects in iron are expected to arise due to the on-site Coulomb repulsion

between rather localized 3d states hybridized with itinerant 4s bands. The typical width W of

the iron 3d band is in the range of 5 to 6 eV for the ambient pressure; the estimated value of the

local Coulomb interaction parameter U (Slater F 0) is in the range from 2.3 to 6 eV, in accor-

dance with constrained local-density approximation [15, 16, 17] and constrained random-phase

approximation [18, 19] calculations (see Appendix A for a short overview of these methods).

In spite of a large spread in the theoretical estimates of U , one may conclude that the ratio

U/W in Fe is less than or equal to 1. Taking into account only the effect of U ≤ W one would

expect rather weak electronic correlation effects in a multiband system away from half-filling

[20]. Indeed, the strength of electronic correlations in iron is found to be much more sensitive

to Hund’s coupling JH , which value is in the range of 0.85 to 1 eV. In this respect the physics of

iron is close to that of ”Hund’s metals” [21, 22, 23], in which the strength of correlations away

from half-filling is determined mainly by JH . In particular, model studies point out to a key role

of JH in stabilizing the ferromagnetic phase in multiband systems away from half-filling [24].

Another important aspect is the interplay between the local Coulomb interaction, characterized

by large JH , and crystal-field splitting of Fe 3d states. This interplay is particularly striking in

the bcc α phase, where the partial eg density-of-states (DOS) features a large peak pinned at the

Fermi level due to a van Hove singularity [25, 26]. Correspondingly, this high DOS at the Fermi

level in nonmagnetic α-Fe explains its tendency towards the ferromagnetism in accordance with

the Stoner criterion.

The Stoner ferromagnetism of α-Fe is well captured by density functional theory (DFT) cal-

culations in conjunction with the local spin-density approximation (LSDA) exchange-correlation

functional predicting the theoretical ordered moment of 2.2 µB that agrees well with experiment.

Though DFT-LSDA incorrectly predicts γ-Fe to be the ground states [27], this error is corrected

by semi-local exchange-correlation potentials like the generalized gradient approximation (GGA)

[28, 29]. However, the existence of paramagnetic bcc phase is a significant challenge for density

functional theory. Direct DFT calculations predict too small volume and too high bulk modu-

lus for non-magnetic α-Fe; moreover, this non-magnetic phase is mechanically and dynamically

unstable within DFT [30, 31], in clear disagreement with experiment. DFT calculations predict
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paramagnetic γ-phase to be dynamically unstable as well [31]. A number of methods has been

developed in the DFT framework to remedy its deficiency in describing paramagnetic phases.

Several such techniques were subsequently applied to iron, like the disordered local moments

(DLM) method [32, 33, 34, 35], the spin-statistical-averaging method of Körmann et al. [36],

or the spin-wave approach of Ruban and Razumovskiy [37], for a recent review of those tech-

niques see, e.g., Ref. [38]. The spin-disorder contribution to the resistivity of iron at ambient and

extreme conditions has been also evaluated using such DFT-based methods [39, 40, 41, 42]. How-

ever, these techniques represent the paramagnetic state by a certain combination of systems with

static local moments and are typically useful to describe the thermodynamics of local-moment

paramagnets, but not to capture their spectral properties. And even for ferromagnetic α-Fe the

DFT electronic structure is only in a rough qualitative agreement with experimental photoemis-

sion spectra, missing, in particular, the observed quasiparticle renormalization of the 3d bands

by 40-50% and a lifetime broadening of quasiparticle states [43] .

This inability of pure DFT to fully capture the physics of iron at ambient condition, in

particular, of high-temperature paramagnetic α-Fe as well as the γ and δ phases has prompted

a number of ab initio studies of this system employing a combination of DFT with a dynamical

mean-field theory (DMFT) treatment of the narrow 3d iron band.

In particular, Leonov and coworkers applied this DFT+DMFT approach in conjunction

with a quantum Monte Carlo impurity solver to obtain total energies and phonon dispersions in

the paramagnetic α and γ phases [44, 31]. Their calculations predict dynamically and thermody-

namically stable paramagnetic α-Fe in the range of temperatures from Tc to 1.3Tc, in qualitative

agreement with experimental phase diagram. Leonov et al. have subsequently extended their

phonon-dispersion calculations of the bcc phase to the temperature range of δ-Fe [45] finding it

dynamically unstable in the harmonic approximation, this result was very recently challenged

by another DFT+DMFT study [46]. Theoretical DFT+DMFT calculations of the one-electron

spectra of iron [47, 48, 49, 50, 51, 52, 46] have been mostly limited to the ferromagnetic α phase,

for which experimental angular-resolved photoemission (ARPES) spectra are available [43, 51].

Refs. [53] and [54] also studied the one-electron spectral function and magnetic susceptibilities

of the paramagnetic α and γ phases. Sánchez-Barriga et al. [51] concluded that a purely-local

single-site DMFT self-energy is not sufficient to obtain a quantitative agreement between the

theoretical k-resolved spectral function and experimental ARPES spectra, though they em-

ployed an approximate treatment of the DMFT quantum impurity problem. The most recent

DFT+DMFT studies [52, 46] employing a numerically-exact quantum Monte Carlo approach

[55] reach a reasonable quantitative agreement with ARPES, though discrepancies for some

high-symmetry directions are still present. The same level of agreement was reached by includ-

ing both local and non-local many-electron effects within a weak-coupling quasiparticle GW

approach [56]. Hence, a combination of non-perturbative treatment of the on-site correlations

with a weak-coupling approach to non-local ones (see, e.g., Refs. [57, 58]) is probably necessary

to fully account for the one-electron spectra of ferromagnetic α-Fe.

Correlation effects in iron under moderate and high pressure have been less studied with

DFT+DMFT until recently. The present review focuses on this topic, in particular, on new

theoretical results obtained during the last 5 years.
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First, we consider the hcp ε phase, whose ground-state and transport properties in the mod-

erate pressure range of 10 to 60 GPa are puzzling, as shortly described above. The subsequent

section discusses with properties of the α, γ and ε iron and iron-nickel alloy at the volume of

7.05 Å/atom and at temperatures up to 6000 K. These density and temperature are expected

for the inner core of Earth, hence, the phase stability and transport properties of iron at such

conditions are of a particular relevance to the geophysics. In spite of high density, which is

expected to diminish the relative importance of the electron-electron repulsion, we still find a

rather significant impact of the local interaction between 3d electrons on the electronic structure,

phase stability as well as on magnetic and transport properties.

We supplement this review with Appendix A briefly presenting the DFT+DMFT method-

ology, which has been employed to calculate the key quantities of the many-electron theory re-

ferred in the main text, like the one-electron Green’s function and self-energy. The DFT+DMFT

method has not yet become a standard tool in ab initio calculations of transition metals and their

alloys. This technique has been much more intensively applied to ”traditional” strongly corre-

lated materials, like transition-metal oxides and heavy-fermion systems. Hence, the Appendix

will hopefully appeal to theoretically oriented readers working in the field of transition-metal al-

loys and interested in beyond-DFT approaches to electronic correlations in these systems. Some

familiarity with DFT and basics of many-body quantum theory (like the second quantization

and Green’s function formalisms) is thus assumed. Appendix A is not necessary to understand

the main text; the readers that are mainly interested in experimentally accessible results and

not in the methodology may skip it.

1 ε-Fe under moderate pressure: equation of state, resistivity

and electronic topological transitions

As noted above, DFT successfully captures the magnetic state α-Fe; DFT calculations also pre-

dict the ground-state properties of this phase in good agreement with experiment. In contrast,

the same theory fails to account even for basic ground-state properties of pressure-stabilized

ε-Fe. Within the local spin-density and generalized gradient approximations for the exchange-

correlation potential it predicts a rather strong antiferromagnetism (AFM), with the iron mo-

ment of about 1.5 µB at the volume of 73 (a.u.)3/atom, corresponding to that of the ε-phase

at the α → ε transition point [59, 60, 61]. However, no hyperfine magnetic splitting has been

observed in ε-Fe by Mössbauer spectroscopy down to 8 K [11, 12] questioning the existence of

any static magnetic order in this phase. X-ray emission spectroscopy of Refs. [62, 63] detected

a magnetic signal, but it is not clear whether its origin is a static order or rapidly fluctuating

local moments. The same very recent work [63] proposed a quasi-2d order of alternating AFM

and ”magnetically dead” layers for ε-Fe but their neutron diffraction measurements failed to

detect any magnetic order in this phase down to 1.8 K at 20 GPa. The presence of a high-

frequency satellite of the E2g Raman mode in ε-Fe [64] was initially ascribed to a splitting of

this mode in the AFM-ordered phase [60]; the satellite peak is, however, found to disappear at

low temperatures, i. e., where the AFM state is supposed to be stable [65].
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Figure 2: a). DFT+DMFT total energy vs. volume per atom for α (ferromagnetic, solid blue

line, and paramagnetic, dot-dashed black line) and ε (dashed red line) Fe. The error bars are

the CT-QMC method stochastic error. The orange long dash-dotted straight line indicates

the common tangent construction for the α − ε transition. b). Equations of states (EOS) for

ferromagnetic α (low pressure) and paramagnetic ε (high pressure) Fe. Theoretical results are

obtained by fitting the DFT+DMFT (thick line) and GGA (thin line) total energies, respectively,

using the Birch-Murnaghan EOS. The experimental EOS of iron shown by green filled squares

is from [68]. Adapted from Ref. [69].

Hence, at present there is no convincing evidence in favor of any ordered magnetic state

in ε-Fe. If the nonmagnetic ground state is imposed, DFT total energy calculations predict an

equation of state that drastically disagrees with experiment. The bulk modulus is overestimated

by more than 50%, and the equilibrium volume is underestimated by 10% compared to the

experimental values [59]. Another puzzling experimental observation is a large enhancement in

the resistivity across the α-ε transition. The room temperature total resistivity of ε-Fe is twice

as large as that of the α phase [13]. The electron-phonon-scattering contribution to resistivity

calculated within GGA is in excellent agreement with the experimental total resistivity for the

α phase [66], however, these calculations predict virtually no change in the resistivity across

the transition to antiferromagnetic hcp-Fe. Moreover, the measured temperature dependence

of resistivity in ε-Fe exhibits ∼ T 5/3 temperature dependence [13, 14], the n = 5/3 exponent

is characteristic of weakly ferromagnetic metals, in disagreement with the AFM tendency pre-

dicted by DFT. All these discrepancies between DFT calculations and experiment point out

to a possible important role of dynamic correlations in ε-Fe. Sola et al. [67] performed diffu-

sion quantum Monte Carlo (DQMC) calculations of the ε-Fe equation of state thus including

many-electron effects beyond DFT. Their resulting equation of state is very similar to the DFT

one and strongly deviates from experiment at low pressures, where correlation effects are most

important. This may be due to the fixed-node approximation employed in DQMC with the

nodal surface fixed by a trial wave function obtained within DFT.

The evolution of electronic correlations across the α → ε transition as well as its impact

on the equation of state and electrical resistivity were studied by Pourovskii et al. [69] using

a self-consistent DFT+DMFT approach; the quantum impurity problem was solved using the
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hybridization-expansion CT-QMC method briefly introduced in Appendix Sec. A.2. In order to

achieve the necessary accuracy with a manageable computational cost the so-called non-density-

density terms in the Coulomb vertex were neglected, see Appendix B. This local Coulomb

interaction vertex between Fe 3d states was parametrized by U = F 0 =4.3 eV and JH=1 eV.

These values of the interaction parameters were chosen on the basis of the previous cRPA

calculations for iron by [19]; their value of U =3.4 eV for α-Fe was increased by about 25%

to effectively account for the high-frequency tails of the Coulomb vertex [70]. The value of JH

was fixed at the top of the accepted range of 0.85 to 1.0 eV to reproduce the value of magnetic

moment in α-Fe at the ambient conditions.

Overall, DFT+DMFT total energy calculations of Ref. [69] provide a comprehensive and

quantitatively correct picture for the ground-state properties of both phases including their

ground-state volumes, bulk moduli as well as the pressure dependence of the c/a ratio in ε-Fe.

In particular, they predict a ferromagnetic α-Fe ground state and a transition α → ε phase

at 10 GPa, in agreement with experiment (Fig. 2a). The calculated difference in total energy

between the ferromagnetic and paramagnetic states of α-Fe is of about 10 mRy (1500 K), in a

good correspondence to its experimental Curie temperature of 1043 K. The Birch-Murnaghan

equations of states (EOS) fitted to DFT+DMFT total energies of α and ε-Fe agree well with the

corresponding experimental EOS (Fig. 2b). One observes a particularly significant improvement

for the case of ε-Fe, for which the DFT-GGA framework performs quite poorly. In contrast,

the DFT+DMFT corrections to EOS of ferromagnetic α-Fe are rather small; as noted in the

Introduction, the DFT in conjunction with GGA already describes the ground-state properties

of this phase quite well.

As the many-body corrections to the ground-state properties are more significant in ε-Fe

than in α-Fe one can expect stronger dynamic electronic correlations in the former. Indeed, the

mass enhancement m∗a/m0 = Z−1
a and the inverse quasiparticle lifetime

Γa = −Za=Σa(ω = 0), (1)

where a is them and spin quantum numbers labeling Fe 3d orbitals, Za = [1− d=Σa(iω)/dω|ω→0]

is the quasiparticle residue extracted from the zero-frequency value of the DMFT self-energy

Σa (see Appendix Sec. A.1) for the orbital a, exhibit a large increase at the α → ε transition

(Fig. 3). This enhancement of dynamic correlations is due to the suppression of the static mag-

netic order at this transition. In fact, paramagnetic α-Fe is a strongly-correlated nFL system,

with a particularly large value of Γ for localized eg states [53, 71]. In contrast, only a modest

Fermi-liquid renormalization of Fe 3d DFT band structure is detected by ARPES for the ferro-

magnetic phase [43]; their value for the mass enhancement of about 40-50% agrees reasonably

with the DFT+DMFT prediction of 1.6 for 〈m∗〉 for the ambient conditions (Fig. 3).

A step-wise increase of the inverse quasiparticle lifetime Γ at the α → ε transition point

should result in a corresponding step-wise increase of the electron-electron-scattering contribu-

tion to the electrical resistivity. Indeed, DFT+DMFT calculations for the transport presented

in the same paper 1 predict such a jump with the electron-electron contribution enhanced by

1See Sec. 2.3 for a brief summary of the formalism for transport calculations

7



Figure 3: The ratio of averaged over orbitals inverse quasiparticle lifetime 〈Γ〉 to temperature

(the left axis) and the analogously averaged mass enhancement 〈m∗〉/m0 (the right axis) vs.

volume per atom. The solid lines (filled symbols) and dashed lines (hatched symbols) are 〈Γ〉/T
and 〈m∗〉/m0, respectively. The values for α and ε phases are shown by blue squares and

red circles, respectively. The black stars indicated their corresponding atomic volumes at the

transition point. Adapted from Ref. [69].

a factor of 3, from 0.5 µΩ·cm in α-Fe to 1.5 µΩ·cm in the ε phase. The jump in total resis-

tivity ρ at the transition observed experimentally [13, 14] features an overall qualitative shape

of the resistivity vs. pressure in iron strongly resembling the DFT+DMFT one. However, the

experimental jump in ρ at the α → ε transition for the room temperature is an order of mag-

nitude larger than 1 µΩ·cm predicted by our calculations. The present approach, apparently,

misses the main source of this resistivity enhancement. The fact that the resistivity jump is

still well resolved at T =4 K lends a strong support to its electron-electron-scattering origin. A

strongly nFL behavior of ε-Fe in the temperature range from 2 to (at least) 30 K [13, 14], in

conjunction with a non-conventional superconducting state at lower T points out at important

intersite correlations, e.g. spin fluctuations, which are neglected by the single-site DFT+DMFT

framework. Alternatively, one may suggest that local non-density-density interaction terms (see

Appendix A.2 and B) neglected in Ref. [69] have a crucial impact on the low-energy behavior

of the self-energy Σ(ω) and, hence, at the transport. This problem is an interesting subject for

future work.

No experimental ARPES of ε-Fe has been reported to date as such measurements are not

feasible at a high pressure of tens GPa. Glazyrin et al. [72] studied the impact of pressure on

the electronic structure of the ε phase by measuring a set of quantities readily accessible at high

pressure conditions, namely, the Debye sound velocity, Mössbauer central shift and hexagonal

cell c/a ratio, in pure Fe and in Fe0.9Ni0.1. All three quantities are found to exhibit a distinct

8



Figure 4: Experimental pressure dependence of (a) hcp phase c/a ratio and (b) the Mössbauer

centre shift based on several experimental datasets for pure iron (red circles) and for Fe0.9Ni0.1

alloy (blue circles). The centre shift values are given relative to pure α iron. Straight grey lines

in (a) are guides for the eye. Adapted from Ref. [72].

peculiarity at about 40 GPa. One sees, for example, a clear change of slope in the evolution

of c/a vs. P as well as a peculiarity in the Mössbauer central shift at this pressure, which is

especially pronounced in the case of Fe0.9Ni0.1 (Fig. 4). As discussed by Ref. [72] peculiarities

simultaneously appearing in all three quantities can be qualitatively explained by an electronic

topological transition (ETT) due to the appearance of new Fermi-surface hole pockets at a

given pressure [73, 74, 75]. The resulting peculiarities in these quantities are proportional to the

change of DOS at the Fermi level, δN(EF ), due to the ETT.

In order to precisely identify the ETT at the origin of observed peculiarities Glazyrin et

al. [72] calculated the DFT+DMFT k-resolved spectral function A(k, ω) = − 1
π=G(k, ω + iδ))

from the analytically-continued lattice Green’s function (GF), eq. 9 in Appendix A.1, as a

function of volume. A(k, ω) obtained by DFT+DMFT clearly features the emergence of new

hole pockets at the Γ and L high symmetry point (Fig. 5a and 5b). The corresponding critical

pressure for the ETT is found to be in the range of 40-80 GPa, depending on the chosen value

of U . In contrast, the DFT band structure features those hole pockets (Fig. 5d) already at 10.4
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Figure 5: The DFT+DMFT k-resolved spectral function A(k, ω) ( in units of Vat/eV, where

Vat is the volume per atom) of ε-Fe at volumes Vat of 8.9 Å3/atom (a) and 10.4 Å3/atom (b)

corresponding to pressures of 69 and 15.4 GPa, respectively. The energy zero is taken at the

Fermi level. The hole-like bands at the Γ and L points at volume 8.9 Å3/atom (indicated by the

white arrows) are below EF at V=10.4 Å3/atom. The corresponding DFT band structures are

shown in c and d, respectively. The corresponding DFT+DMFT Fermi surfaces for two volumes

are shown in e and f, respectively. Adapted from Ref. [72].

Å3/at, which is the atomic volume of ε-Fe at the α→ ε transition. Hence, DFT does not predict

any ETT to occur in the ε phase in its experimental range of existence.

This significant shift of ETT to lower volumes/higher pressures in DFT+DMFT compared

to pure DFT are mainly due to many-electron corrections to the overall position of the valence

d bands with respect to the s ones, leading to a relative shift of states with a significant s

contribution with respect to the rest. A similar significant impact of many-body corrections

was recently predicted even for such weakly correlated system as the osmium metal by Feng et

al. [76]. They found the transition pressures for a series of ETTs to be in a better agreement with

experiment when DMFT corrections were included. One may notice, however, that the relative

shift of ”correlated” d vs. ”uncorrelated” s states is sensitive to the choice of the double-counting

(DC )correction (see Appendix A). Both Refs. [69] and [76] employ the ”around mean-field” form

of DC, which is believed to be appropriate for such relatively itinerant systems.

On the experimental side, Dewaele and Garbarino [77] have very recently reported new

measurements of the equation of state and c/a ratio of ε-Fe. The experimental equation of state

is found to be in good agreement with calculations of Ref. [69]. Although no sign of peculiarity

was observed in the c/a ratio by Ref. [77], one may notice that the scatter of their points is

significantly larger than that of Glazyrin et al. [72].

2 Many-electron effects in iron and iron-nickel alloy at the Earth’s

inner core conditions

After the previous discussion focused on the moderate pressure range of several tens GPa, we

move on to a much more ”extreme” regime of pressures above 300 GPa and temperatures of
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several thousands Kelvins. This region in the pressure-temperature phase diagram of iron is

believed to be directly relevant to the structure and dynamics of the deep interior of our planet.

The wealth of available data on seismic wave propagation, planetary density and gravita-

tional field, abundance of elements in the Solar system lends strong support to the hypothesis

of iron being one of principal component of Earth and Earth-like planets [78, 79, 80]. In par-

ticular, the solid inner and liquid outer cores of Earth are believed to consist mainly of iron.

The measured Earth interior density profile as well as data on the meteorite composition favor

a picture of a solid Earth’s inner core (EIC) composed of iron alloyed with about 10% of nickel

and non-negligible quantities of light elements like Si, S, or O. Inside the EIC the matter is

subjected to pressure P in the range of 330 to 360 GPa at temperature T of about 6000 K,

though the relevant range of T for the inner core is still actively under debate. The temper-

ature of solid phase inside EIC is close to its melting point. The experimental melting curves

are not to date yet reaching the EIC pressure and need to be extrapolated resulting in the

range of about 4800-6200 K for the EIC boundary [81, 82, 83, 84, 85, 86]; DFT-based molecular

dynamics [87, 88, 89] and DQMC calculations [90] produce similar, though somewhat higher

estimates for the temperature at the EIC boundary. The phase stability and properties of solid

iron and iron-rich alloys at such extreme conditions are of high importance for the geophysics as

they represent a key input to geophysical models of Earth’s core dynamics and its evolution. In

particular, the interpretation of seismic data is largely based on the assumed phase diagram for

relevant iron-rich alloys at the core’s conditions [91]. The models of core evolution in time are

constrained by the accepted range of values for the thermal and electrical conductivities [92, 93].

Therefore, significant research efforts, both experimental and theoretical, are focused on reli-

ably determining the nature of Fe phases stable in the relevant (P ,T ) range and their physical

properties.

Iron and its alloys at extreme conditions were initially studied experimentally using the

dynamical shock-wave compression [94] and, more recently, also with the static heated diamond

anvil cell method. As noted in the previous section, these studies have established the stability

of ε-Fe up to the pressure range of EIC at the room temperature [7]. The situation is less clear

for the high-T region, where some recent experiments [83, 95, 96, 85, 97] found the ε-phase in the

relevant pressure range up to the EIC temperatures, while other studies [98, 99] observed bcc

α-Fe to emerge at high temperatures approaching the melting point. Tateno et al. [95] claimed

to reach the EIC conditions in their anvil-cell experiments and observed only the ε phase in

the studied range of P from 100 GPa to the highest pressure of 377 GPa and T from 2000 to

5700 K. However, their interpretation of the data was subsequently disputed by Dubrovinsky et

al. [100], who suggested that the EIC temperature was not in fact reached by Tateno et al. [95].

Overall, currently there is no experimental consensus regarding the stable phase of Fe at EIC

conditions.

The theory input is particularly valuable in such situation, hence, a number of DFT based

simulations of Fe and its alloy has been published in the last two decades. These studies treated

lattice vibrations in the quasi-harmonic approximation [101, 8] or with the full ab initio molec-

ular dynamics approach [102, 103, 104]. The results of these calculations are also inconclusive,

with all three known phase of iron predicted to be stable at EIC conditions by different au-
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thors. The difference in DFT free energy between those phases is found to be decreasing with

increasing temperature and pressure. Thus the relative stability becomes sensitive to small dif-

ferences in the calculational setup like the size of simulation supercell or the density of k-mesh

employed in the Brillouin zone integration [103, 104]. In particular, the non-magnetic α phase

dynamically unstable at low temperature is claimed by Belonoshko et al. [104] to be stabilized

by an unconventional high-T diffusion mechanism; in contrast, Godwal et al. [103] found α-Fe to

be dynamically unstable at the EIC conditions. The free-energy difference between γ and ε-Fe

becomes extremely small close to the melting temperature in accordance with Ref. [101], who

predicted γ-Fe to be stable at the EIC conditions, while Stixrude [8] found the ε-phase to be more

stable. In all these ab initio simulations the standard DFT framework in the conjunction with

the local-density approximation (LDA) or GGA exchange-correlation potentials was employed

thus neglecting dynamical correlation effects. This approximation is usually justified (see, e. g.,

Ref. [8]) by the fact that the local Coulomb repulsion U between iron 3d states is smaller than

the effective 3d bandwidth, especially at high pressure. Though this statement is correct even

at the ambient pressure, this does not mean that correlation effects in iron are negligible. As

noted in the previous section, the strength of local many-electron effects in iron is much more

sensitive to the Hund’s rule coupling JH , which is expected to be quite insensitive to pressure.

High temperature stabilizing high-entropy states may strengthen the tendency towards a nFL

behavior or the formation of local magneitc moments. Hence, the role of many-electron effects

needs to be evaluated with explicit calculations.

This problem was addressed by DFT+DMFT calculations [71] for the all three phases,

α, γ and ε, for the volume of 7.05 Å3/atom, corresponding to the density of EIC, and for

temperatures up to 5800 K by employing the same self-consistent in the charge density full-

potential DFT+DMFT framework as in the studies of ε-Fe described in the previous section.

This work evaluated the impact of many-electron effects on the electronic structure, magnetic

susceptibility and relative stability of the three Fe phases. All DFT+DMFT calculations were

done for the corresponding perfect fixed lattices. Lattice vibrations play a paramount role at the

extreme temperatures inside the EIC, but including their effect within a kind of DFT+DMFT-

based molecular dynamics is prohibitively costly at present. The fixed-lattice calculations of

Ref. [71], however, allowed evaluating the structural dependence of correlation effects, assessing

(though quite roughly) their impact on the electronic free energy ”landscape” in the structural

coordinates. Subsequent works [105, 52] carried out similar calculations for Fe-rich FeNi alloys in

order to assess the impact of Ni substitution on many-electron effects. A later study of Ref. [106]

concentrated on the ε-phase evaluating its electronic state as well as electrical and thermal

conductivities. The results obtained in these works for the electronic structure, magnetism,

thermodynamic stability and transport are reviewed below.

2.1 Electronic structure and magnetic susceptibility of iron

The ratio Γ/T (see eq. 1) calculated at the EIC atomic volume as a function of T in Ref. [71] is

shown in Fig. 6 for all relevant irreducible representations of the three phases. One may readily

notice a qualitative difference in the behavior of Γ between these phases. The temperature
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scaling Γ/T ∝ T expected in the case of a good FL is clearly observed for the ε-phase. In

contrast, Γ/T for the bcc iron eg states features a linear and steep rise for T < 1000 K and

then behaves non-linearly, indicating a non-coherent nature of those states at high temperatures.

The bcc Fe t2g and fcc Fe eg electrons are in an intermediate situation with some noticeable

deviations from the FL behavior.

The same conclusions can be drawn from the k-resolved spectral function A(k, ω) plotted

in Fig. 7 for the temperature of 5800 K. The bcc phase features a low-energy eg band along the

N − Γ− P path that is strongly broadened, thus indicating destruction of quasiparticle states.

The nFL behavior of eg states in α-Fe is explained by the narrow peak in its partial density of

states (PDOS) induced by a van Hove singularity in the vicinity of EF . Such narrow peak in

PDOS located at EF leads to suppression of the low-energy hopping and to the corresponding

enhancement of correlations [107]. In hcp Fe the electronic states in the vicinity of EF are sharp

(their red color indicating high value of A(k, ω)), hence ε−Fe exhibits a typical behaviour of a

FL with large quasi-particle life-times in the vicinity of EF . γ-Fe is in an intermediate state,

with some broadening noticeable in the eg bands at EF in the vicinity of the Γ and W points.

The conclusion of Ref. [71] on the FL nature of ε-Fe was subsequently challenged by Zhang et

al. [108], who recalculated ε-Fe at the EIC volume within DFT+DMFT 2 and found a strongly

nFL linear dependence of Γ vs. T . In contrast to Ref. [71] employing the density-density

2Ref. [108] was subsequently retracted by the authors [109] due to a numerical mistake in their transport

calculations. However, this retraction does not concern their conclusions on a nFL nature of ε-Fe at the EIC

conditions.

Figure 6: The ratio of the inverse quasiparticle lifetime Γ to temperature T vs. T . The

solid red, dashed blue and dash-dotted green curves correspond to 3d states in fcc, bcc, and

hcp Fe, respectively. They are split by the crystal field into t2g (diamonds) and eg (circles)

representations in the cubic (bcc and fcc) phases, and two doubly-degenerate (E′ and E′′, shown

by diamonds and squares, respectively) and one singlet (A′1, circles) representations in the hcp

phase, respectively . A non-linear behavior of Γ/T for bcc Fe eg states is clearly seen. Adapted

from Ref. [71].
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Figure 7: The DFT+DMFT k-resolved spectral function A(k, ω) (in Vatom/eV) for bcc (a),

fcc (b), and hcp (c) Fe at volume Vatom =7.05 Å3/atom and temperature 5800 K. A non-

quasiparticle eg band is seen in the vicinity of the Fermy energy along the N − Γ − P path in

(a). Adapted from Ref. [71].

approximation to the local Coulomb vertex defined by U =3.4 eV and JH =0.94 eV, Zhang et

al. used the full rotationally-invariant form for the vertex parametrized by a higher value of

U = 5 eV and almost the same JH . Therefore, in order to convincingly establish the nature of

electronic state in ε-Fe Ref. [106] performed new DFT+DMFT calculations for the ε-phase with

the full rotationally-invariant Coulomb interaction and explored the range of U from 4 to 6 eV.

These calculations predicted an almost perfectly quadratic FL temperature scaling of Γ.

A significant problem in the analysis of DFT+DMFT results carried out in Refs. [71, 108]

stems from the fact that the DMFT self-energy is calculated by CT-QMC on imaginary-frequency

Matsubara points. The analytical continuation needed to obtain real-frequency data from this

imaginary-frequency self-energy Σ(iω) is known to be a mathematically ill-defined problem and

quite sensitive to the details of its implementation. Even the extrapolation of Σ(iω) to ω =0

needed to evaluate Γ, eq. 1, becomes rather less reliable for high temperatures, where the first

Matsubara point ω1 = iπkBT is shifted away significantly from the real axis.

Hence, Ref. [106] also assessed the FL nature of ε-Fe by analyzing the imaginary-frequency
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Figure 8: Fermi-liquid scaling of the DMFT self-energy in ε-Fe. a. The imaginary part of the

DMFT self-energy at the first Matsubara point ω1 = iπkBT vs. temperature for hcp and bcc

Fe. Note that Im[Σ(iπkBT )] being proportional to T is a signature of a Fermi-liquid [110] . The

lines are the linear regression fits to the calculated points for corresponding 3d orbitals of Fe.

b. The rescaled imaginary part of the DMFT self-energy at the real axis Im[Σ(ω)]/(πkBT )2 vs.

ω/(πkBT ). One sees that all self-energies collapse into a single curve described by a parabolic fit

(the dotted line) defined by the quasiparticle weight Z =0.7 and the characteristic Fermi-liquid

temperature scale T0 =12 eV. Adapted from Ref. [106].

self-energy without resorting to any analytical continuation. This is done by employing the

so-called ”first-Matsubara-frequency” rule. As demonstrated, e. g., by Chubukov and Maslov

[110], in a Fermi liquid the imaginary part of electronic self-energy at the first Matsubara

point within a local approximation like DMFT must be proportional to the temperature, i.e.

Im[Σ(iπkBT )] = λT , where λ is a real constant. In Fig. 8a Im[Σ(iπkBT )] is plotted as a

function of temperature for all inequivalent orbitals in hcp and bcc Fe. One clearly sees that in

the ε phase Im[Σ(iπkBT )] is almost perfectly proportional to T , in contrast to bcc Fe, where

it exhibits significant deviations from the ”first-Matsubara-frequency” rule. This deviation is

especially pronounced for the eg states of the bcc phase, which are indeed of a strongly nFL

nature, as discussed above.
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Pourovskii et al. [106] also verified the scaling of the full analytically-continued DMFT

self-energy , which in a FL state exhibits the quadratic frequency dependence at low ω with

Σ(ω) = C · (ω2 + (πkBT )2). The constant of proportionality C can be written as 1/(ZπkBT0)

with the characteristic scale T0 ∼ 10TFL, where TFL is the temperature where resistivity ceases

to follow a strict T 2 temperature dependence [111]. Indeed, one sees in Fig. 8b that the real-

frequency self-energies for different temperatures collapse into a single curve when plotted as

Im[Σ(ω)]/(πkBT )2 vs. ω/(πkBT ). The value of kBT0 = 12 eV extracted from this plot corre-

sponds to a TFL ≈14000 K, which is significantly higher than the range of temperatures expected

inside the EIC. This analysis of both the Matsubara and real-ferquency self energy of ε-Fe has

thus confirmed its FL state. We will see in Sec. 2.3 that this results has a direct bearing on the

transport properties of ε-Fe at the EIC conditions.

Figure 9: The uniform magnetic susceptibility in paramagnetic state versus temperature. The

error bars are due to the CT-QMC stochastic error. The dashed lines with corresponding filled

symbols are fits to the enhanced Pauli law, see the text. Inset: the inverse uniform magnetic

suscptibility of bcc Fe is shown in red (empty circles), the blue dot-dashed and green (filled

circles) lines are fits to the Curie-Weiss and enhanced Pauli law, respectively. Adapted from

Ref. [71].

The temperature dependence of uniform susceptibility χ(T ) was also calculated by Ref. [71]

by evaluating the response to a small external field. The obtained temperature dependence (see

Fig. 9) is consistent with the results on electronic structure discussed above. A Pauli behavior

found for the FL ε and γ phases, while the nFL bcc α exhibits a Curie-Weiss behavior well

described by the fit χ = 1
3

µ2eff
T+Θ with µeff =2.6 µB and Θ =1396 K (see inset in Fig. 9).

Alternatively, one may try to account for the same dependence with an enhanced Pauli law,

χ = χ0/(1 − I ∗ χ0), where I is the Stoner parameter and χ0 is the bare susceptibility of

Kohn-Sham band structure; the strong temperature dependence of χ is then caused by a narrow

peak at EF in the eg PDOS due to the van Hove singularity. However, the enhanced Pauli-

law fit describes χ(T ) less well than the Curie-Weiss one, the difference is clear for lower T
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below 2500 K. Hence, from these calculations one may infer the existence of a rather large

local magnetic moment in the bcc phase at the EIC conditions. One may expect a significant

contribution to the α-phase free energy due to the corresponding magnetic entropy.

Ruban et al. [112] also studied the stability of local moments in iron at the EIC atomic

volume using a longitudinal spin-fluctuation model employing first-principles intersite exchange

interactions. They predicted a local moment of approximately the same magnitude to be stable

in all three phases at the EIC temperature of 6000 K and also obtained an evolution of χ vs. T

that is qualitatively similar to the one of Ref. [71]. They explained the qualitative difference in

χ(T ) between the three phases by an impact of intersite pair interactions. Vekilova et al. [105]

has subsequently studied the DMFT local susceptibility χloc , i. e., the response to a local field

applied to a single iron site, vs. T . They found a Curie-like temperature evolution in the bcc

phase and a Pauli-like quasi temperature independent χloc in hcp-Fe. One may notice that

within the single-site DMFT approximation χloc cannot be affected by intersite interactions.

Hence, a qualitatively different behavior of χloc in the three phases hints at the key role of local

correlation effects, in particular, existence of a local moment in bcc-Fe and its absence in the

hcp phase.

2.2 Impact of nickel substitution on electron correlations

The EIC is expected to contain, apart of iron, also non-negligible contributions of other transition

metals, mainly of nickel as evidenced by the composition of metallic meteorites. The contribution

of nickel is evaluated to 5-10% based on geochemical models [113]. FeNi alloys have thus been

intensively probed in laser-heated anvil cell experiments with some studies observing an extended

T −P region of the fcc phase in Fe-rich FeNi alloys, with the ε phase still projected, however, to

be stable at the EIC conditions [114, 115, 116, 117, 96]. In contrast, a bcc phase was observed

in Fe92Ni8 at high T and P by Dubrovinsky et al. [98]. The relative stability of fcc, bcc, and hcp

phases for Fe-rich FeNi alloys at the EIC conditions has been considered in several theoretical

works [118, 119, 120] using DFT-based methods and thus neglecting dynamical many-electron

effects. As shown in the previous section, these effects are qualitatively different in the three

phases in the case of pure Fe.

The impact of Ni substitution on many-electron effects in these phases at the EIC condi-

tions is, hence, an important subject and has been studied by means of DFT+DMFT [105, 52].

In particular, Vekilova et al. [105] employed the same computational framework as Ref. [71] and

modeled the random Fe3Ni alloy by the smallest supercells capable to accommodate 25% of Ni

substitution. These supercells comprise two, one, and two conventional cells in the case of bcc,

fcc, and hcp lattices, respectively. In order to model more realistic lower Ni concentrations one

would have to employ larger supercells with the corresponding heavy increase in the computa-

tional effort. In addition, Vekilova et al. made use of different environment of two inequivalent

Fe sites in their bcc and hcp supercells , with only one of those having Ni nearest neighbors, to

evaluate the effect of Ni nearest neighbors on correlations on iron sites. Many-electron effects

on Ni were included in the same way as for Fe in Ref. [71] with the corresponding local Coulomb

interaction specified by the same values of U = 3.4 eV and JH =0.9 eV.
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Figure 10: The inverse quasiparticle lifetime Γ as a function of T for three inequivalent sites,

Fe1 (six Ni and six Fe nearest neighbors) , Fe2 (all nearest neighbors are Fe) and Ni, in the hcp

Fe3Ni supercell.

The effect of Ni nearest neighbors (NN) on electronic correlations on Fe sites was found to

be structure-dependent. In the bcc phase it results in significant deviations from the Curie-Weiss

behavior for the uniform susceptibility χ and reduced Γ for the eg states. Overall the presence of

Ni NNs reduced the degree of ”non-Fermi-liquidness” for the bcc eg states. The opposite effect

was found for the hcp phase, where the presence of Ni NNs enhanced the uniform susceptibility

and Γ (Fig. 10). These effects can be related to modifications of corresponding Fe PDOS due to

the presence of Ni NNs. Namely, in the case of bcc one observes a smearing of the eg peak at

EF , conversely, in the case of ε-Fe a characteristic dip in PDOS in the vicinity of EF becomes

more shallow.

Vekilova et al. found rather weak correlation effects on Ni sites at the EIC conditions. As

shown in Fig. 10, Γ for Ni features a nFL behavior with a rather slow increase in the studied

range of T .

Many-electron effects in Ni and FeNi alloys under extreme conditions were subsequently

studied in a recent work by Hausoel et al. [52]. The authors employed a DFT+DMFT technique

that is similar to the one used in Refs. [71, 105] and mainly focused on nFL properties of Ni 3d

states, this question was not addressed by the previous works. They modeled random Fe1−xNix

alloys (x =0.05, 0.20) at the EIC density within the coherent-potential approximation (CPA).

The advantage of CPA is that one can treat any concentration x with the same computational

cost, however, the local environment effects, which seems to be quite important, as one sees

in Fig. 10, are neglected. Hausoel et al. predicted a strong enhancement of Γ due to the Ni

substitution as compared to pure ε-Fe for the studied range of temperatures up to 2000 K. This

result is in agreement with Fig. 10, if one compares the magnitude of Γ for the iron site Fe2
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without Ni NNs with that for Ni at T <2000 K. However, one also sees that Γ of Ni exhibits

a slow almost linear-in-T scaling, while Γ of Fe2 scales quadratically with T , hence at the

EIC temperature of about 6000 K the scattering due to the iron sites dominates and the Ni

contribution is relatively weaker.

2.3 Electron-electron scattering and transport in ε-Fe

Transport properties of iron at the extreme conditions are of significant importance for geo-

physics. In particular, the thermal conductivity of the iron-rich matter inside the liquid outer

core of Earth is a key parameter determining the stability of the geodynamo generating the

Earth’s magnetic field. This geodynamo runs on heat from the growing solid inner core and on

chemical convection provided by light elements issued from the liquid outer core on solidifica-

tion [93]. The power supplied to drive the geodynamo is proportional to the rate of inner core

growth, which in turn is controlled by heat flow at the core-mantle boundary [121]. This heat

flow critically depends on the thermal conductivity of liquid iron under the extreme pressure

and temperature conditions in the Earth’s core. For a long time there has been agreement

that convection in the liquid outer core provides most of the energy for the geodynamo since at

least 3.4 billion years [122, 123]. Recently, such a view has been challenged by first-principles

calculations [124, 93], suggesting a much higher capacity for the liquid core to transport heat by

conduction and therefore less ability to transport heat by convection [122]. The calculated con-

ductivities have been found to be two to three times higher than the earlier generally accepted

estimates.

Convection also plays a crucial role in the current theory of the EIC dynamics, as a radial

motion of the inner core matter is invoked to explain the observed seismic anisotropies of the

inner core [125, 126, 127]. However, ab initio calculations of Ref. [128] similarly predict a too

high thermal conductivity for hexagonal close-packed (hcp) ε-iron to sustain this convection.

Experimental measurements of the thermal conductivity at the core conditions has not been

reported to date, though two anvil-cell results above P =100 GPa and at T of several thousands

K have been recently reported. Ohta et al. [129] measured the electrical resistivity and then

obtained the thermal conductivity using the Wiedemann-Franz law with the standard Lorenz

number; in contrast, Konôpková et al. [130] directly extracted the thermal conductivity from

propagation of heat generated on one side of the sample by a laser pulse. The resulting thermal

conductivities, extrapolated to the core-mantle boundary conditions, differ by almost an order of

magnitude, with shock-wave measurements extrapolation of Refs. [131, 132, 123, 133] agreeing

better with the value of ∼30 Wm−1K−1 reported by Konôpková et al. In contrast, the value

above 200 Wm−1K−1 reported Ohta et al. lends support to the DFT predictions of Refs. [124,

93, 128]. Overall, the magnitude of thermal conductivity in both liquid and solid iron at the

core’s conditions remain an unresolved problem in geophysics, see Ref. [134] for a recent review.

These first-principles calculations for liquid and solid iron [124, 93, 128] employed the stan-

dard density-functional-theory (DFT) framework in which electron-electron repulsion is not

properly accounted for as dynamical many-body effects are neglected. Hence, the contribution

to resistivity from the electron-electron scattering (EES) of d-electrons due to correlations was
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not taken into account in those calculations. In order to elucidate how large the EES contri-

bution to the electrical and thermal resistivity at Earth’s core conditions Pourovskii et al. [106]

extended their DFT+DMFT approach to calculations of the electrical and thermal conductiv-

ities of pure ε-Fe at the EIC density. Using the analytically-continued DMFT self-energy (see

Fig. 8b) they evaluated the conductivity from the corresponding DFT+DMFT spectral function

using the Kubo linear-response formalism [135, 136] and neglecting vertex corrections. Namely,

the electrical and thermal conductivity read

σαα′ =
e2

kBT
K0
αα′ , (2)

καα′ = kB

[
K2
αα′ −

(K1
αα′)2

K0
αα′

]
, (3)

where α is the direction (x, y, or z), kB is the Boltzmann constant. The kinetic coefficients

Kn
αα′ can be calculated from the real-energy DFT+DMFT spectral function A(k, ω) and the

velocities of Kohn-Sham states, vα(k), the later is evaluated by DFT band structure methods

as described, e. g., Ambrosch-Draxl et al. [137] for the case of LAPW method.

The contributions of electron-electron scattering into the electrical resistivity and thermal

conductivity of ε-Fe obtained by Ref. [106] are displayed as a function of T in Figs. 11a and 11b,

respectively. First, one sees that the electrical resistivity ρ features a clear T 2 FL dependence,

as expected on the basis of the analysis of its DMFT self-energy as discussed in Sec. 2.1. Second,

its magnitude of 1.6· 10−5 Ω·cm at T =5800 K is rather insignificant compared to the electron-

phonon-scattering contribution of about 5.3·10−5 Ω·cm predicted by DFT calculations of Pozzo

et al. [128]. This indicates that the electron-electron scattering should not strongly influence the

electrical resistivity in hcp-Fe at EIC conditions. Third, the electron-electron-scattering thermal

conductivity κe−e of 540 Wm−1K−1 T =5800 K is not high and comparable to the corresponding

value due to the electron-phonon scattering κe−ph ≈300 Wm−1K−1 obtained by Ref. [128].

Hence, in contrast to ρ the electron-electron scattering contribution to the thermal conductivity

is quite important. By including both the electron-electron and electron-phonon scattering

effects the total conductivity is reduced to about 190 Wm−1K−1, hence, the corresponding

resistivity is enhanced by about 60%.

An important observation of Ref. [106] is that the DFT+DMFT electron-electron-scattering

thermal conductivity of ε-Fe is significantly lower than the one calculated from the corresponding

contribution to ρ = 1/σ in accordance with the Wiedemann-Franz law, κ/(σT ) = π2

3

(
kB
e

)2
= L0

(where the standard Lorenz number L0 is 2.44·10−8WΩK−2), see Fig. 11b. By employing simple

analytical calculations in the Boltzmann formalism Herring [139] showed that the quadratic FL

frequency dependence of the imaginary part of the self-energy and, hence, of the quasiparticle

life-time

1/τ(ε) = 1/τ(ε = 0) ·
(
1 + ε2/(πkBT )2

)
,

leads to a substantial reduction of the Lorenz number

κ/(σT ) = L0/1.54 = LFL.
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Figure 11: Calculated electron-electron-scattering contribution to the electrical and thermal

resistivity of hcp iron at Earth’s core density. a. Electrical resistivity. Blue filled circles and

hashed squares are DFT+DMFT results for ρxx and ρzz , respectively. Green empty and hashed

diamonds are the corresponding resistivities calculated by the Boltzmann-transport code Boltz-

Trap [138] assuming a Fermi-liquid with the scattering rate Γ/Z =0.09 eV. b. Thermal con-

ductivity. Blue filled circles and hashed squares are DFT+DMFT results for κxx and κzz,

respectively. Green lines/symbols are the corresponding conductivities obtained from the calcu-

lated electrical conductivity using the Wiedemann-Franz law with the standard Lorenz number

of 2.44·10−8 WΩK−2. Adapted from Ref. [106].
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The stronger effect of the frequency-dependence of τ(ω) on the thermal conductivity as compared

to σ is due to the additional power ε2 in the numerator of the transport integrals for κ, see, for

example, Ref. [140]. Hence, the enhancement of the electron-electron-scattering contribution to

the thermal resistivity obtained within DFT+DMFT stems directly from the Fermi-liquid state

of the ε-Fe phase at the EIC conditions. A similar reduction of the Lorenz number has been

very recently obtained by another DFT+DMFT study [141]; the electron-electron contribution

to the thermal conductivity of ε-Fe at the EIC conditions reported in this works is close to that

of Ref. [106].

The reduction of the thermal conductivity due to the electron-electron scattering predicted

by Ref. [106] is still insufficient to explain the stability of convection by itself. On the other hand,

the extremely low values of κtot ∼50 Wm−1K−1 may not be required to reconcile theoretical

calculations of the thermal conductivity with geophysical observations [142, 143].

Moreover, the impact of alloying and lattice vibrations have not been to date taken into

account in the DFT+DMFT transport calculations. For example, the DFT+DMFT calcula-

tions for Fe-Ni alloy at the inner core conditions discussed in the previous section point out

an important local environment effects that may affect the electron-electron scattering in real

material of the EIC. The impact of all those effects on transport properties of the EIC matter

remains to be evaluated.

2.4 Many-electron effects and structural stability

The stable phase of pure iron at the EIC conditions has not been clearly identified experimen-

tally; neither have ab initio DFT calculations resulted in an unambiguous prediction due to a

small energy difference between the three phases, as described in the beginning of Sec. 2. Hence,

corrections due to the many-electron effects neglected by DFT can have a qualitative impact on

the nature of stable iron phase at the EIC conditions.

A quantitative estimation for the contribution of correlations to the electronic free energy

of the three phases was obtained by Ref. [71] together with their other magnetic and electronic

properties (see Sec. 2.1). Their fixed-lattice calculations neglected the contribution of lattice

vibrations to the phase stability, which are expected to be very significant at such extreme

temperatures. However, such calculations are still able to assess the structural dependence of

this contribution.

In spite of the simplifying fixed-lattice approximation evaluating the electronic free energy

within the DFT+DMFT framework remains a highly non-trivial task. The total-energy calcu-

lations in this framework have nowadays become quite standard as described in Appendix. A.3.

Such DFT+DMFT calculations evaluating the total energy using eq. 18 have been applied, for

example, by Leonov el al. [44] to study the α-γ phase transition in iron.

In contrast, the partition function and, correspondingly, the DFT+DMFT grand potential

(17) cannot be generally directly sampled by the usual Metropolis algorithm. In the context

of DMFT quantum impurity problem solved by CT-QMC or other numerical technique, it is

the contribution of DMFT functional Φimp[Gloc(R)] into (17), which is the sum of all local

skeleton diagrams constructed with the local GF Gloc(iωn) and the on-site vertex, that cannot
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Figure 12: Many-body correction to the total (black dashed line) and free (red solid line) energy

for the three phases of Fe at the volume of 7.05 Å/atom at T=5800 K (upper panel) and 2900 K

(lower panel). The error bars are due to the CT-QMC stochastic error. Adapted from Ref. [71].

be computed directly. Different types of the numerical thermodynamic integration are employed

instead, in particular, the one from an analytical high-temperature limit [144]. Such integration

remains non-trivial in the present case of Fe at the EIC conditions, as the temperature T ≈6000 K

is still low compared to other energy scales like the bandwidth or U . Ref. [71] employed instead

the numerical thermodynamic integration over the coupling strength λ ∈ [0 : 1], where the

corresponding free energy is defined Fλ = − 1
β ln Tr

(
exp[−β(Ĥ0 + λĤint)]

)
, H0 is the one-

electron part of the DFT+U Hamiltionian (5), Ĥint = ĤU − EDC is the interacting part. The

coupling constant integration results in the following expression for the many-body correction:

∆F = F − FDFT =

∫ 1

0

〈λĤint〉λ
λ

dλ, (4)

where FDFT is the electronic free energy in DFT. In derivation of Eq. 4 one neglects the λ

dependence of the one-electron part, and, hence, the charge density renormalization due to

many-body effects. In practice, the integrand in (4) was evaluated numerically with 〈λĤint〉λ
λ

computed for a discrete mesh in λ ∈ [0 : 1] by performing DFT+DMFT simulations with the

Coulomb interaction scaled accordingly. This method was subsequently applied in DFT+DMFT
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calculations of Bieder et al. [145] to evaluate the free energy of the cerium metal.

The resulting DMFT correction to the free energy for the three iron phases is plotted in

Fig. 12 togehter with the correction to the total energy calculated given by the difference of (18)

and EDFT . Within rather significant error bars the magnitude of ∆F is the same for bcc and

hcp Fe, which are suggested as stable phases of iron [102] and iron-based alloys [146, 98] at the

Earth’s inner core conditions. Though the correlation strength (as measured, for example, by

the inverse quasiparticle lifetime Γ, Fig. 6), is higher for α-Fe, this is apparently compensated by

a higher value of U predicted for the ε-phase by cRPA calculations of the same work [71]. The

magnitude of ∆F is, however, at least several mRy smaller in the case of fcc Fe, showing that the

many-body correction may significantly affect relative energy differences among iron phases at

the Earth core conditions. One may also notice that the entropic contribution T∆S = ∆E−∆F

becomes much more significant at the higher temperature, and its contribution is almost twice

larger in the case of the bcc phase compared with two others. This is in agreement with the

local-moment behavior of this phase predicted by DFT+DMFT calculations, as detailed above.

3 Conclusions and perspectives

In this Topical review we have discussed many-electron effects in various phases of iron, with

particular emphasis on the results obtained by recent ab initio DFT+DMFT calculations. We

concentrated on two particularly interesting regions of the Fe P − T phase diagram: (i) the

region of moderate pressure up to 60 GPa, around the α → ε transition, where the hexagonal

ε phase exhibits exotic and poorly understood properties; and (ii) the geophysically relevant

region of pressure about 360 GPa and temperature of about 6000 K.

In the moderate-pressure region (i) we predict a significant enhancement of dynamical cor-

relations at the pressure-induced α→ ε phase transition. This enhancement is explained by the

fact that dynamical correlations are strongly suppressed by the static spin polarization in fer-

romagnetic α-Fe; this polarization is absent in paramagnetic hcp ε-Fe. In result, DFT+DMFT

calculations predict large many-body corrections to the equation of state of the ε-phase and a

significant electron-electron scattering contribution to its electrical resistivity. The same the-

oretical framework predicts an electronic topological transition to occur in this intermediate

pressure range thus explaining the observed peculiarities in the evolution of its hexagonal cell

parameters, Debye velocity and Mössbauer central shift.

Applying the same framework to the geophysically-important regime (ii) of the Earth’s

inner core (EIC) conditions one finds a strong structural dependence for many-electron effects.

Namely, bcc α-Fe exhibits a clearly non-Fermi liquid behavior as evidenced by a sub-linear

temperature dependence of the quasiparticle scattering rate Γ and a Curie-Weiss-like behavior

of the magnetic susceptibility. In contrast, an almost perfectly Fermi-liquid state is predicted

for ε-Fe at the same EIC conditions, with sharp quasiparticle bands at low-energy and the T 2

scaling of Γ. The fcc γ phase is found to be in an intermediate regime between bcc and hcp with

some noticeable deviations from Fermi-liquid state. The contribution of correlation effects to

the electronic total and free energies is consequently also strongly structurally-dependent. The

strength of many-electron effects on iron is found to be sensitive to the local environment and
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quite significantly affected by the presence of Ni nearest neighbors; our calculations also show

comparatively weaker correlations on Ni sites themselves at the EIC conditions. Finally and quite

unexpectedly, the predicted ”dull” Fermi-liquid state of ε-Fe leads to a significant suppression

of the Lorenz number with the corresponding enhanced contribution of the electron-electron

scattering to the thermal resistivity. This enhancement of the thermal resistivity as compared

to electrical one is directly related to a strong (quadratic) frequency dependence of the Fermi-

liquid electron-electron scattering rate.

All these results have been obtained by the DFT+DMFT in conjunction with the numerically-

exact continuous-time quantum Monte Carlo method, which is equally reliable for all consid-

ered regimes of correlations (e. g., Fermi-liquid/non-Fermi-liquid, paramagnetic/ferromagnetic

states). However, this technique, as well as overall DFT+DMFT framework, is numerically

heavy and some approximations had to be employed to make these calculations feasible:

• Ref. [69] employed the single-site DMFT in conjunction with a density-density local vertex.

Though these calculations successfully accounted for the ground-state properties of the

ε phase, the electron-electron scattering contribution into the resistivity was apparently

strongly underestimated. The non-density-density terms of the local vertex were also found

in this work to be essential to account for the collapse of static antiferromagnetism in this

phase. The effect of rotationally-invariant local Coulomb repulsion in ε-Fe thus needs to

be fully investigated. A very significant contribution of the electron-electron scattering to

the electrical resistivity of ε-Fe and its non-Fermi-liquid behavior at low temperatures, as

well as the non-conventional (spin-fluctuation-pairing) superconductivity experimentally

observed in this phase, also hint at important inter-site correlations, which can be included

only by approaches beyond the single-site approximation.

• The density-density approximation for the local vertex is probably less severe in the case

of EIC conditions. In particular, the inclusion of rotationally-invariant local interaction in

ε-Fe [106] led only to some quantitative changes compared to the previous study within

the density-density approximation (see also Appendix B). The non-local correlations are

also expected to be less important away from magnetic instabilities and with a lower

strength of correlations at the high-density of the EIC matter. In contrast, the fixed-

lattice approximations is quite severe when one considers temperatures just below the

melting. Correspondingly, future studies of the impact of lattice vibrations on electronic

correlations and vice versa are in this case of high importance.

Hopefully, the recent progress in development of extended-DMFT frameworks (see Rohringer

et al. [147] for a recent review), will eventually make accessible the most important two-particle

quantities (e.g., the full k and ω-dependent susceptibility or vertex corrections to the transport)

for realistic multi-band systems with possibly significant intersite correlation, like ε-Fe in the

moderate pressure range.

Regarding the second point: though fully consistent DFT+DMFT ab initio molecular dy-

namics will remain prohibitively computationally expensive for some time, one may still make

use of the usual approximation of evaluating the electronic structure at fixed ionic coordinates.
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Hence, in order to assess the effect of lattice distortions on many-electron effects one may em-

ploy a set of supercells representing characteristic deviations from the perfect atomic positions

expected at the relevant temperature for a given phase. Conversely, the impact of electronic

correlations on lattice vibrations, at least in the harmonic approximation, can be studied using

the recently formulated DFT+DMFT schemes for calculation of forces and phonon dispersions

[31, 148, 149]. Eventually, the impact of light elements inclusions needs to be also included in

realistic simulations of the EIC matter.
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Appendix

A Ab initio dynamical mean-field theory approach: an overview

The standard DFT framework is well known to be deficient in the case of partially-filled nar-

row bands; the effect of a local Coulomb repulsion on the physics of such states cannot be

captured by local or semi-local exchange-correlation (XC) functionals like the local-density or

generalized-gradient approximations. As discussed in the introduction section, the 3d band of

iron, while having a bandwidth larger than the relevant local Coulomb interaction, still cannot

be satisfactory captured within pure DFT.

The approach employed for ab initio studies discussed in this review is thus based on

supplementing the quadratic Kohn-Sham (KS) Hamiltonian H0 with an explicit local Coulomb

interaction between Fe 3d states, the resulting ”DFT+U” Hamiltonian [15, 150] reads

ĤDFT+U = Ĥ0 + ĤU − EDC =
∑
kν

εkνc
†
kνckν +

∑
i,

1,2,3,4

〈12|U |34〉d†i1d
†
i2di4di3 − EDC , (5)

where c†kν(ckν) is the creation(annihilation) operator for the Kohn-Sham state ψkν at k-point k

and the band index ν, d†iα(diα) is the operator creating (annihilating) localized states wiα on the

correlated (3d) shell3 in the unit cell i, α ≡ 1, 2, ... is a compound index for relevant quantum

numbers labeling one-electron orbitals within that shell (for example, α ≡ {mσ}, where m is

the orbital quantum number and σ is the spin). The last term, EDC , is the double-counting

correction, which will be discussed below.

The interacting term in the DFT+U Hamiltonian is naturally defined in the real space, as

the interaction is assumed to act between orbitals localized on the same atomic site. A sufficient

localization of the orbitals wiα at the correlated site is thus necessary for the DFT+U Hamil-

tonain to be physically sensible. For extended orbitals the intersite interactions are comparable

to U ; neglecting them in (5) thus becomes a poor approximation [151, 152]. However, in solids

one cannot define d or f orbital as in an isolated atom, as such definition makes sense near the

nucleus, where the crystalline potential is approximately spherical, but not in the interstitial.

There exists a number of approaches for constructing such bases representing localized

correlated states in solids. For example, one may employ the framework of Refs. [153, 154, 155,

156, 157] and define the localized orbitals wiα as Wannier functions constructed from a subset

W of Kohn-Sham bands:

wiα(r) =
∑

k∈BZ
wkα(r + Ri)e

−ikRi =
∑
k∈BZ
v∈W

e−ikRiψkν(r + Ri)Pνα(k), (6)

where the subset W comprises KS bands with a substantial contribution due to correlated or-

bitals, Ri is the lattice vector of the unit cell i, P̂ (k) is a complex matrix such that the resulting

orbitals form an orthonormalized basis, 〈wiα|wjβ〉 = δijδαβ. In fact, matrices P̂ (k) possessing

3For simplicity here and below we consider the case of a single correlated site per unit cell
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such properties are well-known to be not uniquely defined, the resulting gauge freedom in P̂ (k)

can be exploited to obtain a well-localized basis of Wannier functions. Direct minimization of the

spread of wiα in the real space is employed to construct the maximally-localized Wanniers basis

[153]. Another, a projective construction of localized Wannier functions, avoiding the explicit

spread minimization, was proposed by Amadon et al. [157] and implemented in conjunction with

the linearized augmented planewave (LAPW) band structure method by Aichhorn et al. [158].

One may also mention a hybrid method of Refs. [159, 160], in which Wannier functions are con-

structed from outward solutions of the radial Schrödinger equation and their energy derivatives

on a chosen grid of energies.

Another approach [50] makes use of the fact that some DFT band structure techniques

expand Kohn-Sham states ψkν in a basis containing, among others, suitable ”atomic-like” func-

tions for a given correlated shell; such functions are then employed as a correlated-subspace

basis. The somewhat older method of Ref. [161] writes the whole Hamiltonian (5) using atomic-

like basis functions instead of ψkν and employs a subset of them to represent correlated orbitals;

this approach is applicable only for few band-structure techniques employing such suitable basis

functions.

Once the basis of correlated orbitals wiα is chosen one needs to determine the on-site

Coulomb repulsion between them. In principle, one may easily evaluate matrix elements of the

bare Coulomb interactions u(r) = 1/r between such orbitals. The bare Coulomb repulsion is,

however, known to be a very poor approximation for the local interaction in solids in eq. 5. For

example, the average over its matrix elements between Ni 3d orbitals in NiO evaluates to about

20−25 eV [162]. Experimentally, though, one finds that the splitting between occupied and

empty 3d localized features seen in the PES/inverse-PES spectra, which is, to a first approxi-

mation, the average 〈U〉, amounts only to about 9 eV [163]4. This discrepancy is, of course, due

to the fact that the on-site interaction between localized orbitals in solids is strongly screened

by itinerant states. Hence, one should view the Hamiltonian (5) as a low-energy description of

the correlated system, where the interactions between localized states wiα and itinerant bands,

which are not explicitly included, have been integrated out. In result, the effective Coulomb

repulsion u(r, r′, ω) acquires a frequency dependence, which is then passed to matrix elements

in the correlated-orbitals basis:

〈12|U |34〉(ω) =

∫
drdr′w∗i1(r)w∗i2(r′)u(r, r′, ω)wi3(r)wi4(r′), (7)

with the low-frequency limit of 〈12|U |34〉(ω) giving a value of on-site repulsion that is strongly

reduced by screening; it is relevant for the low-energy physics described by (5). The high-

frequency limit of 〈12|U |34〉(ω) approaches the bare Coulomb value; this high-frequency tail of

〈12|U |34〉(ω) may affect the low-energy physics producing an additional enhancement of quasi-

particle renormalization [70]; it also induces high-energy plasmonic spectral features [164].

Due to this complex effect of screening the local Coulomb repulsion is rather difficult to

evaluate from first principles and often treated as a parameter. A more consistent and truly

ab initio approach is based on evaluating the screening of local repulsion between a given set

4The optical gap of about 4 eV in this compounds is of the charge-transfer (O 2p→ Ni 3d) type.
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of local orbitals wiα from the Kohn-Sham band structure. One popular approach of this kind,

the constrained random-phase approximation (cRPA) [165], separates the polarization function

Π(ω) = Πc(ω) + Πr(ω) evaluated within RPA into the contribution Πc(ω) due to transitions

within the subset of correlated bandsW and Πr(ω) due to all other transitions. Then the relevant

interaction is obtained by screening the bare Coulomb repulsion v(r) with Πr and then projecting

u(r, r′, ω) into the subspace of wiα using (7). The cRPA method is a powerful technique that is

able to obtain all matrix elements of 〈12|U |34〉(ω) with their frequency dependence. However,

cRPA is not particularly well suited for the case of a significant entanglement between the

correlated W and itinerant band subspaces, which is precisely the case in 3d transition metals,

where the dispersive 4s band crosses and mixes with the narrow 3d one. It is difficult to define a

consistent separation of the polarization into Πc(ω) and Πr(ω) in this case, though some versions

of cRPA to handle this entanglement have been formulated [19, 166].

An alternative approach to first-principles evaluation of the local interaction is based on

the assumption that a quantitatively correct static screening of the on-site interaction is already

included at the DFT level through the local XC potential. This approach named constrained

LDA (cLDA) [167, 168, 16] constrains the charge on the localized shell of interest on a single

site within a supercell with other states unconstrained, hence, allowed to screen the on-site

interaction. The band energy of corresponding ”constrained” KS states is then evaluated as a

function of the shell occupancy and its spin polarization in order to extract the direct Coulomb

repulsion parameter U and Hund’s rule coupling JH , respectively. The method was shown to

provide reasonable values of the static interaction for pure iron [16, 17], though it is not free

from uncertainties.

The Kohn-Sham band structure, which is the quadratic part of the DFT+U Hamiltonian

(5), is that of non-interacting electrons moving in an effective potential. However, this potential

contains, among other terms, the Hartree and XC potentials corresponding to the electron

density of the Kohn-Sham states. Hence, the Kohn-Sham bands are not truly those of a non-

interacting system. In particular, the effect of the screened Coulomb interaction u(r, r′, ω) acting

between correlated orbitals is included in a static mean-field way by standard DFT; this fact is

used by the cLDA method described above to extract the value of this interaction. As the same

interaction explicitly enters into (5), it is necessary to remove this static mean-field contribution

from the same Hamiltonain to avoid counting it twice. Hence, the corresponding double-counting

correction (DC) is included as the last term into (5).

Though the local screened interaction is certainly included in some form by XC potentials

determining its exact contribution is a highly nontrivial problem. Local and semi-local XC

potentials are functions of the full charge density and also non-linear; they cannot be represented

as a superposition of contribution due to different orbitals. Hence, the problem of formulating a

theoretically sound expression for the DC term has not been fully solved to date. There exist a

number of different DC formulae [15, 169, 48, 170, 171]. The most widely used ones are derived by

assuming that XC potentials include the local Coulomb interaction in an orbitally-independent

form. That form is given by the Hartree-Fock potential due to the on-site interaction term in

(5) for a particular limit of the correlated-shell occupancy matrix. It is assumed to be uniform

within the ”around-mean-field” (AMF) approach [15], which is usually employed for weakly and
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moderately-correlated metals, e. g., in the case of iron. The alternative ”fully-localized-limit’

(FLL) form [169] assumes the most non-uniform occupancy matrix for a given shell filling and is

generally employed for strongly-correlated systems like Mott insulators. The contribution due

to this term into the one-electron potential for a given orbital α is given by

Σα
DC =

∂EDC
∂ρα

|ρ̂DC , (8)

where the derivative over the orbital occupancy ρα is taken at the shell’s occupancy matrix ρ̂DC

corresponding to a given limit (AMF, FLL, etc.).

A.1 Dynamical mean-field theory

Once all terms in the Hamiltonian (5) are determined the next step is, obviously, solving it

to obtain the ground-state and excited properties of a given real system. This represents a

formidable problem, as one may notice that this Hamiltonian can be viewed as a multi-band

generalization of the famous one-band Hubbard model (HM) for which no exact solution is

known for the relevant 2d and 3d cases. A breakthrough in the study of HM was achieved in

the beginning of 90th in the framework of dynamical mean-field theory (DMFT) [172, 173, 174].

Though initially the DMFT formalism was written for the one-band HM, here we present its

formulation for the Hamiltonian (5) in view of applications to realistic materials. The DMFT

framework focuses on the one-electron Green’s function (GF) defined in the Kohn-Sham space

and imaginary-time domain5 as Gνν′(k, τ − τ ′) = −〈T[ckν(τ)c†kν′(τ
′)]〉, where T is the time-

ordering operator. Its Fourier transform G(k, iωn) is the GF in the imaginary-frequency domain,

where iωn = iπ(2n − 1)T is the fermionic Matsubara grid for the temperature T . Correlation

effects arising due to the interaction U term of (5) are encoded in the Kohn-Sham space by the

electronic self-energy ΣKS(k, iωn) = P̂ †(k)Σ(k, iωn)P̂ (k) , where P̂ (k) are projector matrices

(6) to the correlated subspace, Σ(k, iωn) is the self energy in that subspace spanned by the

localized orbitals (6). The interacting lattice GF is thus obtained by inserting Σ(k, iωn) through

the Dyson equation:

G−1(k, iωn) = G−1
0 (k, iωn)− P̂ †(k) (Σ(k, iωn)− ΣDC) P̂ (k), (9)

into the non-interacting lattice GF G0 given by the first term of (5), with the DC for the

self-energy defined by (8).

The DMFT is based on the key observation of Ref. [172] that one may define a (non-trivial)

infinite-dimensional limit of (5), and that the electronic self-energy becomes purely local in this

limit, i. e., k-independent6, Σ(k, iωn)
d→∞−−−→ Σ(iωn). Such single-site self-energy is given by the

summation over irreducible (skeleton) Feynman diagrams involving only the single-site GF and

the local vertex Û . The coupling between a representative correlated shell o and an effective

5The imaginary time/frequency domain is often used in DMFT calculations for the technical reasons outlined

in Sec. A.2, though it is not necessary.
6In the case of DFT+U Hamiltonian (5) this approximation is applied to the self-energy Σ(k, iωn) in the

correlated subspace, while ΣKS can still be k dependent due to the projectors P̂ (k).

30



electronic ”bath” representing the rest of system is then given by the bath Green’s function:

G−1
0 (iωn) =

[∑
k

P̂ (k)G(k, iωn)P̂ †(k)

]−1

+ Σ(iωn) = iωn − ε̂−∆(iωn), (10)

where ε̂ are bare (non-interacting) single-site level positions, ∆(iωn) is the hybridization function

due to hopping between the site and electronic bath. The single-site problem in the correlated

subspace is completely defined by (10) and on-site Coulomb replusion

Ĥ
(o)
U =

∑
1,2,3,4

〈12|U |34〉d†1d
†
2d4d3

(omitting the irrelevant site index o in d and d†). The lattice problem is thus mapped into

an auxilary quantum impurity problem (QIP) [173] for a single correlated shell, which is fully

analogous to the standard Anderson impurity model (AIM). However, in contrast to the usual

AIM, ∆(iωn) is not given by the hybridization of non-interacting bands; it should be rather

viewed as a dynamical mean-field implicitly depended on the single-site self-energy through eqs.

(9-10). By solving the QIP, i. e., by summing (all or subset of) local Feynman diagrams one

obtains the impurity GF and self-energy:{
G(iωn), Ĥ

(o)
U

}
→ {Gimp(iωn),Σimp(iωn)} . (11)

One then employs the standard recipe to close the mean-field cycle as shown in Fig. 13: the

obtained impurity self-energy is inserted for all correlated shells to restore the translational

invariance, Σ(k, iωn) ≡ Σimp(iωn) allowing to update the chemical potential µ and to recalculate

the mean field G0 by eqs. (9-10). This cycle is iterated until the self-consistency is reached: the

QIP solved for the mean-field G0 results in the same self-energy Σ that was used to obtain this

mean-field through (9-10). Alternatively, the same self-consistency condition is represented by

Gimp(iωn) = Gloc(iωn), where

Gloc(iωn) =
∑
k

P̂ (k)G(k, iωn)P̂ †(k) (12)

is the local GF of lattice problem. The problem defined by the Hamiltonian (5) is thus exactly

solved in the limit of infinite lattice connectivity, as can be also shown explicitly, see [174]. As

for any mean-field approach the usefulness of DMFT method is based on its ability to describe

the realistic 3d lattices, for which the single-site approximation Σ(k, iωn)→ Σ(iωn) appears to

be rather reasonable, though it is not quantitatively exact. At the same time the single-site

dynamics due to electronic correlations is fully included in DMFT; this explains its success in

reproducing such non-perturbative phenomena as the Mott transition. The method captures not

only the insulating U/W →∞ and non-interacting U/W → 0 limits (where W is the bandwidth

of non-interacting bands εvk in (5)) but also all intermediate regimes given by finite U/W .

For 2d and quasi-2d systems the single-site DMFT is generally not an adequate approxima-

tion. The k dependence of the self-energy is key to describe, for example, the physics of layered

cuprate superconductors, in particular, their PES [175]. This problem was addressed by clus-

ter extensions of the single-site DMFT, which were formulated in both the real and reciprocal
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Figure 13: Schematic diagram of the DFT+DMFT method. The initial input from the DFT

part is the quadratic KS Hamiltonain Ĥ0 and projectors P̂ between the KS space and correlated

subspace. The right-hand side represents the DMFT cycle with the lattice problem mapped

into the quantum-impurity one using eq. 10; the calculated impurity self-energy subsequently

is inserted back to the lattice, eq. 9. The updated DMFT density matrix can be inserted back

to the DFT part (dashed arrow) to take into account modifications of the charge density and,

therefore, Ĥ0, due to correlations; this results in a DFT+DMFT framework that is self-consistent

in the charge density.

spaces [176, 177, 178]. The single-site QIP (11) is thus generalized to the corresponding cluster

problem. Such generalization increases dramatically the computational cost of solving the QIP,

hence, the cluster methods are not generally applicable to full d and f shells; they have been

extensively applied to quasi-1band systems like layered cuprates. Another more recent effort in

development of extended-DMFT frameworks [179, 180, 181] is based on applying the single-site

approximation to two-electron correlation functions (like the vertex function) while keeping the

k-dependence of the one-electron self-energy. These approaches are promising for applications

to multiband systems, though they are still currently too heavy for applications in the cases

considered in this highlight, when many-electron effects for the full d shell need to be taken into

account.

A.2 The quantum impurity problem

The QIP problem schematically given by eq. 11 is a true many-electron problem, though a single-

site one, and represents, in fact, a numerical ”bottleneck” of the DFT+DMFT framework. In

the imaginary-time path integral formalism (see e.g. [182]) it reads

Gαα′(τ0 − τ1) =
1

Z

∫
D[d, d†]dα(τ0)d†α′(τ1) exp[−S], (13)

where D[d, d†] is the path integration over all impurity degrees of freedom and

Z =

∫
D[d, d†] exp[−S] (14)
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is the impurity partition function, S is the impurity action:

S =
∑
α1α2

∫
dτ

∫
dτ ′d†α1

(τ)
[
G−1

0 (τ − τ ′)
]
α1α2

dα2(τ ′) +

∫
dτĤ

(o)
U (τ). (15)

Many-body methods to evaluate (13) represent a large research field initiated by early studies of

AIM and very actively developed at present, in particular, to provide efficient quantum-impurity

”solvers” for the DMFT framework. They will not be reviewed here in any details; we will only

briefly outline main strategies for solving the QIP and provide some useful references.

The methods dealing with QIP can be divided into numerically-exact and approximate

analytical kinds. Among the former one may especially mention stochastic quantum Monte Carlo

(QMC) methods; a breakthrough in this domain has been achieved by so-called ”continuous-

time” (CT) QMC methods [183] (see review [55] on its applications to the fermionic QIP).

The most popular CT-QMC approaches are based on an expansion of the partition function

(14) in powers of Ĥ
(o)
U [184] or, alternatively, in powers of the hybridization function ∆(τ)

[185], see eq. 10. One subsequently sums up various diagrammatic contributions into GF (13)

and other correlation function in accordance with their relative weight in Z by employing a

Monte Carlo importance sampling. In contrast to the older QMC approach of Hirch and Fye

[186] based on discretization of the integrals over τ in (15) the CT-QMC approach is free from

the discretization error and can treat more complex interaction vertices Ĥ
(o)
U . All these QMC

methods generally work in the imaginary-time/imaginary-frequency domain, hence, the resulting

GF needs to be analytically continued to the real-energy axis to obtain an experimentally-

observable real-frequency spectra.

The hybridization-expansion CT-QMC technique employed as a quantum-impurity solver

in the DFT+DMFT calculations presented in this review. This approach is sufficiently com-

putationally efficient to solve the QIP for the whole Fe 3d shell. Particularly, the case of sim-

plified, ”density-density” Coulomb vertex Ĥ
(o)
U reducible to the form

∑
αα′ Uαα′ n̂αn̂α′ allows to

employ the fast ”segment-picture” algorithm [185, 55], reducing the computational effort very

significantly. The density-density approximation neglects some potentially important matrix

elements of the Coulomb vertex7 and thus introduces a system-dependent error. In the case of

moderately-correlated metal like iron it does not affect the qualitative picture, but is still quanti-

tatively important (see Appendix B); for strongly-correlated systems as, for example, FeSe [187]

this approximation may lead to qualitatively wrong results. Calculation with the full 4-index

vertex are much more computationally demanding, but still nowdays possible thanks to a recent

development of fast algorithms [188, 189].

Another popular numerically-exact approach, the exact diagonalization technique [190], see

also [191, 192] for more recent developments. It is based on representing the hybridization

function by a set of auxiliary discrete levels {εb} of the bath mixing with the impurity states,

∆αα′(ω) ∼
∑

b

VbαV
†
bα′

ω−εb . The resulting large Hamiltonian including both impurity and bath

states is subsequently diagonalized by Lanczos or similar techniques allowing to compute the

impurity GF from obtained eigenvalues and eigenstates. Among the exact methods one should

7For example, the ”spin-flip” contributions to Ĥ
(o)
U of the form d†m↑d

†
m′↓dm′↑dm↓ cannot be reduced to a

density-density form.
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also mention the numerical renormalization-group and density-matrix renormalization-group

methods [193, 194].

Analytical approaches are generally applicable only in certain regimes (strong or weak cou-

pling). Weak-coupling methods are suitable for metallic phases; they are based on the standard

Wick theorem and subsequent summation of a certain subset of Feynmann diagrams, like, for ex-

ample, the fluctuation-exchange approximation [47, 195, 196], which has been extensively applied

to spectral properties of iron and nickel [197, 50, 51, 198]. Among numerous other analytical

methods one may also mention the ”slave” particle approach [199, 200, 201, 147] providing an

economical and numerically efficient treatment of the quasiparticle renormalization in multiband

systems. The obvious advantage of these analytical techniques is their computational efficiency.

They can also easily evaluate the GF and, hence, the measurable one-electron spectra, at the

real-frequency axis.

Finally, the simplest approach to solving the QIP consists in employing the static Hartree-

Fock approximation; in this case DFT+DMFT is reduced to the popular LDA+U method

[15, 150].

A.3 Charge density and total energy

As a result of the DMFT cycle (Fig. 13) one obtains the converged interacting lattice GF (9) in

the KS space. The corresponding density matrix

Nk
νν′ =

∑
n

Gνν′(k, iωn)eiωn0+ (16)

gives the contribution of KS bands in W to the charge density. Therefore, the charge density

n(r) is affected by many-electron effects through the DMFT self-energy Σ(iωn) entering into

G(k, iωn); the KS one-electron potential being a functional of n(r) is thus modified as well.

Hence, the one-electron part H0 of the DFT+U Hamiltonain (5) comes out to be implicitly

dependent on Σ(iωn).

This observation led to formulation of the charge self-consistent DFT+DMFT framework,

in which n(r) and H0 are consistently updated to take into account the impact of correlations

as shown in the left-hand side of Fig. 13. In practice, N̂k in the KS basis is submitted back to

the DFT part; the corresponding contribution to n(r) is then calculated through the expansion

of ψkν in the basis of a given band-structure method. Several such self-consistent DFT+DMFT

frameworks have been implemented recently [161, 49, 202, 203, 204, 205, 206].

In this self-consistent framework the DMFT self-consistency condition, Gloc ≡ Gimp, as well

as the relation between the KS potential and electronic density are derived by extremization of

the following DFT+DMFT grand potential [135] :

Ω [n(r), Gloc,∆Σ, ε̂] =− Tr ln [iωn + µ−H0 −∆Σ]− Tr [Gloc∆Σ] (17)

+
∑
R

[Φimp[Gloc(R)]− ΦDC [Gloc(R)]] + Ωr[n(r)]

≡ ∆Ω [Gloc,∆Σ, VKS ] + Ωr[n(r)],
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where ∆Σ is the difference between the impurity self-energy Σimp and the double counting cor-

rection (8), Φimp[Gloc(R)] is the DMFT interaction energy functional for the site R, ΦDC [GlocR ]

is the corresponding functional for the double-counting correction. The last term Ωr[n(r)] de-

pends only on the electronic charge density n(r) and comprises the electron-nuclei, Hartree and

exchange-correlation contribution, while all other terms collected in ∆Ω [Gloc,∆Σ, VKS ] do not

have an explicit dependence on n(r). From the zero-temperature limit of (17) one derives [207]

the following expression for the total energy:

EDFT+DMFT =
∑
kν

εkνN
k
νν + 〈HU 〉 − EDC + Een[n(r)] + EH [n(r)] + Exc[n(r)], (18)

where Een, EH , Exc are the standard DFT electron-nuclei, Hartree and exchange-correlation

contributions evaluated from the charge density n(r) that includes the DMFT correction. The

interaction energy 〈HU 〉 can be evaluated from the self-energy using the Migdal formula 〈HU 〉 =
1
2 Tr [ΣimpGimp], alternatively, the expectation value 〈d†1d

†
2d3d4〉 can be directly measured, e. g.,

by using QMC quantum-impurity solvers.

Instead of the self-consistent charge density n(r) one may employ in (18) the DFT one,

nDFT (r) resulting in the so-called ”one-shot DMFT” scheme. The impact of the self-consistency

in charge density on the DFT+DMFT total-energy and spectra has been studied in a number of

works [202, 204, 208, 209, 210], though a consistent assessment for the full range of correlation

strength is still lacking. However, the charge-density self-consistency seems to important for

localized systems as γ-Ce and Ce oxides [202] and VO2 [209]. The possible reason pointed

out by Ref. [210] is that the occupancy of ψkν states is very different in the localized limit as

compared to a metallic band structure predicted by DFT. In the former case the KS states kν

of correlated bands will be all roughly half-filed due to the contribution of corresponding lower

Hubbard band. In DFT the KS states kν are occupied below EF and empty above, hence,

the occupancy varies strongly in the k space. Another important effect of the charge-density

self-consistency is an overall lower sensitivity of the result to the choice of DC; changes in DC

seem to be compensated by the corresponding modifications in VKS [204].
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B The impact of density-density approximation: a benchmark

In this appendix we illustrate the impact of density-density approximation for the local Coulomb

interaction by performing DFT+DMFT calculations with and without this approximation for

the bcc α and hcp ε iron phases at the Earth’s core condition. Self-consistent in the charge

density DFT+DMFT calculations (Sec. A.3) were thus carried out for the perfect bcc and

hcp lattices at the atomic volume of 7.05 Å3/atom expected for the inner core of Earth and

the temperature of 5800 K. The on-site Coulomb interaction was defined by the parameters

U =5.0 eV, JH =0.93 eV previously used in the study of ε-Fe by Ref. [106]; the same choice

for the energy window ( [-10.8 eV, 4.0 eV] around the Fermi level) was also employed for the

Kohn-Sham states used to construct Wannier orbitals representing Fe 3d states. The DMFT

impurity problem was solved by the hybridization-expansion quantum Monte Carlo impurity

solver using its segment-picture version [185, 55] in the case of density-density (Ising) vertex

and the implementation of Seth et al. [211] in the case of full rotationally-invariant one.

The resulting DMFT self-energies for both phases are compared in Fig. 14. For both bcc

and hcp-Fe the use of density-density approximation results in a systematic underestimation

of the magnitude of scattering |ImΣ(iωn)|, which is, however, more pronounced in the case of

more correlated bcc. Qualitative features, like the eg orbitals markedly more correlated than

the t2g ones in bcc-Fe as well as a uniform Fermi-liquid behavior of all orbitals in hcp, are well

captured within the density-density approximation. We have also calculated the transport using

the approach outlined in Sec. 2.3 and these self-energies analytically continued to the real-energy

axis. The electrical and thermal conductivities for bcc Fe are found to be overestimated by 40%

and 29%, respectively, due to the density-density approximation. As expected, the impact of

this approximation for the less-correlated ε-phase is smaller and amounts to 33% and 23%,

respectively. Hence, though the use of full vertex does not lead to qualitative changes it is still

found to be important for quantitative results.

Figure 14: Left panel: The imaginary part of DMFT self-energy on the Matusbara grid for the

non-degenerate orbitals of the Fe 3d shell in the bcc structure calculated with the rotationally-

invariant (filled symbols) and density-density (empty symbols) local Coulomb interaction, re-

spectively. Right panel: the same for the hcp structure.
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[87] Alfé D, Gillan M J and Price G D 1999 Nature 401 462–464

[88] Laio A, Bernard S, Chiarotti G L, Scandolo S and Tosatti E 2000 Science 287 1027–1030

[89] Belonoshko A B, Ahuja R and Johansson B 2000 Phys. Rev. Lett. 84(16) 3638–3641

[90] Sola E and Alfè D 2009 Phys. Rev. Lett. 103 078501
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