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NONPARAMETRIC MOMENT METHOD FOR SCALAR MCKEAN-VLASOV

STOCHASTIC DIFFERENTIAL EQUATIONS

F. COMTE(1), V. GENON-CATALOT(1), C. LARÉDO(2)

Abstract. We study the nonparametric estimation of both the potential and the interaction
terms of a scalar McKean-Vlasov stochastic di�erential equation (SDE) in stationary regime
from a continuous observation on a time interval [0, T ], with asymptotic framework T → +∞.
The problem is quite di�erent from the case of usual di�usions with no interaction term and the
observation of only one sample path is not enough to estimate both functions. We consider the
observation of four i.i.d. sample paths. The observation of two sample paths could be enough at
the cost of much more computations. Estimators of the potential and the interaction functions
are built using a combination of a moment method and a projection method on sieves. The
potential and the interaction term do not belong to L2(R), so we de�ne a speci�c risk �tted to
this estimation problem and obtain a bound for it. A nonparametric estimator of the invariant
density also is proposed. The method is implemented on simulated data for several examples of
McKean-Vlasov SDEs and a model selection procedure is experimented.

Keywords and phrases: Invariant density, interaction function, Hermite basis, McKean-Vlasov
stochastic di�erential equation, moment method, projection estimators, nonparametric drift es-
timation.
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1. Introduction

McKean-Vlasov processes are described by a stochastic di�erential equation where the co-
e�cients depend on the distribution of the solution itself. They are also called nonlinear or
self-stabilizing processes. These processes have been extensively studied since their �rst descrip-
tion by McKean (1966), [49], and appear in various applications: for the modelling of granular
media in statistical physics (Benedetto et al. (1997), [10]), in neurosciences (see e.g. Baladron et
al. (2012), [4], Dawson (1983), [24]), for population dynamics and ecology (Carrillo et al. (2014),
[13], Molginer and Edelstein-Keshet (1999), [52]), for epidemics dynamics (Ball and Sirl ( 2020),
[5], Forien and Pardoux (2022), [29]) and in �nance (see e.g. Giesecke et al. (2020), [38] and the
references therein).
A large number of contributions is devoted to probabilistic properties of these models. Existence
and uniqueness of solutions under several di�erent sets of assumptions can be found in e.g.,
Snitzman (1991), [62], Méléard (1996), [51], Funaki (1984), [31], Gärtner (1988), [32], Benachour
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et al. (1998a), [8], Benachour et al. (1998b), [9], Hermann et al. (2008), [39], Kolokoltsov (2010),
[46]. More references are given below.

We are interested in a one dimensional McKean-Vlasov process of the form

(1) dX(t) = −[b(X(t)) + φ ? µt(X(t))]dt+ σdW (t), X(0) = η ∼ ν,
where b(.), φ(.) are deterministic functions, ? denotes the convolution product, µt(.) is the law of
X(t), W is a Brownian motion and η is a random variable independent of W . Such process can
be obtained as the limit of a system of N interacting particles as N tends to in�nity (propagation
of chaos). More precisely, consider the N -dimensional process given by the stochastic di�erential
system:

dXN
i (t) = −b(XN

i (t))dt− 1

N

N∑
j=1

φ(XN
i (t)−XN

j (t))dt+ σdWi(t),(2)

= −b(XN
i (t))dt− φ ? µNt (XN

i (t))dt+ σdWi(t), XN
i (0) = Xi

0, i = 1, . . . , N,

where µNt = N−1
∑N

j=1 δXN
j (t) is the empirical measure associated with (XN

j (t), j = 1, . . . , N),

(Wi, i = 1 . . . , N) are N independent Brownian motions, Xi
0, i = 1, . . . , N are independent and

identically distributed (i.i.d.) random variables, independent of (Wj , j = 1, . . . , N). The function
φ describes the interaction between the N particles.
For any �xed integer p, the process (XN

i (t), i = 1, . . . , p) converges in distribution as N tends to

in�nity to p i.i.d. McKean-Vlasov processes (X(i)(t)), given by

dX(i)(t) = −[b(X(i)(t)) + φ ? µt(X
(i)(t))]dt+ σdWi(t), X(i)(0) = Xi

0, i = 1, . . . , p.

Thus, the process (X(i)(t)), i.e. the mean-�eld limit, provides a good approximation of the be-
haviour of the i-th particle of the system (see e.g., Bolley et al. (2013), [11], Eberle et al. (2019),
[28], Fournier and Guillin (2015), [30], Malrieu (2003), [50], Cattiaux et al. (2008), [14]). More-
over, existence and uniqueness of invariant distributions for (1) are studied in Benachour et
al. (1998a,b), [8], [9], Malrieu (2003), [50], Butkovski (2014), [12], Cattiaux et al. (2008), [14],
Eberle et al. (2019), [28], Hermann and Tugaut (2010), [40].

Statistical inference for interacting particle systems and their mean-�eld limits has started
more recently. On the one hand, several papers deal with inference based on the observation
on a �xed time interval of an interacting particle system with asymptotic properties as the
number N of particles tends to in�nity (see e.g. parametric inference in Kasonga, 1990, [44],
Giesecke et al. (2020), [38], Chen (2021), [15], Li et al. (2021), [47], Sharrock et al. (2023), [57],
Lu et al. (2022), [48], Amorino et al. (2023), [2], Della Maestra and Ho�mann (2022b), [26],
Pavliotis and Zanoni (2022), [54], semiparametric inference in Belomestny et al. (2023), [6], and
nonparametric inference in Della Maestra and Ho�mann (2022a), [25], Comte and Genon-Catalot
(2023), [18]), Amorino et al. (2024), [3], Belomestny et al. (2024), [7].

On the other hand, several papers consider inference based on the observation of the mean-�eld
limit process (1) on a time interval [0, T ], that is inference for the limiting process of one typical
particle for large N . In Genon-Catalot and Larédo (2021a), [34] and (2021b), [35], estimation of
unknown parameters in the potential term b and the interaction term φ are studied under the
asymptotic framework σ → 0. More recently, statistical inference has been investigated under
the assumption of stationarity for (1) when the process is observed in the stationary regime
with asymptotic framework T → +∞. In Genon-Catalot and Larédo (2023a), [36], the case of
b = 0 and φ equal to an odd polynomial is studied and the estimation of the coe�cients of the
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polynomial is treated by a pseudo-likelihood approach. In Genon-Catalot and Larédo (2023b),
[37], general functions b and φ depending on unknown parameters are considered and a di�erent
pseudo-likelihood function is proposed. Pavliotis and Zanoni (2024), [55], use a moment method
to estimate the coe�cients of polynomial functions b and φ.

In here, our aim is the nonparametric estimation of the functions b(.), φ(.) from the continu-
ous observation of a process distributed as (1) on a time interval [0, T ] when the process is in
stationary regime and T tends to in�nity. When φ ≡ 0 (usual di�usion process), nonparametric
inference for the function b, based on the observation of one sample path on a time interval [0, T ],
when the process is in stationary regime and T is large, is an extensively developped subject.
We can quote Ho�mann (1999), [41], Comte et al. (2007), [17], see also the book Kessler et
al. (2012), [45], Dalalyan and Reiss (asymptotic equivalence for scalar di�usions, 2006, [22], for
multidimensional di�usions, 2007, [23]), Schmisser (2013), [56], Strauch (2015, 2016), [59], [60],
Nickl and Ray (2020), [53], Comte and Genon-Catalot (2021), [16].

In the case of the McKean-Vlasov process (1) with φ 6= 0 observed in the stationary regime,
the joint nonparametric estimation of (b, φ) with general functions (b, φ) has never been inves-
tigated up to our knowledge. It di�ers completely from the case of a usual di�usion. Indeed,
although there are clear assumptions (see below) for existence and uniqueness of an invariant
distribution, this distribution is not explicitely given as a function of b and φ. It is solution of
an implicit equation. The convolution term depending on the unknown marginal distribution of
the process introduces new di�culties for the nonparametric estimation of b and φ linked with
identi�ability problems. For these reasons, the observation of only one sample path is not enough
to infer both b and φ. The novelty, in what follows, is that we assume that the observation is
composed of four independent copies (X(`)(t), t ∈ [0, T ], ` = 1, 2, 3, 4) in stationary regime and
our asymptotic framework is T → +∞. Actually, only two copies are su�cient but four copies
avoids cumbersome and tedious additional computations. We stress that the use of two indepen-
dent trajectories circumvents the estimation step of the stationary distribution in our procedure.
Our estimation method is a moment method inspired by the work in parametric setting of

Pavliotis and Zanoni (2024), [55].
In Section 2, we present our set of assumptions ensuring that equation (1) admits a unique

strong solution and that the model has a unique invariant distribution ρ(x)dx. We give useful
properties of the density ρ and of the process (1) in the stationary regime. Proposition 3 states a
result on the in�nitesimal generator of (1) often used in the proofs. In Section 3, the principle of
the estimation method is described. It is based on properties of the in�nitesimal generator of (1),
and it combines a moment method with a projection method on �nite dimensional subspaces of
L2(R, dx) := L2(dx). Nonparametric estimators of b and φ based on the observation of four i.i.d.

sample paths (X(i)(t), t ∈ [0, T ]) distributed as (1) in the stationary regime are built. De�ning
an adequate risk for the estimators is an additional di�culty since b, φ are not square integrable
in our framework. We propose a de�nition of the risk well �tted to the problem which is de�ned
as follows. For a couple (u, v) of functions, we set, when de�ned

(3) ‖(u, v)‖2V :=

∫
(u(x) + v ? ρ(x))2ρ(x)dx.

The risk of an estimator (̂b, φ̂) is de�ned by

(4) E(‖(̂b− b, φ̂− φ)‖2V ).
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Theorem 1 gives the risk bound of our projection estimators on a �xed space. The choice of
the loss function measured with the norm ‖(u, v)‖2V is discussed and justi�ed by the result of
our Theorem 1. Section 4 is devoted to the nonparametric estimation of the invariant density
by projection method . The estimator exhibits a parametric rate. In Section 5, we present
numerical simulation results on several models for the estimation of the invariant density and of
b and φ. In the latter case, we experiment a model selection procedure. We detail the simulation
method of the sample paths. We observe that the invariant density estimator performs quite
well. Clearly, estimating b and φ is more di�cult. We compare the estimator obtained by model
selection with an oracle and observe that most of the time the selection method performs as well
as the oracle. Section 6 contains concluding remarks and Section 7 (Supplementary material) is
devoted to proofs.

2. Assumptions and preliminaries.

In the sequel, the notation . means ≤ up to a constant. Our set of assumptions is essentially
the same as the one given in Genon-Catalot and Larédo (2023b), [37]. Let us set

B(x) =

∫ x

0
b(y)dy, Φ(x) =

∫ x

0
φ(y)dy.

The function b is the potential term, the function φ is the interaction function. We assume that
b 6≡ 0 and that these functions satisfy:

• [H1] The function Φ is even. The functions x 7→ B(x) and x 7→ Φ(x) are C2 and convex,
one of the two being strictly convex: there exist constants K and λ such that

∀x,B′′(x) ≥ K ≥ 0, Φ′′(x) ≥ λ ≥ 0, K + λ > 0.

• [H2] The functions B′(x) = b(x),Φ′(x) = φ(x) are locally Lipschitz with polynomial
growth, i.e. there exist c > 0, ` ∈ N∗ = {1, 2, 3, . . .} such that

∀x, y ∈ R, |b(x)− b(y)|+ |φ(x)− φ(y)| ≤ c|x− y|(1 + |x|` + |y|`).

• [H3] The functions b(x), b′(x), φ(x), φ′(x) have ` polynomial growth: there exists a con-
stant c such that

|b(x)|+ |b′(x)|+ |φ(x)|+ |φ′(x)| ≤ c(1 + |x|`).

According to Malrieu (2003), [50], Benachour et al. (1998a), [8], Cattiaux et al. (2008), [14],
Herrmann et al. (2008), [39], under assumptions [H1]-[H3], equation (1) admits a unique
solution ((X(t), µt(x)(x)dx)), t ≥ 0), where µt(x)dx = L(X(t)) is the marginal distribution of
X(t). Model (1) admits a unique invariant distribution ρ such that

∫
R x

2ρ(x)dx < +∞. And
if the initial variable X(0) of (1) follows the invariant distribution ρ, then, for all t, L(X(t)) =
L(X(0)). Thus, we assume

• [H4] The initial variable X(0) follows the invariant distribution ρ.

Under [H1]-[H3], the invariant distribution ρ has density ρ(x) given as the solution of the
implicit equation

(5) ρ(x) =
1

M
exp

{
− 2

σ2

∫ x

0
[b(u) + φ ? ρ(u)]du

}
,
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where M =
∫
R exp{− 2

σ2

∫ y
0 [b(u) +φ ? ρ(u)]du}dy. As (Φ ? ρ)′ = φ ? ρ,

∫ x
0 φ ? ρ(u)du = Φ ? ρ(x)−

Φ ? ρ(0),

(6) ρ(x) ∝ exp [− 2

σ2
(B(x) + Φ ? ρ(x))].

Note that if b ≡ 0, there is a one-parameter family of invariant distributions (see e.g. Genon-
Catalot and Larédo (2023a), [18]). The invariant distribution is not unique unless its expectation
is speci�ed. We exclude this case here.
Contrary to classical stochastic di�erential equations, the invariant distribution is not explicit.
Nevertheless, we can prove:

Proposition 1. Under [H1]-[H3],

(7) ρ(x) . exp [−(K + λ)

σ2

(
x+

b(0) + φ ? ρ(0)

(K + λ)

)2

],

Moreover, for 0 ≤ z ≤ x and for x ≤ z ≤ 0,

(8)
ρ(x)

ρ(z)
≤ exp [C(x− z)] where C = −(2/σ2)(b(0) + φ ? ρ(0)).

Inequality (7) is proved in Genon-Catalot and Larédo (2023b), [37]. Proposition 1 has the
obvious consequence that the invariant distribution has moments of any orders and (7) implies
that, for all k ∈ R and all ε > 0,

(9)

∫
R

exp (kx)(ρ(x))εdx < +∞.

Note that, by [H3], φ ? ρ has polynomial growth as ρ has moments of any order.
Under [H1]-[H4], the initial variable η follows the invariant distribution ρ(x)dx, which implies
that the distribution L(X(t)) = µt(dx) satis�es

∀t ≥ 0, µt(dx) = ρ(x)dx.

Therefore, equation (1) becomes:

(10) dX(t) = −(b(X(t)) + φ ? ρ(X(t)))dt+ σdW (t), X(0) = η ∼ ρ(x)dx.

As stressed in Genon-Catalot and Larédo (2023b), the following result holds and has important
consequences:

Proposition 2. Assume [H1]-[H4] and consider the stochastic di�erential equation

dY (t) = −(b(Y (t)) + φ ? ρ(Y (t)))dt+ σdW (t).

Then (Y (t)) is a positive recurrent di�usion with stationary density given by (5). If Y (0) ∼
ρ(x)dx, it is ergodic. Moreover,
- If Y (0) 6= X(0), (Y (t)) 6≡ (X(t)).
- If Y (0) = X(0) = η ∼ ρ(x)dx, then X(t) = Y (t) for all t ≥ 0.

The result simply derives from the uniqueness of solutions. Thus, in the stationary regime,
the process (X(t)) given by (10) is identical to the classical SDE (Y (t)) in the stationary regime
and is ergodic.
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The in�nitesimal generator of the SDE (10) is given by:

(11) Lg =
σ2

2
g′′ − (b+ φ ? ρ)g′ =

σ2

2ρ
(g′ρ)′.

The operator L acts on L2(ρ(x)dx) := L2(ρ) and is de�ned on the domain D,

(12) D = {g ∈ L2(ρ), g′ abs. continuous, Lg ∈ L2(ρ), lim
|x|→∞

g′(x)ρ(x) = 0}.

(see e.g. Genon-Catalot et al. (2000), [33]).
Below, we use that, for all function Ψ ∈ D,

∫
LΨ(x)ρ(x)dx = 0. This relation obviously holds

as, by (11)-(12), ∫
LΨ(x)ρ(x)dx =

∫
σ2

2ρ
(Ψ′ρ)′ρ =

σ2

2

∫
(Ψ′ρ)′ = [Ψ′ρ]+∞−∞ = 0.

In order to apply our estimation method, we need the following lemma.

Lemma 1. Consider a function ψ such that ψ ∈ L2(dx), ψ is absolutely continuous and bounded
and ψ′ has polynomial growth. Then,

∫ x
0 ψ(t)dt and

∫ x
0 ψ ? ρ(t)dt both belong to D.

Note that, if a function h has exponential growth, i.e. there exists a constant a > 0 such that,
for all u ∈ R, |h(u)| ≤ aeau, then by Proposition 1 (see (7) and (9)), h ∈ L2(ρ). Now, we can
state a key property for the statistical strategy.

Proposition 3. Assume [H1]-[H4] and that h has exponential growth. Set hc = h−
∫
R h(x)ρ(x)dx

and de�ne the function Γh(x) by Γh(x) =
∫ x

0 (Γh)′(y)dy where

(Γh)′(y) =
2

σ2ρ(y)

∫ y

−∞
hc(u)ρ(u)du = − 2

σ2ρ(y)

∫ +∞

y
hc(u)ρ(u)du(13)

Then, Γh ∈ D, LΓh = hc, and (Γh)′ ∈ L2(ρ). Moreover, for (X(t)) satisfying (10),

(14)

∫ T

0
hc(X(s))ds = σ

∫ T

0
(Γh)′(X(s))dW (s) + Γh(X(0))− Γh(X(T )),

(15) Var(
1

T

∫ T

0
hc(X(s))ds) ≤ 2σ2

T

∫
[(Γh)′(x)]2ρ(x)dx+

8

T 2

∫
Γ2
h(x)ρ(x)dx.

Note that relation (13) holds since
∫
hc(x)ρ(x)dx = 0.

The relation (14) with the explicit function (Γh)′ given by (13) is especially important and used
several times in our proofs (Propositions 5, 6, 7, 8).

3. Estimation method for the potential and the interaction functions.

Notation. For h a function, we set ‖h‖2 =
∫
h2(x)dx, ‖h‖2ρ =

∫
h2(x)ρ(x)dx. For x a vector in

Rd, ‖x‖Rd denotes the Euclidean norm of the vector. For a matrixM ,M⊥ denotes its transpose.
For M a square matrix, Tr(M) is the trace of M , and ‖M‖op is the square-root of the largest

eigenvalue of MM⊥. If M is symmetric, ‖M‖op is simply equal to supi{|λi|} where the λi are
the eigenvalues of M .
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3.1. Principle of the method. Let ψ a function satisfying the assumptions of Lemma 1 and
set Ψ(x) =

∫ x
0 ψ(y)dy. Then, following Pavliotis and Zanoni (2024), we notice that, from the

de�nition of ρ and (11)-(12),
∫
LΨ(x)ρ(x)dx = 0, so that

(16)

∫
ψ(x)b(x)ρ(x)dx+

∫
ψ(x)φ ? ρ(x)ρ(x)dx =

1

2

∫
ψ′(x)σ2ρ(x)dx.

To estimate b and φ, we must take into account that the functions b, φ and φ?ρ do not belong to
L2(dx). By [H3], these three functions have polynomial growth and therefore, as ρ has moments
of any order, belong to L2(ρ). So we proceed as follows.

Consider two orthonormal bases of L2(dx), (ϕj)j≥0, (θ`)`≥0 composed of functions derivable,
bounded, with derivatives having polynomial growth, thus satisfying the assumptions of Lemma
1. Note that this excludes compactly supported bases whose functions are not di�erentiable on
R. We denote for τ = ϕ and τ = θ:

(17) Lτ (q) := sup
x∈R

q−1∑
k=0

τ2
k (x),

and assume that Lϕ(m) < +∞, Lθ(p) < +∞ for all �xed m ≥ 1, p ≥ 1. The quantity Lτ (q) only
depends on the space generated by (τ0, . . . , τq−1). Indeed,

Lτ (q) = sup
h∈span(τ0,...,τq−1)

‖h‖2∞/‖h‖2.

It is �nite for classical examples of bases. Generally, for all q, Lτ (q) ≤ cτqα with cτ , α constants
linked with the basis (see Section 3.6). As ρ is bounded, for all j, ϕj belongs to L2(ρ). For
m ≥ 1, the functions ϕ0, . . . , ϕm−1 are linearly independent and generate a m-dimensional space

Sm = Vect(ϕ0, . . . , ϕm−1)

which is a subspace of L2(ρ). Analogously, we de�ne the p-dimensional subspace of L2(ρ)

Σp = Vect(θ0, . . . , θp−1).

Recall that, by de�nition (3), for a couple (u, v) of functions, we have set, when de�ned,
‖(u, v)‖2V = ‖u+ v ? ρ‖2ρ. Note that ‖(u, v)‖2V is �nite for (u, v) = (b, φ) and for (u, v) ∈ Sm×Σp.

Indeed for (u, v) ∈ Sm×Σp, ‖u‖2ρ ≤ ‖ρ‖∞‖u‖2 and by the Young inequality, ‖v ?ρ‖ ≤ ‖ρ‖1‖v‖ =

‖v‖, so that v ? ρ belongs to L2(dx) ⊂ L2(ρ). Note also that (u, v) → ‖(u, v)‖V is only a semi-
norm on L2(ρ)× L2(ρ). Indeed, ‖(u, v)‖V = 0 is equivalent to u(x) + v ? ρ(x) = 0 for all x ∈ R.
But this does not always implies u ≡ 0, v ≡ 0. Nevertheless, we denote 〈(u1, v1), (u2, v2)〉V the
scalar product associated to the semi-norm ‖.‖V .
Now, we de�ne the V -orthogonal projection of (b, φ) on Sm × Σp:

(18) (bVm, φ
V
p ) = arg min

(u,v)∈Sm×Σp

‖(b− u, φ− v)‖2V .

Setting bVm =
∑m−1

k=0 βkϕk and φVp =
∑p−1

`=0 c`θ`, we obtain

(19) Vm,p(b, c)m,p = Zm,p

using the notation

(b, c)m,p = (β0, . . . , βm−1, c0, . . . , cp−1)⊥ =

(
bm
cp

)
∈Mm+p,1(R)
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with bm = (β0, . . . , βm−1)⊥ and cp = (c0, . . . , cp−1)⊥, and where Vm,p is the (m+ p)× (m+ p)
matrix, element ofMm+p,m+p(R),

(20) Vm,p =


V1 =

(∫
ϕjϕkρ

)
0≤j,k≤m−1

V1,2 =

(∫
θ` ? ρϕkρ

)
0 ≤ k ≤ m − 1
0 ≤ ` ≤ p − 1

V2,1 =

(∫
θr ? ρϕjρ

)
0 ≤ r ≤ p − 1,
0 ≤ j ≤ m − 1

V2 =

(∫
θ` ? ρ θr ? ρ ρ

)
0≤`,r≤p−1

 ,

where V2,1 = (V1,2)⊥,

(21) Zm,p =


(∫

(b+ φ ? ρ)ϕkρ

)
0≤k≤m−1(∫

(b+ φ ? ρ)(θ` ? ρ)ρ

)
0≤`≤p−1

 ∈Mm+p,1(R).

As the functions ψ = ϕ0, . . . , ϕm−1, θ0 ? ρ, . . . , θp−1 ? ρ satisfy the assumptions of Lemma 1, we
may apply formula (16) to these functions and we get, using that (θ` ? ρ)′ = θ′` ? ρ,

(22) Zm,p =
σ2

2


(∫

ϕ′k ρ

)
0≤k≤m−1(∫

θ′` ? ρ ρ

)
0≤`≤p−1

 ∈Mm+p,1(R).

3.2. Theoretical constraints and identi�ability. Below, vectors are denoted using bold let-
ters and coordinates or functions are denoted with usual letters (not bold).
For (x0, . . . , xm−1, y0, . . . , yp−1) ∈ Rm+p, we denote

(23) (x,y)m,p = (x0, . . . , xm−1, y0, . . . , yp−1)⊥ =

(
xm
yp

)
with xm = (x0, . . . , xm−1)⊥,yp = (y0, . . . , yp−1)⊥.
The vector (b, c)m,p in (19) is uniquely de�ned if and only if the matrix Vm,p is invertible.

We emphasize that the matrix Vm,p is symmetric and nonnegative. Indeed,

(x,y)⊥m,pVm,p(x,y)m,p =

∫ m−1∑
j=0

xjϕj(x) +

p−1∑
`=0

y`θ` ? ρ(x)

2

ρ(x)dx ≥ 0.

Note that

(x,y)⊥m,pVm,p(x,y)m,p = ‖(u, v)‖2V for u =
m−1∑
j=0

xjϕj , v =

p−1∑
`=0

y`θl.

As, by (6), the support of ρ is R, Vm,p is invertible if:

(24)

∀x ∈ R,
m−1∑
j=0

xjϕj(x) +

p−1∑
`=0

y`θ` ? ρ(x) = 0

⇒ (x,y)m,p = (0,0)m,p

Condition (24) is an identi�ability constraint linked with the choice of the bases. In Section 3.3
hereafter, we propose a basis for ϕj and θ` satisfying Condition (24), so that (b, c)m,p in (19) is
well de�ned for this basis.
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Nevertheless, (24) is not enough for our purpose and we need to reinforce the identi�ability
constraint and set the following assumption:

• [H5] There exists a constant f0 > 0 �xed and not depending on m, p, such that

∀x ∈ Rm+p, ‖x‖Rm+p = 1, x⊥Vm,px ≥ f0 > 0.

Assumption [H5] ensures that, for all (m, p), the eigenvalues of Vm,p are all larger than f0. As
a consequence, under [H5], there exists a positive constant s0 independent of m, p such that

‖V−1
m,p‖op ≤ s0.

Clearly s0 = 1/f0 suits.
Assumption [H5] may seem di�cult to check. However let us stress that, in complex statistical
problems, it often happens that identi�ability assumptions are di�cult or impossible to check.
It is for instance the case when the identi�ability conditions concern random terms (see e.g.
parametric estimation of a di�usion coe�cient from discrete data within a �xed time interval).
Pavliotis and Zannoni (2024), for interacting particle systems, have also assumptions impossible
to check. They propose, as a way to get through, to check numerically on the data whether
the method can be applied. Analogously, in our case, our method works well on simulated data
provided that (m, p) are not too large.

3.3. Example of basis satisfying the identi�ability assumption (24). Our method re-
quires bases composed of functions for which Lemma 1 can be applied. This excludes compactly
supported bases whose functions are not derivable on R. This is why we propose the Hermite
basis, whose functions are R-supported and regular, both for ϕj and θ`.

The Hermite polynomial and the Hermite function of order j are given, for j ≥ 0, by:

(25) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(dx). Hermite functions with odd (resp.

even) index are odd (resp. even) and h∗j (x) =
√

2πijhj(x), where h∗j is the Fourier transform

of hj . Moreover (see Abramowitz and Stegun (1964, 22.14.17), [1], Szegö (1975), [61] p.242, In-

dritz (1961), [43]), ‖hj‖∞ ≤ Φ0,Φ0 ' 1/π1/4 ' 0.7511, so that the basis (ϕj = hj) is constituted
of bounded functions which satisfy the assumptions of Lemma 1.

Moreover, the following result holds.

Proposition 4. The Hermite basis satis�es the identi�ability condition (24).

Lastly, it is proved in Lemma 1 of Comte and Lacour (2023), [21] that reminding of de�nition
(17), it holds

(26) Lh(m) ≤ C
√
m,

which implies the quantity is �nite.

3.4. De�nition of the estimators. To de�ne a nonparametric estimator of b, φ, we estimate

the functions bVm, φ
V
p , i.e. we build estimators β̂0, . . . , β̂m−1 and ĉ0, . . . , ĉp−1 of the coe�cients

β0, . . . , βm−1 and c0, . . . , cp−1 and set

(27) b̂m(x) =

m−1∑
j=0

β̂jϕj(x), φ̂p(x) =

p−1∑
`=0

ĉ`θ`(x), x ∈ R,
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with b̂m = (β̂0, . . . , β̂m−1)⊥ and ĉp = (ĉ0, . . . , ĉp−1)⊥.

We assume that we have at our disposal four independent paths of (10), (X(i)(t))t∈[0,T ], for
i = 1, 2, 3, 4, i.e.

dX(i)(t) = −(b(X(i)(t)) + φ ? ρ(X(i)t)))dt+ σdWi(t), X(i)(0) = ηi ∼ ρ(x)dx,

where (Wi) are independent Brownian motions, (ηi) are independent random variables, inde-
pendent of the Brownian motions (Wi). We indicate below why we could restrict us to two
trajectories.
For m, p ≥ 0, we de�ne an empirical version of the theoretical matrix Vm,p and of the vector

vector Zm,p, denoted by V̂m,p and Ẑm,p. The matrix V̂m,p is built using the two sample paths

(X(i)(t))t∈[0,T ], for i = 1, 2 and the vector Ẑm,p is built using the two sample paths (X(i)(t))t∈[0,T ],

for i = 3, 4. In this way, the estimators V̂m,p and Ẑm,p are independent. We could use only two
sample paths to estimate both, but this independence simpli�es considerably the study.

Let us now de�ne V̂m,p and Ẑm,p. For this, we introduce the following notation. For a function
h, let us set

h(x) =
1

T

∫ T

0
h(x−X(2)(t))dt, h(x) =

1

T

∫ T

0
h(x−X(4)(t))dt.

Note that Eh(x) = Eh(x) = h ? ρ(x) and h ? ρ(X(1)(s)) can be estimated by h(X(1)(s)) =
1
T

∫ T
0 h(X(1)(s)−X(2)(t))dt, using two trajectories. Although h(x), h(x) are random and depend

respectively on X(2) and X(4), we omit this dependence in the notation for the sake of simplicity.
We set

V̂m,p =

(
V̂1 V̂1,2

(V̂1,2)⊥ V̂2

)
with

V̂1 =

(
1

T

∫ T

0
ϕj(X

(1)(s))ϕk(X
(1)(s))ds

)
0≤j,k≤m−1

V̂1,2 =

(
1

T

∫ T

0
θ`(X

(1)(s))ϕk(X
(1)(s))ds

)
0≤k≤m−1,0≤`≤p−1

V̂2 =

(
1

T

∫ T

0
θ`(X

(1)(s)) θr(X
(1)(s))ds

)
0≤`,r≤p−1

.

The matrix V̂m,p is built using the sample paths (X(i)(t))t∈[0,T ], for i = 1, 2 as for ` = 0, . . . , p−1,

θ`(X
(1)(s)) =

1

T

∫ T

0
θ`(X

(1)(s)−X(2)(t))dt.

We stress here is that we must use two independent sample paths to estimate the elements of
Vm,p. This is due to the fact that ρ is unknown.
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Next, we set

Ẑm,p =
σ2

2


(

1

T

∫ T

0
ϕ′k(X

(3)(s))ds

)
0≤k≤m−1(

1

T

∫ T

0
θ′`(X

(3)(s))ds

)
0≤`≤p−1

 ,

which depends on the sample paths (X(i)(t))t∈[0,T ], for i = 3, 4, as, for ` = 0, . . . , p− 1,

θ′`(X
(3)(s)) =

1

T

∫ T

0
θ′`(X

(3)(s)−X(4)(t)))dt.

Here also, two independent trajectories are required to estimate the elements of Zm,p. We could

have used the same X(1), X(2) as for Vm,p. But, the independence of the estimators built with
four independent trajectories simpli�es considerably proofs (see the Remark at the end of the
proof of Theorem 1).
Moments strategies often bring unbiased estimators. Here, due to the use of the functions

h(x), h(x) which are unbiased estimators of h ? ρ, it is almost the case, and we can prove:

Proposition 5. Under Assumptions [H1]-[H4], it holds that

E(Ẑm,p) = Zm,p, E(V̂m,p) = Vm,p +


0m×m 0m×p

0p×m O

(
1

T

)
1Ip×p

 ,

where 1Ip×p denote the p× p matrix with all coe�cients equal to 1.

Thus Ẑm,p is unbiased and V̂m,p is asymptotically unbiaised when T grows to in�nity.

Provided that V̂m,p is invertible, using notation (23), relation (19) suggests to de�ne the
estimator of (b, c)m,p by

(̂b, c)m,p = V̂−1
m,pẐm,p =

(
b̂m
ĉp

)
.

Although under [H5], the theoretical matrix Vm,p is invertible with minimum eigenvalue away

from 0, this does not guaranteee the invertibility of V̂m,p. Therefore, to get a proper de�nition

of our estimator, we propose the standard cuto� strategy leading to replace V̂−1
m,p by

(28) Ṽ−1
m,p := V̂−1

m,p1∆m,p with ∆m,p = {‖V̂−1
m,p‖op ≤ 2s0}.

Then we set

(29) (̃b, c)m,p = Ṽ−1
m,pẐm,p =

(
b̃m
c̃p

)
.

where

b̃m = (β̃1, . . . , β̃m−1)⊥, c̃p = (c̃1, . . . , c̃p−1)⊥.

The estimator of (b, φ) is thus given by

b̃m(x) =
m−1∑
j=0

β̃jϕj(x), φ̃p(x) =

p−1∑
`=0

c̃`θ`(x).
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By construction, Ṽ−1
m,p and Ẑm,p are independent. The risk of the estimator (̃bm, φ̃p) is de�ned

by: E(‖(̃bm − b, φ̃p − φ)‖2V ), (see (3), (4)).

3.5. Study of estimator risk. In the sequel, we use the following notations.

Let (b, φ)(x) = (b(x), φ(x)) and set (b, φ)m,p(x) = (bVm(x), φVp (x)) where bVm and φVp given by
(18). Analogously, let

(̃b, φ)m,p(x) = (̃bm(x), φ̃p(x)),

and recall that (see (3)) ‖(b, φ)‖2V = ‖(b+ φ ? ρ‖2ρ.

For (x,y)m,p =

(
xm
yp

)
a vector of Rm × Rp, de�ne the square norm associated with Vm,p

de�ned by (20), by

‖(x,y)m,p‖2Vm,p
:= (x,y)⊥m,pVm,p(x,y)m,p =

∫ m−1∑
j=0

xjϕj(x) +

p−1∑
`=0

y`θ` ? ρ(x)

2

ρ(x)dx

≤ 2‖ρ‖∞

∫ m−1∑
j=0

xjϕj(x)

2

dx+

∫ (p−1∑
`=0

y`θ` ? ρ(x)

)2

dx

 .
According to Young's inequality, we have

‖
p−1∑
`=0

y`θ` ? ρ‖2 ≤ ‖ρ‖21‖
p−1∑
`=0

y`θ`‖2 = ‖
p−1∑
`=0

y`θ`‖2.

Now using that the functions (ϕj)0≤j≤m−1 and (θ`)0≤`≤p−1 are orthonormal in L2, we get

(30) ‖(x,y)m,p‖2Vm,p
≤ 2‖ρ‖∞‖(x,y)m,p‖2Rm+p .

Now, we can link the V -norm of a couple of functions to the ‖.‖Vm,p−norm of a vector of

Rm×Rp. Indeed, consider two functions ω(x) =
∑m−1

j=0 ωjϕj(x) ∈ Sm and ζ(x) =
∑p−1

`=0 ζ`θ`(x) ∈
Σp with coe�cients respectively ωm = (ωj , 0 ≤ j ≤ m− 1)⊥ and ζp = (ζ`, 0 ≤ ` ≤ p− 1)⊥. We
have

‖(ω, ζ)‖2V = (ω, ζ)⊥m,pVm,p(ω, ζ)m,p = ‖(ω, ζ)m,p‖2Vm,p
.

Thus, using (30), we have

‖(ω, ζ)‖2V ≤ 2 ‖ρ‖∞‖(ω, ζ)‖2

where ‖(ω, ζ)‖2 =
∑m−1

j=0 ω2
j +

∑p−1
`=0 θ

2
` = ‖(ω, ζ)m,p‖2Rm+p .

The following theorem gives a bound for the risk of the estimator (̃b, φ)m,p(x) = (̃bm(x), φ̃p(x))
with �xed m, p.

Theorem 1. Assume that Assumptions [H1]-[H5] hold and that Lϕ(m) + Lθ(p) ≤ T , with
Lϕ(m) and Lθ(p) de�ned in (17). Then

E
(
‖(̃b, φ)m,p − (b, φ)‖2V

)
≤ inf

(u,v)∈Sm×Σp

‖(b− u, φ− v)‖2V + C
Lϕ(m) + Lθ(p)

T
,

where C is a constant depending on b, φ, ρ, s0.
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Let us comment this result. Our loss function is non standard. Let us give some explanations

about it. If we consider the usual risk E(‖b̃m−b‖2ρ+‖φ̃p−φ‖2ρ), a choice that we �rst investigated,
then the bound we obtain involves the sum of three di�erent bias terms:

‖bρm − b‖2ρ + ‖φρp − φ‖2ρ + ‖(φρp − φ) ? ρ ρ‖2

where bρm (resp. φρp) is the L2(ρ)-projection of b on Sm (resp of φ on Σp). We do not know if
the third term tends to 0 when p grows to in�nity. This phenomenon is inherent to the problem.
Indeed, it is worth stressing that Belomestny et al. (2024), in the case b = 0, have a similar bias
term composed of two terms, one of which may not tend to zero.
This is why we proposed to choose another loss function. The choice of our speci�c loss function
induces a coherent result in Theorem 1: the risk of the estimator measured in norm ‖.‖V is
bounded by a variance term + a bias term measured in the same norm ‖.‖V . The bias term is
decreasing as m, p increase; but, analogously, it is true that we do not know if it tends to zero.
This con�rms that we are facing a speci�c problem with this model.

The risk bound in Theorem 1 shows an usual decomposition into the bias term inf(u,v)∈Sm×Σp
‖(b−

u, φ− v)‖2V and a variance term (Lϕ(m) + Lθ(p))/T (see (17)) which increases with m, p. This
decomposition may be used to realize the square bias-variance compromise provided that the
rate of the bias term can be assessed on speci�c regularity spaces.

We need the following Propositions 6, 7 and Lemma 2 to prove Theorem 1. We state them to
make clear the steps of the study of the risk.

Proposition 6. Under [H1]-[H4], it holds

E[‖Ẑm,p − Zm,p‖2Rm+p ] .
Lϕ(m) + Lθ(p)

T
.

Proposition 7. Under [H1]-[H4], E
[
Tr(V̂m,p −Vm,p)

2
]
.
Lϕ(m)

T
.

Therefore, we have

E
(
‖V̂m,p −Vm,p‖2op

)
≤ E

[
Tr(V̂m,p −Vm,p)

2
]
.
Lϕ(m)

T
.

Note that this bound does not depend on p.

Lemma 2. Under [H1]-[H5],

E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p

)
≤ (40 + 1/4)s4

0E
(
‖V̂m,p −Vm,p‖2op

)
Consequently,

E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p

)
.
Lϕ(m)

T
.

Remark 1. Following ideas in Genon-Catalot and Larédo (2023a,b), [36], [37], we might have

proposed T−1
∫ T

0 ϕ`?ρ̂[T ](X
(1)(s)ϕr?ρ̂[T ](X

(1)(s)ds instead of the term in V̂2, with ρ̂[T ] computed

with the path X(2) as in Section 4, formula (31). It could be used in the de�nition of Ẑm,p also,

but would yield additional bias, compared to our strategy. In other words ¯̄h(x) is an unbiased
estimator of h ? ρ(x) which is not the case of h ? ρ̂[T ](x).
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3.6. Risk bound when using the Hermite basis. Let us discuss the respective orders of
the bias and variance terms in the bound obtained in Theorem 1, when considering the Hermite
basis described in section 3.3.

The variance term order depends on the bases.
In the case we use Hermite functions (h0, h1, . . . , hm−1) to span Sm and (h1, h3, . . . , h2p−1) to

span Σp (recall that φ is odd), by (26), the variance term has order

Lϕ(m) + Lθ(p)

T
≤ C
√
m+

√
p

T
.

Let us now discuss the square bias term. If the functions b and φ were square integrable on
R, we would upper bound the square bias by

‖ρ‖∞
(

inf
u∈Sm

‖b− u‖2 + inf
v∈Σp

‖φ− v‖2
)

= ‖ρ‖∞

∑
j≥m
〈b, ϕj〉2 +

∑
`≥p
〈φ, θ2`+1〉2


For b and φ in Sobolev-Hermite spaces with regularity s1 and s2 (see e.g. Comte and Genon-
Catalot (2020), section 3.4, [19]), the resulting order would be m−s1 + p−s2 and the resulting

bias rate would be T−2s?/(2s?+1) where s? = min(s1, s2). This is the optimal rate for estimating
a function with regularity s?. Thus, our bias term is meaningful.
However, the order of our speci�c bias term taking into account that b, φ, φ ? ρ are in L2(ρ) and
not in L2(dx) would require the de�nition of speci�c regularity spaces to assess the rate of

inf
u∈Sm

‖b− u‖2ρ + inf
v∈Σp

‖(φ− v) ? ρ‖2ρ.

4. Estimation of the stationary density

As ρ ∈ L2(dx), we consider an orthonormal basis of L2(dx), still denoted (ϕj)j≥0 and write
ρ(x) =

∑
j≥0 ajϕj(x) with aj = 〈ϕj , ρ〉 =

∫
ϕj(x) ρ(x)dx. For an integer D, we consider the

estimator

(31) ρ̂D =
D−1∑
j=0

âjϕj , âj =
1

T

∫ T

0
ϕj(X(s))ds.

We can prove the following result

Proposition 8. Under Assumptions [H1]-[H4],

E
[
‖ρ̂D − ρ‖

2
]
≤ ‖ρ− ρD‖

2 +
C

T
,

where ρD =
∑D−1

j=0 ajϕj, C is a positive constant (not depending on D, T ) and ‖.‖ is the L2-norm.

It follows from Proposition 8 that the variance of the estimator does not depend on D. There-
fore, taking D as large as possible will make the bias term negligible under weak regularity
conditions, and ρ can be estimated with (parametric) rate 1/T . In Comte and Merlevède (2005),
the same result is obtained under speci�c conditions, mainly the so-called Castellana and Lead-
better condition which is di�cult to check in general. The interesting point here is that the
parametric rate is obtained without such speci�c condition in our framework.
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Remark 2. In most cases, as mentioned above, the invariant density has no explicit expression.
However, in the special case where b is odd and φ is linear, ρ is explicit. We follow Hermann
and Tugaut (2010) to explain this case. Let us assume that b is odd and φ(x) = cx. Then,
φ ? ρ(x) = c(x−m) where m is the expectation of ρ. The invariant density ρ is given by

ρ(x) = [K(m)]−1 exp [−2σ−2(B(x) +
c

2
(x−m)2)]

where [K(m)]−1 is the norming constant and m is solution of∫
x exp [−2σ−2(B(x) +

c

2
(x−m)2)]dx = m

∫
exp [−2σ−2(B(x) +

c

2
(x−m)2)]dx = mK(m)

As B is even, this equation has an obvious solution m = 0. As the invariant distribution is
unique, we �nd

ρ(x) = exp [−2σ−2(B(x) +
c

2
x2)][

∫
exp [−2σ−2(B(y) +

c

2
y2)]dy]−1.

Moreover, equation (10) is equal to

dX(t) = −[b(X(t)) + cX(t)]dt+ σdW (t), X(0) ∼ ρ(x)dx.

Models 1,2,3 presented below in Section 5 correspond to such cases and we use them to evaluate
the performances of the invariant density estimator.

5. Simulation experiments

Numerical simulations of processes given by mean-�eld limits is not a simple task. A relatively
easy solution to get approximate sample paths is to simulate the system of particles for large
N since we know that for any �xed p, the processes (XN

i (t), i = 1, . . . , p), where (XN
i (t), i =

1, . . . , N) is given by (2), converge in distribution asN tends to in�nity to p i.i.d. McKean-Vlasov

processes (X(i)(t)), given by

dX(i)(t) = −[b(X(i)(t)) + φ ? µt(X
(i)(t))]dt+ σdWi(t), X(i)(0) = Xi

0, i = 1, . . . , p.

Moreover, the particle system (XN
i (t), i = 1, . . . , N) as a N -dimensional di�usion process, ad-

mits an invariant density, say νN (x1, . . . , xN ) and each marginal νNi (xi) de�nes a distribution
which converges weakly to ρ(xi)dxi (see e.g. Malrieu, 2003, Cattiaux et al., 2008). Therefore,
we simulated the system of particles on [−10, T ], left out the interval [−10, 0] and picked out
four trajectories on [0, T ].

We implemented the method by simulating N = 800 particules following equation (2) with
Euler-type discretization scheme with step ∆ = 0.1. The initial value is taken equal to 0 and
we exclude the 100 �rst values of the process to reach approximately the stationary regime. The
values of T presented below are T = 200 and T = 2000, involving n = 2000 and n = 20000
generatedXN

i (j∆), j = 1, . . . , n and i = 1, . . . , N . In all cases, we took σ = 0.25. The estimation
uses the sample paths XN

i (j∆), j = 1, . . . , n for i = 1, . . . , 4.
First, we present three models for which we can compute the true density ρ so that we can

illustrate the performance of the density estimator described in Section 4 (see Remark 2). With
b = 0.5, c = 0.5, we consider

1. b(x) = bx, φ(x) = cx, ρ(x) is a N (0, σ2/[2(b+ c)]),

2. b(x) = b tanh(x), φ(x) = cx, ρ(x) = c1 exp(−cx2/σ2)/(cosh(x))2b/σ2
,
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Example 1 Example 2 Example 3
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Figure 1. Density estimation for Examples 1 to 3. 20 estimated curves in dotted
green, �rst line T = 200 (D = 70), last line T = 2000 (D = 225). In all cases,
the true is in bold red.

3. b(x) = bx3, φ(x) = cx, ρ(x) = c2 exp
[
−(bx4/2 + cx2)/σ2

]
.

The constants c1 and c2 are computed numerically so that the function ρ integrates to one.
We compute estimators corresponding to the Hermite basis (ϕj = hj)0≤j≤D−1 (see (25)). The

dimension is chosen equal to D = 5[
√
T ], that is 70 for T = 200 and 225 for T = 2000. Figure

1 shows 20 estimates of the invariant density in dotted green and the true one in bold red. The
choice of the parameters b, c seems important as it in�uences the simulation results. Note that
choosing D too large (D = T , e.g.) implies numerical problems. We can see on Figure 1 that
the method works very well and is improved when T grows. We observe that it is more di�cult
to estimate the invariant density in Example 3: the estimation of ρ is much better for T = 2000
(D = 225) than for T = 200 (D = 70). The three densities, though di�erent, have very similar
forms.

Figure 2 presents the estimation of b and φ for Example 2. Our protocol of estimation is
detailed below. Two other models are illustrated hereafter where b is not odd and/or φ is not
linear:

4. b(x) = 2(x− 1)3 + 2x, φ(x) = 4 tanh(x),
5. b(x) = 2x, φ(x) = 2(x+ x3).
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To compute the estimators of b, we use the Hermite basis (ϕj)0≤j≤m−1 for m = 1, . . . , 6 (see
Section 3.3). To compute the estimators of φ, we need to take into account that φ is odd. So
we consider the basis (θ`)0≤`≤p−1 = (h2`+1)0≤`≤p−1, as Hermite functions of odd index are odd
functions. We consider dimensions m ∈ {1, . . . ,mmax = 6} and p ∈ {1, . . . , pmax = 3}. Larger
proposals systematically involve estimators with an obvious variance e�ect. The fact that we

consider small dimensions replaces the cuto� of V̂−1
m,p.
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Figure 2. Example 2, T = 2000. 20 estimated b (left) and φ (right), all selected
by penalization (top green) or as oracles (bottom cyan). The true functions are
in bold red.

For examples 1 to 3, we could have simulated by Euler scheme four independent sample paths
of dX(t) = −(b(X(t)) + cX(t))dt + σdB(t) instead of the particles system. We found that the
estimation results were of the same type, so we kept the particles system which is suitable for
all models.

Though we have no theoretical result concerning an adaptive choice for the dimensions m, p,
we propose a criterion following the standard method to select data-driven dimensions. The
selection of (m, p) is done by choosing the couple which minimizes

Crit(m, p) = −(̂b, c)
⊥
m,pẐm,p + κ×

√
m+ 4

√
p

T
,

where (̂b, c)
⊥
m,pẐm,p = ‖(̂b, c)m,p‖2V̂m,p

= Ẑ⊥m,pV̂
−1
m,pẐm,p. The criterion is inspired by an esti-

mation of the empirical bias, as usually performed for least-squares contrast minimization, and
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Figure 3. Example 4, estimation of b (left) and φ (right) for T = 200 (top) and
T = 2000 (bottom). Dimensions selected by penalization. In all cases, the true
is in bold red.

a second term which has the order of the variance of the estimator. The constant κ is roughly
calibrated and chosen here as κ = 5.

Figure 2 displays the results obtained for Example 2: we simulated 20 repetitions of inde-
pendent particle systems up to T = 2000. The two top pictures show the 20 estimators for b
(left), φ (right) obtained using our proposed selection device. The two pictures below present
the corresponding oracle estimators. By "oracle", we mean that we compute the L2-distance
between each estimator of our list and the true function (b or φ), and select the best one. This
knowledge is clearly unavailable in practice and the oracle is only dedicated to bring a benchmark
to evaluate the penalization strategy. We can see that the selection method performs very well
and that, most of the time, it behaves as well as the oracle.

Figure 3 illustrates, for Example 4, the improvement which occurs when increasing T from
200 to 2000, for the estimation of b and φ: it is slightly disappointing, in this case, but does
exist.

Figure 4 concerns Example 5 simulated up to T = 200. The two pictures on top display all the
proposals for estimating b (left) and φ(right) with all the couples (m, p) of the list. We observe
that some of these functions are obviously very bad estimators. This shows that the selection of a
relevant estimator is crucial. In the two pictures below, we have plotted the estimator selected
by model selection (dotted green), and the oracle (dotted black). While these estimators are the
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same for b (left), there is a noticeable di�erence for φ (right). Note that, for most generated
paths, they coincide. As Hermite bases are parsimonious, small values of m and p perform well.
The choice m = 1 is generally not good, and the most selected couple for (m, p) is (2, 1).

To conclude, while the performance of the invariant density is really nice, we observe that
estimating b and φ is obviously a more di�cult problem. In any case, the choice of the functions
b, φ is important because too small or too large ranges of values for the process can generate
numerical di�culties.

-0.4 -0.2 0 0.2 0.4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.5 0 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

-0.4 -0.2 0 0.2 0.4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.5 0 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4. Example 5, T = 200. First line: the 6x3 proposals for b (left) and

the 3x6 proposals for φ (right). Second line: b̂2 (left) and φ̂1 (right) selected by
penalization (green) or oracle (dotted black). In all cases, the true is in bold red.

6. Concluding remarks

6.1. Summary and remaining questions. In this paper, we consider the nonparametric esti-
mation of the functions b, φ for model (1) based on the continuous observation on a time interval
[0, T ] of four i.i.d. sample paths in stationary regime. The asymptotic framework is T → +∞.
Due to the presence of the interaction term in equation (1) which contains a convolution with
the unknown marginal law of the process, the problem is completely di�erent from the case of a
usual di�usion (φ ≡ 0) and the observation of only one sample path is not enough to estimate
both b and φ. The novelty here is to use independent paths to get estimators of terms such
as h ? ρ (where ρ is the invariant density) together with other crucial quantities. Actually, two
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sample paths could be enough but induces much more tedious computations. The estimation
method is inspired by a paper of Pavliotis and Zanoni (2024) for interacting particle systems in
a parametric setting. To build the estimators, we use a combination of a moment method and a
projection method. De�ning a speci�c risk for the estimators �tted to the problem, we obtain a
bound for the risk of our projection estimators involving as usual a variance term and a square
bias term. The order of the variance term is precised for the Hermite basis. The rate of the
square bias term, which is very speci�c to the problem, is not simple to evaluate. We sketch a
discussion on this point. Note that no benchmark is available for comparison. We also provide
a nonparametric estimator of the invariant density of the process which has the parametric rate
without any condition such as Castellana and Leadbetter's one. The method is implemented on
simulated data using an empirical model selection criterion, and performs reasonably well.

Remaining questions are worth of further research. It would be of interest to propose a
theoretical background for assessing the rate of the bias term and for the selection procedure.
Moreover, the estimation procedure is based on the estimation of the vector Zm,p suggested by
formula (22), using the moment relation (16). But the vector Zm,p is also given by (21) and
could have been estimated by

̂̂
Zm,p =

((
1

T

∫ T

0
ϕk(X

(3)(s))dX(3)(s)

)⊥
0≤k≤m−1

,

(
1

T

∫ T

0
θ`(X

(3)(s))dX(3)(s)

)⊥
0≤`≤p−1

)⊥
keeping the same matrix V̂m,p. The other estimator Ṽ−1

m,p
̂̂
Zm,p requires another study which is

worth being done.

6.2. Discrete observations. In practice, only discrete time observations are available. There-
fore, it is worth of interest to study the same estimation problem based on discrete observations
(X(i)(j∆), j = 1 . . . , n, i = 1, . . . , 4) with ∆ = ∆n tending to 0 and n∆n tending to in�nity (high
frequency framework). One can consider the discretized versions of our estimators and this is
actually what is done in the simulation section. The extension of the estimation results would
be to the price of some more computations and some additional bias terms under conditions on
n,∆n. The usual condition for di�usions, n∆2

n = o(1), would probably be the same.

6.3. Multidimensional McKean-Vlasov models. The case of a multidimensional McKean-
Vlasov model is certainly of the utmost importance especially for applications. If the process
evolves in Rd, we have to estimate a drift b = (b1, . . . , bd) and an interaction function φ =
(φ1, . . . , φd) which both are composed of d functions from Rd to R. The speci�c di�culty for
estimation of mutivariate functions by projection is the fact that, for each function from Rd
to R, we have to estimate a hypermatrix (βj1,j2,...,jd , j1 ≤ m1, . . . , jd ≤ md) of coe�cients,
instead of a vector for univariate functions. The theory can be extended in a rather natural way,
see Dussap (2023), [27], for the estimation of multivariate regression functions, or Comte and
Genon-Catalot, (2024), [20] for drift estimation of inhomogeneous di�usions. However, numerical
implementation gets quickly more di�cult to handle.
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7. Proofs (Supplementary material)

7.1. Proof of Proposition 1. We have b′(x) ≥ K,φ′(x) ≥ λ. Thus, (φ ? ρ)′ (x) =
∫
φ′(x −

y)ρ(y)dy ≥ λ. Therefore, for x ≥ 0,

b(x) ≥ Kx+ b(0), φ ? ρ(x) ≥ λx+ φ ? ρ(0).

This implies, for 0 ≤ z ≤ x,∫ x

z
[b(u) + φ ? ρ(u)]du ≥ (K + λ)(x2 − z2)/2 + (b(0) + φ ? ρ(0))(x− z).

Thus,

ρ(x)

ρ(z)
≤ exp [−(K + λ)

σ2
(x2 − z2) + C(x− z)], C = −(2/σ2)(b(0) + φ ? ρ(0)).

Analogously, for x ≤ z ≤ 0,

ρ(x)

ρ(z)
≤ exp [−(K + λ)

σ2
(z2 − x2) + C(x− z)].

Therefore, for all x,

ρ(x) . exp [−(K + λ)

σ2
x2 + Cx] ∝ exp

[
−(K + λ)

σ2

(
x− Cσ2

2(K + λ)

)2
]
,

Moreover, for 0 ≤ z ≤ x or x ≤ z ≤ 0,

ρ(x)

ρ(z)
≤ exp [C(x− z)]. 2



24 F. COMTE, V. GENON-CATALOT AND C. LARÉDO

7.2. Proof of Lemma 1. Set Ψ(x) =
∫ x

0 ψ(t)dt. We prove that Ψ and
∫ .

0 ψ ? ρ both belong to

D de�ned by (12). We have
∫

Ψ2(x)ρ(x)dx =
∫ +∞

0 ...+
∫ 0
−∞ ..., where∫ +∞

0
Ψ2(x)ρ(x)dx ≤

∫ +∞

0
x

∫ x

0
ψ2(t)dtρ(x)dx =

∫
0<t<x

xψ2(t)ρ(x)dxdt

=

∫ +∞

0
ψ2(t)(

∫ +∞

t
xρ(x)dx)dt ≤

∫ +∞

0
ψ2(t)dt

∫ +∞

0
xρ(x)dx < +∞.

We proceed analogously for the integral on (−∞, 0) and thus Ψ ∈ L2(ρ).
To prove that

∫ x
0 ψ ? ρ(t)dt belongs to L2(ρ), it is therefore enough to prove that ψ ? ρ belongs

to L2(R). By the Young inequality,∫
(ψ ? ρ)2(x)dx ≤ (

∫
ρ(x)dx)2

∫
ψ2(x)dx < +∞.

Next, we must prove that ψ(x)ρ(x) and ψ ? ρ(x)ρ(x) tend to 0 as x tends to +∞ and −∞. This
holds as ψ is bounded by assumption. And ψ ? ρ is also bounded as

|ψ ? ρ(x)| ≤
(∫

ψ2(t)dt

∫
ρ2(y)dy

)1/2

≤
(
‖ρ‖∞

∫
ψ2(t)dt

)1/2

.

Now, we prove that LΨ and L(
∫ .

0(ψ ? ρ) belong to L2(ρ). We have LΨ = σ2

2 ψ
′ − (b + φ ? ρ)ψ.

As ψ′ has polynomial growth,
∫

[ψ′(x)]2ρ(x)dx < +∞ by Proposition 1. By our assumptions,

b = V ′ and φ ? ρ have ` polynomial growth. So, it is enough to check that (1 + x`)ψ(x) belongs
to L2(ρ) which holds since ψ is bounded and ρ has moments of any order.

We have L(
∫ .

0(ψ ? ρ) = σ2

2 ψ
′ ? ρ− (b+φ ? ρ)ψ ? ρ. We use that ψ ? ρ is bounded and b+φ ? ρ has

polynomial growth to deduce that (b+ φ ? ρ)ψ ? ρ belongs to L2(ρ). Next, as ψ′ has polynomial
growth, ψ′ ? ρ has also polynomial growth. This implies that ψ′ ? ρ belongs to L2(ρ). 2

7.3. Useful Lemma. We state here a useful Lemma.

Lemma 3. Assume [H1]-[H4] and consider a function h such that there exists a positive constant
a such that ∀u ∈ R, |h(u)| ≤ aeau. The following integrals are �nite and bounded by constants
depending on ρ and h only:

(1) I− =

∫ 0

−∞

(∫ y

−∞
h(u)ρ(u)du

)2 dy

ρ(y)
, I+ =

∫ +∞

0

(∫ +∞

u
h(u)ρ(u)du

)2
dy

ρ(y)
.

(2) J− =

∫
x<y<0

|x|ρ(x)

ρ2(y)

(∫ y

−∞
h(u)ρ(u)du

)2

dxdy, J+ =

∫
0<y<x

xρ(x)

ρ2(y)

(∫ +∞

y
h(u)ρ(u)du

)2

dxdy.

(3)

∫ 0

−∞
(

∫ x

−∞
ρ2(y)dy)

dx

ρ(x)
,

∫ +∞

0
(

∫ +∞

x
ρ2(y)dy)

dx

ρ(x)
.

(4)

∫ +∞

0
xρ(x)dx

∫ x

0

du

ρ2(u)

∫ +∞

u
ρ2(y)dy,

∫ 0

−∞
|x|ρ(x)dx

∫ 0

x

du

ρ2(u)

∫ u

−∞
ρ2(y)dy.

(5)

∫ +∞

0
xρ(x)dx

∫ x

0

du

ρ2(u)

(∫ +∞

u
ρ(y)dy

)2

,

∫ 0

−∞
|x|ρ(x)dx

∫ 0

x

du

ρ2(u)

(∫ u

−∞
ρ(y)dy

)2
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Proof of Lemma 3. We start with the �rst item. It is enough to look at I−, the other one
being analogous. We have:

I− = 2

∫
u<v<y<0

dy

ρ(y)
h(u)ρ(u)h(v)ρ(v)dudv.

On the integration set,

ρ(u)ρ(v)

ρ(y)
= [ρ(u)ρ(v)]1/2[

ρ(u)

ρ(y)
]1/2[

ρ(v)

ρ(y)
]1/2 ≤ [ρ(u)ρ(v)]1/2e(C/2)(u+v)−Cy.

Thus,

I− ≤ 2

∫
u<v<y<0

h(u)h(v)[ρ(u)ρ(v)]1/2e(C/2)(u+v)−Cydydudv

= 2

∫
u<v<0

h(u)h(v)[ρ(u)ρ(v)]1/2e(C/2)(u+v)(

∫ 0

v
e−Cydy)dudv

=
2

C

∫
u<v<0

[ρ(u)ρ(v)]1/2e(C/2)u(e(C/2)v − e−(C/2)v)h(u)h(v)dudv

≤ 2

C

∫
u<0

[ρ(u)]1/2|h(u)|e(C/2)udu

∫
v<0
|(e(C/2)v − e−(C/2)v)h(v)|[ρ(v)]1/2dv

< +∞

by Proposition 1 and the assumption on h.

We prove the second item. We have:

J− = 2

∫
x<y<0,u<v<y

|x|ρ(x)ρ(u)ρ(v)

ρ2(y)
h(u)h(v)dxdydudv.

We can write:

ρ(x)ρ(u)ρ(v)

ρ2(y)
= [ρ(x)]1/3[

ρ(x)

ρ(y)
]2/3[

ρ(u)

ρ(y)
]2/3[

ρ(v)

ρ(y)
]2/3[ρ(u)ρ(v)]1/3.

On the integration set, we have:

ρ(x)ρ(u)ρ(v)

ρ2(y)
≤ [ρ(x)ρ(u)ρ(v)]1/3e(2/3)C(x−y)e(2/3)C(u−y)e(2/3)C(v−y).

Thus,

J− ≤
∫
x<0,u<v

|x||h(u)h(v)|[ρ(x)ρ(u)ρ(v)]1/3e(2C/3)(x+u+v)(

∫ +∞

sup(x,v)
e−2Cydy)dxdudv

< +∞,

by Proposition 1 and the assumption on h.

We treat (3). By Proposition 1, and Inequality (8), we get straightforwardly that∫ +∞

0

dx

ρ(x)

∫ +∞

x
ρ2(y)dy =

∫ +∞

0
ρ2(y)

(∫ y

0

dx

ρ(x)

)
dy < +∞.
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For (4), we have:∫ +∞

0
xρ(x)dx

∫ x

0
du

1

ρ2(u)

∫ +∞

u
ρ2(y)dy =

∫
x>0,0<u<x,0<u<y

xρ(x)
ρ2(y)

ρ2(u)
dxdudy.

We can write:

ρ(x)
ρ2(y)

ρ2(u)
= [ρ(x)]1/3[

ρ(x)

ρ(u)
]2/3[

ρ(y)

ρ(u)
]4/3[ρ(y)]2/3

Therefore, using (8) again,∫
x>0,0<u<x,0<u<y

xρ(x)
ρ2(y)

ρ2(u)
dxdudy

≤
∫
x>0,0<u<x,0<u<y

x[ρ(x)]1/3[ρ(y)]2/3 exp [(2/3)C(x− u)] exp [(4/3)C(y − u)]dxdudy∫
x>0,y>0

x[ρ(x)]1/3[ρ(y)]2/3 exp [(2/3)Cx+ (4/3)Cy]

∫ x∧y

0
exp (−2u)dudxdy < +∞.

For (5),∫ +∞

0
xρ(x)dx

∫ x

0

du

ρ2(u)

[∫ +∞

u
ρ(y)dy

]2

=

∫
10<u<x1u<y,u<y′

xρ(x)ρ(y)ρ(y′)

ρ2(u)
dxdydy′du.

As above, on the integration set,

ρ(x)
ρ(y)ρ(y′)

ρ2(u)
= [ρ(x)]1/2[

ρ(x)

ρ(u)
]1/2[

ρ3/4(y)ρ3/4(y′)

ρ3/2(u)
][ρ(y)ρ(y′)]1/4

≤ [ρ(x)]1/2ρ(y)]1/4ρ(y′)]1/4e(C/2)x+(3C/4)(y+y′)e−(5C/4)u,

and conclude that the �rst integral of (5) is �nite. We proceed analogously for the second one.
2

7.4. Proof of Proposition 3. Recall that h having exponential growth, belongs to L2(ρ) as
noted before the proposition. Let us �nd Γh = g such that g ∈ D and Lg = hc. Using (11) and
(12), we obtain, taking into account that we want lim|y|→∞ g

′(y)ρ(y) = 0,

g′(y) =
2

σ2ρ(y)

∫ y

−∞
hc(u)ρ(u)du = − 2

σ2ρ(y)

∫ +∞

y
hc(u)ρ(u)du,

where the equality above comes from the fact that
∫ +∞
−∞ hc(u)du = 0. We choose g(x) =∫ x

0 g
′(u)du which gives Lg = hc. We must now prove

(32) I =

∫
[g′(y)]2ρ(y)dy < +∞, and J =

∫
g2(x)ρ(x)dx < +∞.

We can split I into I = 4
σ4 (I+ + I−) with

I− =

∫ 0

−∞

dy

ρ(y)

(∫ y

−∞
hc(u)ρ(u)du

)2

, I+ =

∫ +∞

0

dy

ρ(y)

(∫ +∞

y
hc(u)ρ(u)du

)2

.
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It is enough to look at the �rst integral, the other one being analogous. We have, using hc =
h−

∫
hρ,

I− ≤ 2

∫ 0

−∞

dy

ρ(y)

(∫ y

−∞
h(u)ρ(u)du

)2

+ 2

∫ 0

−∞

dy

ρ(y)

(∫ y

−∞
ρ(u)du

)2(∫
h(u)ρ(u)du

)2

.

These integrals are �nite by Lemma 3 (with h(u) = 1 for the second one).

Now, we also split J = J+ + J−, with

J+ =

∫ +∞

0
[g(x)]2ρ(x)dx, J− =

∫ 0

−∞
[g(x)]2ρ(x)dx,

and only treat J−. We have

J− ≤
∫ 0

−∞
|x|ρ(x)

∫ 0

x
[g′(y)]2dydx =

∫
x<y<0

|x|[g′(y)]2ρ(x)dxdy

≤ 8

σ4

∫
x<y<0

|x| dy
ρ2(y)

(∫ y

−∞
h(u)ρ(u)du

)2

ρ(x)dxdy

+
8

σ4

∫
x<y<0

|x| dy
ρ2(y)

(∫ y

−∞
ρ(u)du

)2(∫
h(z)ρ(z)dz

)2

:= J (1)
− + J (2)

− ×
(∫

h(z)ρ(z)dz

)2

These integrals are �nite by Lemma 3.
Thus, (32) is satis�ed and Γh = g belongs to D and satis�es LΓh = hc. Then (14) is obtained

thanks to the Ito formula, and (15) is deduced using that X(t) is stationary. 2

7.5. Proof of Proposition 4. Replacing in (24) ϕj by hj and θ` by h2`−1, and applying Fourier
transform yields

(33) ∀x ∈ R,
m−1∑
j=0

yji
jhj(x) +

p−1∑
`=0

y`+mi
2`+1h2`+1(x)ρ∗(x) = 0.

Multiplying by ex
2/2 gives P (x) +Q(x)ρ∗(x) = 0, ∀x ∈ R, where P and Q are polynomials.

Let us moreover assume that V (.) and W (.) are C∞ and let f (n)(x) the n-th derivative of f .
Inequality (7) yields that ρ belongs to the Schwarz class S(R) = {f ∈ C∞(R,R), s.t.∀m ≥
1, ∀n ≥ 0, f (n)(x) = O(x−m) at ∞}. Therefore ρ? also belongs to S(R). Letting x → ∞
in (33) yields that P (x) → 0, which implies that the term with highest degree of P (x), i.e.
of ym−1i

m−1Hm−1(x), tends to 0. Therefore ym−1 = 0. Iterating the procedure yields suc-
cessively that ym−1, ym−2, . . . , y0 are all equal to 0. Equation (33) reduces to the equation:

∀x ∈ R,
∑p−1

`=0 y`+mi
2`+1h2`+1(x) = 0. The functions hj(.) being orthogonal, this implies that

y`+m = 0 for ` = 0, . . . , p− 1. The result is thus proved. 2
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7.6. Proof of Proposition 5. Obviously, E
(

1
T

∫ T
0 ϕ′k(X

(3)(s))ds
)

=
∫
ϕ′k(x)ρ(x)dx. For the

term 1
T

∫ T
0 θ′`(X

(3)(s))ds, the expectation is computed in two steps by using the independence

of X(3) and X(4).

E
(

1

T

∫ T

0
θ′`(X

(3)(s))ds

)
=

∫
E(θ′`(x))ρ(x)dx =

∫
θ′` ? ρ(x)ρ(x)dx.

Gathering both terms yields that E(Ẑm,p) = Zm,p.

Concerning V̂m,p, it is clear that

E
(

1

T

∫ T

0
ϕj(X

(1)(s))ϕk(X
(1)(s))ds

)
=

∫
ϕj(x)ϕk(x)ρ(x)dx

and with the same two-step computation as previously, we have

E
(

1

T

∫ T

0
θ̄`(X

(1)(s))ϕk(X
(1)(s))ds

)
=

∫
E(θ̄`(x))ϕk(x)ρ(x)dx =

∫
θ` ? ρ(x)ϕk(x)dx.

Now we prove that

E
(

1

T

∫ T

0
θ̄`(X

(1)(s)) θ̄r(X
(1)(s))ds

)
=

∫
θ` ? ρ(x)θr ? ρ(x)ρ(x)dx+O(

1

T
).

First, we split:

1

T

∫ T

0
θ̄`(X

(1)(s)) θ̄r(X
(1)(s))ds−

∫
θ`?ρ(x)θr?ρ(x)ρ(x)dx = A1(`, r)+A2(`, r)+A3(`, r)+A4(`, r),

where

A1(`, r) = T−1

∫ T

0
(θ̄`(X

(1)(s))− θ` ? ρ(X(1)(s)))(θ̄r(X
(1)(s))− θr ? ρ(X(1)(s))ds.

A2(`, r) = T−1

∫ T

0
(θ̄`(X

(1)(s))− θ` ? ρ(X(1)(s)))θr ? ρ(X(1)(s)ds, A3(`, r) = A2(r, `),

A4(`, r) = T−1

∫ T

0
θ` ? ρ(X(1)(s))θr ? ρ(X(1)(s))ds−

∫
θ` ? ρ(x)θr ? ρ(x)ρ(x)dx,

The term A4(`, r) is centered as E(θ` ? ρ(X(1)(s))θr ? ρ(X(1)(s)) =
∫
θ` ? ρ(x)θr ? ρ(x)ρ(x)dx.

By the two-step computation already used, the terms A2(`, r), A3(r, `) are centered too by the

independence of X(1) and X(2), as

EX
(1)(s)(θ̄`(X

(1)(s))− θ` ? ρ(X(1)(s)) = 0.

For the term A1(`, r), we have:

EA1(`, r) =

∫
ρ(u)duE

[
(θ̄`(u)− θ` ? ρ(u))(θ̄r(u)− θr ? ρ(u))

]
;
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We intend to use Proposition 3. Set θ`,u(x) = θ`(u − x) and note that θc`,u(x) = θ`,u(x) −∫
θ`,u(x)ρ(x)dx = θ`(u− x)− θ` ? ρ(u). Now with Γθ`,u such that LΓθ`,u = θc`,u, it holds that

1

T

∫ T

0
θc`,u(X(2)(t))dt = θ̄`(u)− θ` ? ρ(u)

=
σ

T

∫ T

0
Γ′θ`,u(X(2)(s))dW2(s) +

1

T

(
Γθ`,u(X(2)(0))− Γθ`,u(X(2)(T ))

)
.(34)

Consequently,

E
[
(θ̄`(u)− θ` ? ρ(u))(θ̄r(u)− θr ? ρ(u))

]
= T

(1)
`,r (u) + T

(2)
`,r (u) + T

(3)
`,r (u) + T

(4)
`,r (u)

with

T
(1)
`,r (u) =

σ2

T 2
E
(∫ T

0
Γ′θ`,u(X(2)(s))Γ′θr,u(X(2)(s))ds

)
=
σ2

T

∫
Γ′θ`,u(y)Γ′θr,u(y)ρ(y)dy

T
(2)
`,r (u) =

1

T 2
E
[(

Γθ`,u(X(2)(0))− Γθ`,u(X(2)(T ))
)(

Γθr,u(X(2)(0))− Γθr,u(X(2)(T ))
)]

T
(3)
`,r (u) =

σ

T 2
E
[∫ T

0
Γ′θ`,u(X(2)(s)dW2(s)

(
Γθr,u(X(2)(0))− Γθr,u(X(2)(T ))

)]
T

(4)
`,r (u) = T

(3)
r,` (u)

By the Cauchy-Schwarz inequality, we get:

T
(2)
`,r (u) ≤ 2

T 2

(∫
Γ2
θ`,u

(y)ρ(y)dy

∫
Γ2
θr,u(y)ρ(y)dy

)1/2

,

T
(3)
`,r (u) ≤ 2σ

T 3/2

(∫
(Γ′θ`,u(y))2ρ(y)dy

∫
Γ2
θr,u(y)ρ(y)dy

)1/2

.

Next, we must integrate all these terms w.r.t. ρ(u)du.
Using the Cauchy-Schwarz inequality for the second and the third inequalities leads to:∫

ρ(u)T
(1)
`,r (u)du =

σ2

T

∫
Γ′θ`,u(y)Γ′θr,u(y)ρ(y)ρ(u)dudy,∫

ρ(u)T
(2)
`,r (u)du ≤ σ4

T 2

(∫
Γ2
θ`,u

(y)ρ(y)ρ(u)dudy

∫
Γ2
θr,u(y)ρ(y)ρ(u)dudy

)1/2

∫
ρ(u)T

(3)
`,r (u)du ≤ 2σ

T 3/2

(∫
[Γ′θ`,u(y)]2ρ(y)ρ(u)dudy

∫
Γ2
θr,u(y)ρ(y)ρ(u)dudy

)1/2

.

Computations analogous to the ones of Lemma 3 allow to prove that the integrals above are
�nite. We only treat the �rst one. Recall that

Γ′θ`,u(y) =
2

σ2ρ(y)

∫ y

−∞
θc`,u(z)ρ(z)dz = − 2

σ2ρ(y)

∫ +∞

y
θc`,u(z)ρ(z)dz.

Therefore, we split

T
(1)
`,r (u) =

σ2

T

(∫
y<0

. . .+

∫
y>0

. . .

)
.
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As θ` is bounded, θ
c
`,u(.) is bounded too, so∫

y<0
. . . .

∫
y<0

dy

ρ(y)

∫
z<y,z′<y

ρ(z)ρ(z′)dzdz′ ∝
∫
y<0

dy

ρ(y)

(∫
z<y

ρ(z)dz

)2

which is �nite by Lemma 3.
Gathering the four terms, we get that

E
(

1

T

∫
(θ̄`(X

(1)(s)− θ` ? ρ(X(1)(s))(θ̄r(X
(1)(s)− θr ? ρ(X(1)(s))ds

)
=

σ2

T

∫ (∫
Γ′θ`,u(y)Γ′θr,u(y)ρ(y)dy

)
ρ(u)du+

1

T 3/2
O(1).

Finally,

E
(

1

T

∫ T

0
θ̄`(X

(1)(s))θ̄r(X
(1)(s))ds

)
=

∫
θ` ? ρ(x) θr ? ρ(x) ρ(x)dx

+
σ2

T

∫ (∫
Γ′θ`,u(y)Γ′θr,u(y)ρ(y)dy

)
ρ(u)du+

1

T 3/2
O(1).

This states a more precise result and ends the proof. 2

7.7. Proof of Theorem 1. We have

‖(̃b, φ)m,p − (b, φ)‖2V = ‖(̂b, φ)m,p − (b, φ)‖2V 1∆m,p + ‖(b, φ)‖2V 1∆c
m,p

=
(
‖(̂b, φ)m,p − (b, φ)m,p‖2V + ‖(b, φ)m,p − (b, φ)‖2V

)
1∆m,p + ‖(b, φ)‖2V 1∆c

m,p

where we use Pythagoras theorem: (b, φ)m,p − (b, φ) is orthogonal to Sm ×Σp w.r.t the V -scalar

product and thus V -orthogonal to (̂b, φ)m,p − (b, φ)m,p. Therefore

‖(̃b, φ)m,p − (b, φ)‖2V ≤ ‖(̂b, φ)m,p − (b, φ)m,p‖2V 1∆m,p + ‖(b, φ)m,p − (b, φ)‖2V + ‖(b, φ)‖2V 1∆c
m,p

The middle rhs term is the squared bias term. Let us study the two others. We write, on
∆m,p,

‖(̂b, φ)m,p − (b, φ)m,p‖2V = ‖(̂b, c)m,p − (b, c)m,p‖
2
Vm,p

= ‖V̂−1
m,pẐm,p −V−1

m,pZm,p‖2Vm,p

= ‖(V̂−1
m,p −V−1

m,p)(Ẑm,p − Zm,p) + V−1
m,p(Ẑm,p − Zm,p) + (V̂−1

m,p −V−1
m,p)Zm,p‖2Vm,p

≤ 3‖(V̂−1
m,p −V−1

m,p)(Ẑm,p − Zm,p)‖2Vm,p
+ 3‖V−1

m,p(Ẑm,p − Zm,p)‖2Vm,p
+ 3‖(V̂−1

m,p −V−1
m,p)Zm,p‖2Vm,p

We set
T1 := ‖(V̂−1

m,p −V−1
m,p)(Ẑm,p − Zm,p)‖2Vm,p

1∆m,p

T2 := ‖V−1
m,p(Ẑm,p − Zm,p)‖2Vm,p

1∆m,p

T3 := ‖(V̂−1
m,p −V−1

m,p)Zm,p‖2Vm,p
1∆m,p

T4 := ‖(b, φ)‖2V 1∆c
m,p

We have

E(‖(̃b, φ)m,p − (b, φ)‖2V ) ≤ ‖(b, φ)m,p − (b, φ)‖2V + 3E(T1 + T2 + T3) + E(T4).
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The proof of Theorem 1 is structured in a study of the terms, E(Ti) for i = 1, . . . , 4 and relies
on the results stated in Propositions 6 , 7 and Lemma 2.
• Study of T4 = ‖(b, φ)‖2V 1∆c

m,p
. For this term, we have

Lemma 4. Under [H5], it holds

(35) E(T4) = E(‖(b, φ)‖2V 1∆c
m,p

) ≤ (4 + 1/4)s2
0 ‖(b, φ)‖2V E

(
‖V̂m,p −Vm,p‖2op

)
.

The bound for E(T4) follows then from Proposition 7,

E(T4) . s2
0‖(b, φ)‖2V

Lϕ(m)

T

Proof of Lemma 4. Let

(36) Ωm,p =

{
‖V−1/2

m,p V̂m,pV
−1/2
m,p − Idm+p‖op <

1

2

}
.

We write that

P(∆c
m,p) = P(∆c

m,p ∩ Ωm,p) + P(∆c
m,p ∩ Ωc

m,p).

We have

P(Ωc
m,p) ≤ 4E

(
‖V−1/2

m,p V̂m,pV
−1/2
m,p − Idm+p‖2op

)
≤ 4‖V−1

m,p‖2opE
(
‖V̂m,p −Vm,p‖2op

)
.

Therefore, using [H5],

P(∆c
m,p ∩ Ωc

m,p) ≤ P(Ωc
m,p) ≤ 4s2

0E
(
‖V̂m,p −Vm,p‖2op

)
.

Next, on ∆c
m,p, due to [H5], it holds that ‖V̂−1

m,p −V−1
m,p‖op > s0 and

P(∆c
m,p ∩ Ωm,p) ≤ E

(
1{‖V̂−1

m,p−V−1
m,p‖op>s0}1Ωm,p

)
≤ 1

s2
0

E
(
‖V̂−1

m,p −V−1
m,p‖2op1Ωm,p

)
.

Using (48), we get

P(∆c
m,p ∩ Ωm,p) ≤

s2
0

4
E
(
‖V̂m,p −Vm,p‖2op

)
.

Adding both bounds gives (35) and concludes the proof of Lemma 4. 2

• Study of T3 = ‖(V̂−1
m,p −V−1

m,p)Zm,p‖2Vm,p
1∆m,p .

Using (30) and Lemma 2 yields

E(T3) ≤ 2‖ρ‖∞E
(
‖(V̂−1

m,p −V−1
m,p)‖2op1∆m,p

)
‖Zm,p‖2Rm,p

≤ 80.5 s4
0 ‖ρ‖∞ E(‖V̂m,p −Vm,p‖2op)‖Zm,p‖2Rm+p .(37)

Now, we can prove the following result:

Lemma 5. We have

‖Zm,p‖2Rm+p ≤ 2‖ρ‖∞‖b+ φ ? ρ‖2ρ = 2‖ρ‖∞‖(b, φ)‖2V .
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Thus, by (37), Proposition 7 and Lemma 5, we obtain,

E(T3) . s4
0

Lϕ(m)

T
.

Proof of Lemma 5. First, we note that, using (16) we get

‖Zm,p‖2Rm+p =

m−1∑
k=0

(∫
ϕk(x)[b(x) + φ ? ρ(x)]ρ(x)dx

)2

+

p−1∑
`=0

(∫
θ` ? ρ(x)[b(x) + φ ? ρ(x)]ρ(x)dx

)2

.

Using again the relation
∫

(u ? v) w =
∫
u (v− ? w) with v−(x) = v(−x) yields∫

θ` ? ρ(x)[(b(x) + φ ? ρ(x)]ρ(x)dx =

∫
θ`(x)(b+ φ ? ρ)ρ ? ρ−)(x)dx.

Therefore, by the projection argument and the Young inequality (‖u?v‖ ≤ ‖u‖1‖v‖) as‖ρ‖1 = 1,
we get

‖Zm,p‖2Rm+p ≤
∫

(b+ φ ? ρ)2ρ2 +

∫
[(b+ φ ? ρ)ρ ? ρ−]2

≤
∫

(b+ φ ? ρ)2ρ2 + ‖ρ−‖21
∫

(b+ φ ? ρ)2ρ2

≤ 2‖ρ‖∞
∫

(b+ φ ? ρ)2ρ = 2‖ρ‖∞‖(b, φ)‖2V . 2

• Study of E(T2). Using [H5] and (30) yields

E(T2) = E
(
‖V−1

m,p(Ẑm,p − Zm,p)1∆m,p‖2Vm,p

)
≤ ‖V−1

m,p‖opE
(
‖Ẑm,p − Zm,p‖2Rm+p1∆m,p

)
≤ s0 E

(
‖Ẑm,p − Zm,p‖2Rm+p

)
.

Applying Proposition 6 yields that

(38) E(T2) . s0
Lϕ(m) + Lθ(p)

T
.

• Study of T1 = ‖(V̂−1
m,p −V−1

m,p)(Ẑm,p − Zm,p)‖2Vm,p
1∆m,p . By (30),

T1 ≤ 2‖ρ‖∞(‖V̂−1
m,p −V−1

m,p‖2op1∆m,p) ‖Ẑm,p − Zm,p‖2Rm+p .

As the two factors of the right-hand-side are independent

E(T1) ≤ 2‖ρ‖∞E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p

)
E
(
‖Ẑm,p − Zm,p‖2Rm+p

)
.

Using Lemma 2 we get

E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p

)
≤ (40 + 1/4)s4

0E
(
‖V̂m,p −Vm,p‖2op1∆m,p

)
,

E(T1) ≤ 2(40 + 1/4)s4
0‖ρ‖∞E

(
‖V̂m,p −Vm,p‖2op1∆m,p

)
E
(
‖Ẑm,p − Zm,p‖2Rm+p

)
.
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By applying Proposition 6 and 7 and using Lϕ(m) ≤ T , we obtain

E(T1) . s4
0

Lϕ(m) + Lθ(p)

T
.

Gathering the �ve bounds ends the proof of Theorem 1.2

Remark 3. The proof of Theorem 1 consists in bounding four terms. It is only in the �rst one

T1 := ‖(V̂−1
m,p −V−1

m,p)(Ẑm,p − Zm,p)‖2Vm,p
1∆m,p

that we use the fact that we have four trajectoires. Indeed, T1 is bounded by

T1 ≤ 2‖ρ‖∞(‖V̂−1
m,p −V−1

m,p‖2op1∆m,p) ‖Ẑm,p − Zm,p‖2Rm+p ,

where Vm,p is de�ned in (20) and for x ∈ Rm, y ∈ Rp, ||(x, y)||2Vm,p
= (x, y)⊥Vm,p(x, y).

Because of the use of four trajectories, the two terms of the rhs are independent and we have

E(T1) ≤ 2‖ρ‖∞E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p

)
E
(
‖Ẑm,p − Zm,p‖2Rm+p

)
.

If we only had two trajectories, then, the two terms would not be independent and we would have
to use the Cauchy-Schwarz inequality to separate the expectations. Therefore, we would have to
study:

E1/2
(
‖V̂−1

m,p −V−1
m,p‖4op1∆m,p

)
, E1/2

(
‖Ẑm,p − Zm,p‖4Rm+p

)
.

This would lengthen proofs a lot (see the proofs of Proposition 5, Proposition 6, Lemma 2).

7.8. Proof of Proposition 6. We have

E[‖Ẑm,p − Zm,p‖2Rm+p ] =
σ4

4
E

{
m−1∑
k=0

(
1

T

∫ T

0
ϕ′k(X

(3)(s))ds−
∫
ϕ′k(x)ρ(x)dx

)2

+

p−1∑
`=0

(
1

T

∫ T

0
θ′k(X

(3)(s))ds−
∫
θ′k ? ρ(x) ρ(x)dx

)2
}
.(39)

We prove two lemmas for each term of the r.h.s.

Lemma 6. Assume that ϕk is a di�erentiable and bounded basis. Let gk := Γϕ′k be de�ned by

Lgk = [ϕ′k −
∫
ϕ′k(x)ρ(x)dx] (see Proposition 3). Then,

(40)

E
(

1

T

∫ T

0
ϕ′k(X

(3)(s))ds−
∫
ϕ′k(x)ρ(x)dx

)2

≤ 2σ2

T

∫
[g′k(x)]2ρ(x)dx+

8

T 2

∫
g2
k(x)ρ(x)dx.

Moreover,
m−1∑
k=0

E
(

1

T

∫ T

0
ϕ′k(X

(3)(s))ds−
∫
ϕ′k(x)ρ(x)dx

)2

.
Lϕ(m)

T
.
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Lemma 7. Recall θ′`(x) =
1

T

∫ T

0
θ′`(x−X(4)(t))dt. Let Gx,` be de�ned by

LGx,`(y) = θ′`(x− y)− θ′` ? ρ(x) and h` be de�ned by Lh` = θ′` ? ρ−
∫
θ′` ? ρ(x)ρ(x)dx. Then,

E
(

1

T

∫ T

0
θ′`(X

(3)(s))ds−
∫
θ′` ? ρ(x)ρ(x)dx

)2

≤ 4σ2

T

∫ (
G′x,k(y)

)2
ρ(x)ρ(y)dxdy

+
8

T 2

∫
(Gx,`(y))2 ρ(x)ρ(y)dxdy

+
4σ2

T

∫
[h′`(x)]2ρ(x)dx+

8

T 2

∫
[h`(x)]2ρ(x)dx.

Moreover,

p−1∑
`=0

E
(

1

T

∫ T

0
θ′`(X

(3)(s))ds−
∫
θ′` ? ρ(x)ρ(x)dx

)2

.
Lθ(p)

T
.

From the two Lemmas and formula (39), we get the result of Proposition 6. 2

Proof of Lemma 6. By de�nition of L and gk := Γϕ′k and Proposition 3, we have

1

T

∫ T

0
ϕ′k(X

(3)(s))ds−
∫
ϕ′k(x)ρ(x)dx) =

σ

T

∫ T

0
g′k(X

(3)(s))dW3(s)

+
1

T
[gk(X

(3)(0))− gk(X(3)(T ))],

and consequently by (15),

E
(

1

T

∫ T

0
ϕ′k(X

(3)(s))ds−
∫
ϕ′kρ

)2

≤ 2σ2

T

∫
[g′k(x)]2ρ(x)dx+

8

T 2

∫
g2
k(x)ρ(x)dx.

This yields inequality (40).
Now we have

g′k(x) =
2

σ2ρ(x)

∫ x

−∞

(
ϕ′k(y)−

∫
ϕ′k(z)ρ(z)dz

)
ρ(y)dy

= − 2

σ2ρ(x)

∫ +∞

x

(
ϕ′k(y)−

∫
ϕ′k(z)ρ(z)dz

)
ρ(y)dy.

We split the term∫
[g′k(x)]2ρ(x)dx =

∫ +∞

0
[g′k(x)]2ρ(x)dx+

∫ 0

−∞
[g′k(x)]2ρ(x)dx :=

4

σ4
(I+ + I−)

with

I+ =

∫ +∞

0

dx

ρ(x)

[∫ +∞

x

(
ϕ′k(y)−

∫
ϕ′k(z)ρ(z)dz

)
ρ(y)dy

]2

≤ 2

∫ +∞

0

dx

ρ(x)

(∫ +∞

x
ϕ′k(y)ρ(y)dy

)2

+ 2

∫ +∞

0

dx

ρ(x)

(∫ +∞

x
ρ(y)dy

∫
ϕ′k(z)ρ(z)dz)

)2
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Now we write by integration by part,∫ +∞

x
ϕ′k(y)ρ(y)dy = −ϕk(x)ρ(x)−

∫ +∞

x
ϕk(y)ρ′(y)dy

as ϕj is bounded and limx→±∞ ρ(x) = 0.
As a consequence for all x > 0, it holds

m−1∑
k=0

(∫ +∞

0
ϕ′k(y)ρ(y)1[x,+∞](y)dy

)2

≤ 2
m−1∑
k=1

{
ϕ2
k(x)ρ2(x) +

(∫ +∞

0
ϕk(y)ρ′(y)1[x,+∞](y)dy

)2
}

≤ 2Lϕ(m)ρ2(x) + 2

∫ +∞

0
[ρ′(y)]21[x,+∞](y)dy

by using the usual projection argument. Thus

m−1∑
k=0

∫ +∞

0

dx

ρ(x)

(∫ +∞

x
ϕ′k(y)ρ(y)dy

)2

≤ 2Lϕ(m) + 2

∫ +∞

0

dx

ρ(x)

∫ +∞

x
[ρ′(y)]2dy

where, thanks to some adaptation of. Lemma 3, noting that ρ′(y) = ρ(y)× k(y) where k(y) has
polynomial growth, we can prove∫ +∞

0

dx

ρ(x)

∫ +∞

x
[ρ′(y)]2dy =

∫ +∞

0
[ρ′(y)]2

(∫ y

0

dx

ρ(x)

)
dy < +∞.

The second term is easier and analogous.
The term I− is treated analogously using the second formula for g′k. Therefore,

σ2

T

m−1∑
k=0

∫
[g′k(x)]2ρ(x)dx .

Lϕ(m)

T
.

Now, with gk(x) =
∫ x

0 g
′
k(u)du, we look at

∫
g2
k(x)ρ(x)dx and split it again into

∫ +∞
0 . . . +∫ 0

−∞ . . .. We use that for x ≥ 0,

[gk(x)]2 =

(∫ x

0
g′k(u)du

)2

≤ x
∫ x

0
[g′k(u)]2du.

We can write∫ +∞

0
g2
k(x)ρ(x)dx ≤ 2

σ4

∫ +∞

0
xρ(x)dx

∫ x

0
du

(
1

ρ(u)

∫ +∞

u
ϕ′k(y)ρ(y)dy

)2

+
8

σ4

∫ +∞

0
xρ(x)dx

∫ x

0
du

(
1

ρ(u)

∫ +∞

u
ρ(y)dy

∫
ϕ′k(z)ρ(z)dz)

)2

.

Then, with the same integration by part for
∫
ϕ′kρ as previously, we get

m−1∑
k=0

∫ +∞

0
g2
k(x)ρ(x)dx ≤ 16

σ4

∫ +∞

0
xρ(x)dx

∫ x

0
du

[
Lϕ(m) +

1

ρ2(u)

∫ +∞

u
[ρ′(y)]2dy

]

+
16

σ4
(

∫
[ρ′(z)]2dz)

∫ +∞

0
xρ(x)dx

∫ x

0
du

1

ρ2(u)

(∫ +∞

u
ρ(y)dy

)2

.
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Therefore, by Lemma 3, all integrals being �nite, we obtain the result. 2

Proof of Lemma 7. We have

θ′`(X
(3)(s))−

∫
θ′`?ρ(x)ρ(x)dx = θ′`(X

(3)(s)−θ′`?ρ(X(3)(s))+θ′`?ρ(X(3)(s))−
∫

θ′`?ρ(x)ρ(x)dx.

Then, for all x,

θ′`(x)− θ′` ? ρ(x) =
1

T

∫ T

0
θ′`(x−X(4)(t))dt− θ′` ? ρ(x)

=
σ

T

∫ T

0
G′x,`(X

(4)(t))dW4(t) +
1

T
[G′x,`(X

(4)(0))−G′x,`(X(4)(T ))].

And,

1

T

∫ T

0
θ′`?ρ(X(3)(s))ds−

∫
θ′`?ρ(x)ρ(x)dx =

σ

T

∫ T

0
h′`(X

(3)(s)))dW3(s)+
1

T
[h`(X

(3)(0)))−h`(X(3)(T )))].

Thus,

1

T

∫ T

0
θ′`(X

(3)(s))ds−
∫
θ′` ? ρ(x)ρ(x)dx

=
1

T

∫ T

0
ds

(
σ

T

∫ T

0
G′
X(3)(s)),`

(X(4)(t))dW3(t)

)
+

1

T

∫ T

0
ds

(
1

T
[G′

X(3)(s)),`
(X(4)(0))−G′

X(3)(s)),`
(X(4)(T ))]

)
+
σ

T

∫ T

0
h′`(X

(3)(s)))dW3(s) +
1

T
[h`(X

(3)(0)))− h`(X(3)(T )))]

It follows that

E
(

1

T

∫ T

0
θ′`(X

(3)(s))ds−
∫
θ′` ? ρ(x)ρ(x)dx

)2

.
1

T

∫ T

0
ds

(
σ2

T 2
EEX

(3)(s)

∫ T

0
dt[G′

X(3)(s)),`
(X(4)(t))]2

)
+

1

T

∫ T

0
ds

1

T 2
EEX

(3)(s)[G′
X(3)(s)),`

(X(4)(0))−G′
X(3)(s)),`

(X(4)(T ))]2

+
σ2

T 2

∫ T

0
E[h′`(X

(3)(s))]2ds+
1

T 2
E[h`(X

(3)(0)))− h`(X(3)(T )))]2.

This yields

E
(

1

T

∫ T

0
θ′`(X

(3)(s))ds−
∫
θ′` ? ρ(x)ρ(x)dx

)2

.
1

T

∫
[G′x,`(y)]2ρ(x)ρ(y)dxdy

+
1

T 2

∫
[Gx,`(y)]2ρ(x)ρ(y)dxdy +

1

T

∫
[h′`(x)]2ρ(x)dx+

1

T 2

∫
[h`(x)]2ρ(x)dx
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Next, we have to study
∑p−1

`=0 for each of the above terms following the lines of Lemma 6. By
formula (13), we have for y ≥ 0,

G′x,`(y) =
2

σ2ρ(y)

∫ +∞

y

(
θ′`(x− z)− θ′` ? ρ(x)

)
ρ(z)dz.

By integration by part, we obtain, for y ≥ 0

G′x,`(y) =
2

σ2ρ(y)

{
θ`(x− y)ρ(y) +

∫ +∞

y
θ`(x− z)ρ′(z)dz − θ` ? ρ′(x)

∫ +∞

y
ρ(z)dz

}
.

Thus

p−1∑
`=0

[G′x,`(y)]2 =
4

σ4

p−1∑
`=0

{
θ`(x− y) +

1

ρ(y)

∫ +∞

y
θ`(x− z)ρ′(z)dz −

θ` ? ρ
′(x)

ρ(y)

∫ +∞

y
ρ(z)dz

}2

≤ 12

σ4

(
Lθ(p) +

1

ρ2(y)

∫ +∞

y
[ρ′(z)]2dz +

∫
(ρ′)2

∫ +∞
y ρ(z)dz

ρ2(y)

)
and

p−1∑
`=0

∫ ∫ +∞

0
[G′x,`(y)]2ρ(y)ρ(x)dxdy ≤ 12

σ4

(
Lθ(p) +

∫ +∞

0

1

ρ(y)

∫ +∞

y
[ρ′(z)]2dzdy

+

∫
(ρ′(x))2

∫ +∞

0

∫ +∞

y
ρ(z)dz

dy

ρ(y)

)
.

Following the proof of Lemma 3, we prove that all integrals are �nite. The same holds for the
case y ≤ 0. The order of the term is Lθ(p).

The terms
∫

[Gx,`(y)]2ρ(x)ρ(y)dxdy are treated in a similar way with an additional integration
due to the bound G2

x,`(y) ≤ |x|
∫

[0,x][G
′
x,`(u)]2du. This yields the same order Lϕ(p) for the sum

over `.
Now, for the terms in h`, we note that

θ′` ? ρ−
∫
θ′` ? ρρ = θ` ? ρ

′ −
∫
θ` ? ρ

′ρ.

By Formula (13), we get, for x ≥ 0,

h′`(x) =
2

σ2ρ(x)

∫ +∞

x

(
θ` ? ρ

′(u)−
∫
θ` ? ρ

′(z)ρ(z)dz

)
ρ(u)du

so that

p−1∑
`=0

[h′`(x)]2 ≤ 4

σ4ρ2(x)

(∫ +∞

x

(
θ` ? ρ

′(u)−
∫
θ` ? ρ

′(z)ρ(z)dz

)
ρ(u)du

)2

.

Now, note that for x ≥ 0∫ +∞

x
θ` ? ρ

′(u)ρ(u)du =

∫
θ`(v)

(∫
1u≥xρ

′(u− v)ρ(u)du

)
dv
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which yields

p−1∑
`=0

(∫ +∞

x
θ` ? ρ

′(u)ρ(u)du

)2

≤
∫ (∫

1u≥xρ
′(u− v)ρ(u)du

)2

dv.

This implies that

p−1∑
k=0

∫ ∞
0

[h′`(x)]2ρ(x)dx ≤ 8

σ4

{∫ +∞

0

∫ (∫
1u≥xρ

′(u− v)ρ(u)du

)2

dv
dx

ρ(x)

+

∫ (∫
ρ′(u− v)ρ(u)du

)2

dv

∫ +∞

0

(∫ +∞

x
ρ(u)du

)2
dx

ρ(x)

}
.

As a consequence, this term is bounded by C(ρ)/σ4 where C(ρ) is a constant depending on ρ
only.

We proceed as done several times previously with
∑p−1

`=0

∫∞
0 h2

k(x)ρ(x)dx, which yields the
same order. 2

7.9. Proof of Proposition 7. Recall that the matrices V̂m,p and Vm,p are symmetric nonnega-
tive. To obtain Proposition 7, we prove that

E
[
Tr(V̂m,p − Vm,p)2

]
.
Lϕ(m)

T
.

Let us recall that for a function h, h(x) = 1
T

∫ T
0 h(x−X(2)(s))ds. We have Tr(V̂m,p−Vm,p)2 =

T11 + 2T12 + T22 where

T11 = Tr(V̂ 1 − V 1)2) =
m−1∑
j,k=0

(
1

T

∫ T

0
ϕj(X

(1)(s))ϕk(X
(1)(s))ds−

∫
ϕjϕkρ

)2

T12 = Tr(V̂ 1,2 − V 1,2)(V̂1,2 − V1,2)⊥ =
m−1∑
k=0

p−1∑
`=0

(
1

T

∫ T

0
θ`(X

(1)(s))ϕk(X
(1)(s))ds−

∫
θ` ? ρϕkρ

)2

T22 = Tr(V̂ 2 − V 2)2) =

p−1∑
`,r=0

(
1

T

∫ T

0
θ`(X

(1)(s)) θr(X
(1)(s))ds−

∫
θ` ? ρ θr ? ρ ρ

)2

,

Lemma 8. We have E(T11) . Lϕ(m)
T +

Lϕ(m)
T 2

Proof of Lemma 8. Let gjk(x) = Γϕjϕk
where Γh is de�ned in Proposition 3. We have:

E
(

1

T

∫ T

0
ϕj(X

(1)(s))ϕk(X
(1)(s))ds−

∫
ϕjϕkρ

)2

≤ 2σ2

T

∫
[g′jk(x)]2ρ(x)dx)+

8

T 2

∫
g2
jk(x)ρ(x)dx.

For each integral of the rhs, we write
∫

=
∫ 0
−∞+

∫ +∞
0 and use the appropriate expression of gjk

in each integral. Thus,

4

σ4

∫ +∞

0
[g′jk(x)]2ρ(x)dx =

∫ +∞

0

dx

ρ(x)

(∫ +∞

x
[ϕj(y)ϕk(y)−

∫
ϕj(z)ϕk(zρ(z)dz]ρ(y)dy

)2

)

≤ 2

∫ +∞

0

dx

ρ(x)

[(∫ +∞

x
[ϕj(y)ϕk(y)ρ(y)dy

)2

+

(∫ +∞

x
ρ(y)dy

)2(∫
ϕj(z)ϕk(z)ρ(z)dz]

)2
]
.
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Now, we compute:

m−1∑
j=0

m−1∑
k=0

(∫ +∞

x
[ϕj(y)ϕk(y)ρ(y)dy

)2

≤
m−1∑
j=0

∫ +∞

x
ϕ2
j (y)ρ2(y)dy

≤ Lϕ(m)

∫ +∞

x
ρ2(y)dy.

We proceed analogously for the second term. This yields∑
0≤j,k≤m−1

∫ +∞

0
[g′jk(x)]2ρ(x)dx ≤ c1Lϕ(m),

with

σ4

4
c1 = 2×

∫ +∞

0

dx

ρ(x)

∫ +∞

x
ρ2(y)dy + 2

∫ +∞

0

dx

ρ(x)

(∫ +∞

x
ρ(y)dy

)2 ∫
ρ2(x)dx.

The integral on (−∞, 0) is treated analogously. This yields∑
0≤j,k≤m−1

∫
[g′jk(x)]2ρ(x)dx ≤ C1Lϕ(m).

Next, ∫ +∞

0
ρ(x)g2

jk(x)dx ≤
∫ +∞

0
ρ(x)x

∫ x

0
[g′jk(y)]2dy =

∫
0<y<x

xρ(x)[g′jk(y)]2dxdy.

We can compute as above

ρ2(y)

m−1∑
j=0

m−1∑
k=0

[g′jk(y)]2 ≤ 2Lϕ(m)

∫ +∞

y
ρ2(z)dz + 2

(∫ +∞

y
ρ(z)dz

)2 ∫
ρ2(u)du.

Thus,

σ4

4

∑
0≤j,k≤m−1

∫ +∞

0
ρ(x)g2

jk(x)dx ≤ 2Lϕ(m)

∫
0<y<x,y<<z

x
ρ(x)ρ2(z)

ρ2(y)
dxdydz

+ 4Lϕ(m)

∫
0<y<x,y<z<z′

x
ρ(x)ρ(z)ρ(z′)

ρ2(y)
dxdydzdz′

∫
ρ2(u)du,

where all the integrals are �nite. Analogously,
∫ 0
−∞ ρ(x)g2

jk(x)dx . Lϕ(m). This concludes the
proof. 2

Lemma 9. ET12 . Lϕ(m)
T +

Lϕ(m)
T 2 + 1

T + 1
T 2 .

Proof of Lemma 9.

1

T

∫ T

0
θ`(X

(1)(s))ϕk(X
(1)(s))ds−

∫
θ` ? ρ(x)ϕk(x)ρ(x)dx = T1(k, `) + T2(k, `)

T1(k, `) =
1

T

∫ T

0
[θ`(X

(1)(s))− θ` ? ρ(X(1)(s))]ϕk(X
(1)(s))ds

T2(k, `) =
1

T

∫ T

0
θ` ? ρ(X(1)(s))ϕk(X

(1)(s))ds−
∫
θ` ? ρ(x)ϕk(x)ρ(x)dx.
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The second term is easier. Set h`k = Γϕkθ`?ρ so that

T2(k, `) =
σ

T

∫ T

0
h′`k(X

(1)(s))dW1(s)) +
1

T
[h`k(X

(1)(0))− h`k(X(1)(T ))].

Therefore,

E[T2(k, `)]2 .
1

T

∫
[h′`k(x)]2ρ(x)dx+

1

T 2

∫
h2
`k(x)ρ(x)dx.

We must compute, for x > 0, (and then for x < 0)

σ2

4
ρ2(x)

p−1∑
`=0

m−1∑
k=0

∫
[h′`k(x)]2 ≤ 2

p−1∑
`=0

m−1∑
k=0

(∫ +∞

x
θ` ? ρ(y)ϕk(y)ρ(y)dy

)2

+2

p−1∑
`=0

m−1∑
k=0

(∫ +∞

x
ρ(y)dy

)2(∫
θ` ? ρ(y)ϕk(y)ρ(y)dy

)2

≤ 2

p−1∑
`=0

∫ +∞

x
[θ` ? ρ(y)]2ρ2(y)dy + 2

∫
[θ` ? ρ(y)]2ρ2(y)dy(

∫ +∞

x
ρ(y)dy)2.

Now,

p−1∑
`=0

∫ +∞

x
[θ` ? ρ(y)]2ρ2(y)dy =

p−1∑
`=0

∫ +∞

x

(∫
θ`(z)ρ(y − z)dz

)2

ρ2(y)dy

≤
∫ +∞

x

∫
ρ2(y − z)dzρ2(y)dy =

∫ +∞

x
ρ2(y)dy

∫
ρ2(u)du.

And
p−1∑
`=0

∫
[θ` ? ρ(y)]2ρ2(y)dy ≤

(∫
ρ2(y)dy

)2

.

Thus,

p−1∑
`=0

m−1∑
k=0

∫ +∞

0
[h′`k(x)]2ρ(x)dx .

∫ +∞

0

dx

ρ(x)

∫ +∞

x
ρ2(y)dy

∫
ρ2(u)du

+

(∫
ρ2(y)dy

)2 ∫ +∞

0

dx

ρ(x)

(∫ +∞

x
ρ(y)dy

)2

.

We proceed analogously for
∫ +∞

0 .

The other term
∫

[hjk(x)]2ρ(x)dx is treated analogously.
This means that

E(
∑
k,`

T 2
2 (k, `)) .

1

T
+

1

T 2
.

Let us now study T1(k, `). This term contains the two trajectories X(1) and X(2). For each x,
set θ`(x− z) = θ`,x(z) and Gx,` = Γθ`,x so that

θ`(x)− θ` ? ρ(x) =
σ

T

∫ T

0
G′x,`(X

(2)(t))dW2(t) +
1

T
[Gx,`(X

(2)(0))−Gx,`(X(2)(T ))].
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Recall that

G′x,`(y) =
2

σ2ρ(y)

∫ +∞

y
[θ`(x− z)− θ` ? ρ(x)]ρ(z)dz = − 2

σ2ρ(y)

∫ y

−∞
[θ`(x− z)− θ` ? ρ(x)]ρ(z)dz

Thus,

T1(k, `) =
1

T

∫ T

0
ϕk(X

(1)(s))ds

[
σ

T

∫ T

0
G′
X(1)(s)),`

(X(2)(t))dW2(t)

]
+

1

T

∫ T

0
ϕk(X

(1)(s))ds
1

T
[GX(1)(s)),`(X

(2)(0))−GX(1)(s)),`(X
(2)(T ))]

:= S1(k, `) + S2(k, `).

We have:

S1(k, `) =
1

T

∫ T

0

[
1

T

∫ T

0
ϕk(X

(1)(s))G′
X(1)(s)),`

(X(2)(t))ds

]
dW2(t)

Using the independance of the two trajectories, we get

ES2
1(k, `) =

1

T 4

∫ T

0
dtE

(∫ T

0
ϕk(X

(1)(s))G′
X(1)(s)),`

(X(2)(t))ds

)2

=
1

T

∫
ϕ2
k(x)[G′x,`(y)]2ρ(x)ρ(y)dxdy.

Moreover, ES2
2(k, `) ≤ 2

T 2

∫
ϕ2
k(x)[Gx,`(y)]2ρ(x)ρ(y)dxdy. We have to compute

∑
k,` of the two

terms. We have

p−1∑
`=0

m−1∑
k=0

∫
ϕ2
k(x)[G′x,`(y)]2ρ(x)ρ(y)dxdy ≤ Lϕ(m)

p−1∑
`=0

∫
[G′x,`(y)]2ρ(x)ρ(y)dxdy

. Lϕ(m)

p−1∑
`=0

∫
ρ(x)dx[

∫ +∞

0
[G′x,`(y)]2ρ(y)dy]

+ Lϕ(m)

p−1∑
`=0

∫
ρ(x)dx[

∫ 0

−∞
[G′x,`(y)]2ρ(y)dy]
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We only treat the term containing
∫ +∞

0 . We have:

p−1∑
`=0

∫
ρ(x)dx[

∫ +∞

0
[G′x,`(y)]2ρ(y)dy] .

p−1∑
`=0

∫
ρ(x)dx[

∫ +∞

0

dy

ρ(y)

(∫ +∞

y
θ`(x− z)ρ(z)dz

)2

]

+

p−1∑
`=0

∫
ρ(x)dx[

∫ +∞

0

dy

ρ(y)

(∫
θ`(x− z))ρ(z)dz

)2(∫ +∞

y
ρ(z)dz

)2

.
p−1∑
`=0

∫
ρ(x)dx[

∫ +∞

0

dy

ρ(y)

(∫
θ`(u)1[y,+∞)(x− u)ρ(x− u)du

)2

]

+

p−1∑
`=0

∫
ρ(x)dx

∫ +∞

0

dy

ρ(y)

(∫ +∞

y
ρ(z)dz

)2(∫
θ`(u)ρ(x− u)du

)2

.
∫
ρ(x)ρ(x− u)

ρ(x− u)

ρ(y)
1x−u>y>0)dxdydu

+

∫
ρ(x)ρ2(x− u)dxdu

∫ +∞

0

dy

ρ(y)

(∫ +∞

y
ρ(z)dz

)2

Using the bound on ρ and a previous study, we �nd that the second term above is �nite. For
the �rst term, we have∫

ρ(x)ρ(x− u)
ρ(x− u)

ρ(y)
1x−u>y>0)dxdydu ≤

∫
ρ(x)ρ(x− u)eC(x−u−y))1x−u>y>0)dxdydu

=

∫
ρ(x)ρ(x− u)eC(x−u)

∫ x−u

0
e(−Cy)dy1x−u>0)dxdydu

=

∫
ρ(x)ρ(x− u)eC(x−u)1x−u>0)dxdu−

∫
ρ(x)ρ(x− u)e−C(x−u)1x−u>0)dxdu

=

∫
due−Cu

∫ +∞

u
ρ(x)ρ(x− u)eCxdx−

∫
dueCu

∫ +∞

u
ρ(x)ρ(x− u)e−Cxdx

The two terms of the sum are analogous. We look at the �rst one. For this, we compute, using
Proposition 1 (where b is given):

ρ(x)ρ(x− u) . exp

(
−K + λ

σ2
[(x+ b)2 + (x− u+ b)2]

)
. exp

(
−K + λ

σ2
(u2/2)

)
exp

(
−2(K + λ)

σ2
[(x+ b− (u/2)))2]

)
Thus,∫ +∞

u
ρ(x)ρ(x− u)eCx . exp

(
−K + λ

σ2
(u2/2)

)∫
eCx exp

(
−2(K + λ)

σ2
[(x+ b− (u/2)))2]

)
dx

. exp

(
−K + λ

σ2
(u2/2)

)
eC((u/2)−b)

∫
eCz exp

(
−2(K + λ)z2

σ2

)
dz

. exp

(
−K + λ

σ2
(u2/2)

)
eC((u/2)−b).
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Finally,∫
due−Cu

∫ +∞

u
ρ(x)ρ(x− u)eCxdx .

∫
du exp

(
−K + λ

σ2
(u2/2)

)
e−C((u/2)) < +∞.

This means that ∑
k,l

ES2
1(k, `) .

Lϕ(m)

T
.

Now, we look at
∑

k,` ES2
2(k, `). This brings no new di�culty and we can prove that this sum is

bounded by a constant ×Lϕ(m)
T 2 . 2

Lemma 10. E(T22) . 1
T

Proof of Lemma 10. We write the decomposition

T2,2 =
∑

0≤`,r≤p−1

(A1(`, r) +A2(`, r) +A3(`, r) +A4(`, r))2

with

A1(`, r) =
1

T

∫ T

0

(
θ`(X

(1)(s))− θ` ? ρ(X(1)(s))
)(

θr(X
(1)(s))− θr ? ρ(X(1)(s))

)
ds

A2(`, r) =
1

T

∫ T

0

(
θ`(X

(1)(s))− θ` ? ρ(X(1)(s))
)
θr ? ρ(X(1)(s))ds

A3(`, r) = A2(r, `)

A4(`, r) =
1

T

∫ T

0
θ` ? ρ(X(1)(s))θr ? ρ(X(1)(s))ds−

∫
θ` ? ρ θr ? ρ ρ.

We only treat the term A1(`, r) as the other ones are easier and analogous terms have been
already treated previously.

Using that [(1/T )
∫ T

0 Φ(u)du]2 ≤ (1/T )
∫ T

0 Φ2(u)du, we have

E
∑
r,`

A2
1(`, r) ≤ E

∑
r,`

∫ [
(θ`(u)− θ` ? ρ(u))(θr(u)− θr ? ρ(u))

]2
ρ(u)du


≤ E

{∫ (p−1∑
`=0

(θ`(u)− θ` ? ρ(u))2

)(
p−1∑
r=0

(θr(u)− θr ? ρ(u))2

)
ρ(u)du

}

= E


∫ (p−1∑

`=0

(θ`(u)− θ` ? ρ(u))2

)2

ρ(u)du

 := A1(41)

We �rst work on the sums and write each as e.g.
∑p−1

`=0 〈ϕ`,Ξ〉
2 for some complicated and random

Ξ, in order to upper bound the term by
∫

Ξ2.
Recall that

θ`(u)− θ` ? ρ(u) =
σ

T

∫ T

0
Γ′θ`,u(X(2)(s))dW2(s) +

1

T
(Γθ`,u(X(2)(0))− Γθ`,u(X(2)(T ))),
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with θ`,u(z) = θ`(u− z), and

Γ′θ`,u(y) =
2

σ2ρ(y)

(∫
1v≤yθ`(u− v)ρ(v)dv − θ` ? ρ(u)

∫ y

−∞
ρ(v)dv

)
=

2

σ2ρ(y)

(∫
1u−z≤yϕ`(z)ρ(u− z)dz − θ` ? ρ(u)

∫ y

−∞
ρ(v)dv

)
(42)

=
2

σ2ρ(y)

(∫
1u−z≥yθ`(z)ρ(u− z)dz − θ` ? ρ(u)

∫ +∞

y
ρ(v)dv

)
.(43)

Therefore
p−1∑
`=0

(θ`(u)− θ` ? ρ(u))2 ≤ 2

T 2
(σ2B1(u) + C1(u)),

with

B1(u) =

p−1∑
`=0

(∫ T

0
Γ′θ`,u(X(2)(s))dW2(s)

)2

C1(u) =

p−1∑
`=0

(Γθ`,u(X(2)(0))− Γθ`,u(X(2)(T )))2

Then,

(44) A1 =

∫
ρ(u)du

(
p−1∑
`=0

(θ`(u)− θ` ? ρ(u))2

)2

≤ 8

T 4
(σ4

∫
ρ(u)duB2

1(u) +

∫
ρ(u)duC2

1 (u)),

We work on B1(u) and split it into in order to use the two forms of Γ′ϕ`,u
(y). We have:∫ T

0
Γ′θ`,u(X(2)(s))dW2(s) =

∫ T

0
1(X(2)(s)<0)Γ

′
θ`,u

(X(2)(s))dW2(s)+

∫ T

0
1(X(2)(s)≥0)Γ

′
θ`,u

(X(2)(s))dW2(s)

Now, we use (42) for the �rst stochastic integral:∫ T

0
1(X(2)(s)<0)Γ

′
θ`,u

(X(2)(s))dW2(s) =
2

σ2

∫ T

0

1(X(2)(s)<0)

ρ(X(2)(s))

(∫
1(u−z≤X(2)(s))θ`(z)ρ(u− z)dz

)
dW2(s)

− 2

σ2
θ` ? ρ(u)

∫ T

0

1(X(2)(s)<0)

ρ(X(2)(s))

(∫ X(2)(s)

−∞
ρ(v)dv

)
dW2(s)

By the stochastic Fubini theorem (see e.g. Hutton and Nelson, 1984, Lemma 2.1), we interchange
the ordinary and the stochastic integral. This yields:∫ T

0

1(X(2)(s)<0)

ρ(X(2)(s))

(∫
1(u−z≤X(2)(s))θ`(z)ρ(u− z)dz

)
dW2(s)

=

∫
θ`(z)ρ(u− z)

(∫ T

0

1(u−z≤X(2)(s)<0)

ρ(X(2)(s))
dW2(s)

)
dz.
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Therefore, using the above equality, we get:∑
`

[∫ T

0

1(X(2)(s)<0)

ρ(X(2)(s))

(∫
1(u−z≤X(2)(s))θ`(z)ρ(u− z)dz

)
dW2(s)

]2

(45)

=
∑
`

[∫
θ`(z)ρ(u− z)

(∫ T

0

1(u−z≤X(2)(s)<0)

ρ(X(2)(s))
dW2(s)

)
dz

]2

=

∫
ρ2(u− z)

(∫ T

0

1(u−z≤X(2)(s)<0)

ρ(X(2)(s))
dW2(s)

)2

dz

=

∫
ρ2(v)1v<0M

2
T (v)dv

with

(46) MT (v) =

∫ T

0

1(v≤X(2)(s)<0)

ρ(X(2)(s))
dW2(s).

More simply, ∑
`

(
θ` ? ρ(u)

∫ T

0

1(X(2)(s)<0)

ρ(X(2)(s))

∫ X(2)(s)

−∞
ρ(v)dv dW2(s)

)2

=

∫
ρ2(z)dz

(∫ T

0

1(X(2)(s)<0)

ρ(X(2)(s))

∫ X(2)(s)

−∞
ρ(v)dv dW2(s)

)2

We proceed in the same way for the term containing 1(X(2)(s)<0) using the second expression of

Γ′θ`,u(y). So that by gathering all terms, we have obtained

B1(u) =

p−1∑
`=0

(∫ T

0
Γ′θ`,u(X(2)(s))dW2(s)

)2

. B11(u) +B12(u) +B13(u) +B14(u)

with

B11(u) =

∫
ρ2(u− z)dz

(∫ T

0

1(u−z≤X(2)(s)<0)

ρ(X(2)(s))
dW2(s)

)2

=

∫
ρ2(v)1v<0M

2
T (v)dv

B12(u) =

∫
ρ2(z)dz

(∫ T

0

1(X(2)(s)<0)

ρ(X(2)(s))

∫ X(2)(s)

−∞
ρ(v)dv dW2(s)

)2

B13(u) =

∫
ρ2(u− z)dz

(∫ T

0

1(0≤X(2)(s)<u−z)

ρ(X(2)(s))
dW2(s)

)2

B14(u) =

∫
ρ2(z)dz

(∫ T

0

1(X(2)(s)>0)

ρ(X(2)(s))

∫ +∞

X(2)(s)
ρ(v)dv dW2(s)

)2

.

Therefore, we have ∫
ρ(u)B2

1(u)du . 4
4∑
i=1

∫
ρ(u)B2

1i(u) du.
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We only look at the �rst term:∫
ρ(u)B2

11(u) du =

∫
ρ(u)ρ2(v)ρ2(v′)1v<0,v′<0M

2
T (v)M2

T (v′)dudvdv′

=

∫
ρ2(v)ρ2(v′)1v<0,v′<0M

2
T (v)M2

T (v′)dvdv′.

We have to take the expectation of the above term. Hence, we deal with E(M2
T (v)M2

T (v′). Using
the Cauchy-Schwarz and the Burkholder-Davis-Gundy inequalities yields

E(M2
T (v)M2

T (v′)) ≤ (E(M4
T (v))E(M4

T (v′)))1/2 . (E(〈M(v)〉2T )E(〈M(v′)〉2T ))1/2.

We have (see (46)):

E(〈M(v)〉2T ) = E
(∫ T

0

1(v<X(2)(s)<0)

ρ2(X(2)(s)
ds

)2

≤ T
∫ T

0
E
(

1(v<X(2)(s)<0)

ρ4(X(2)(s)

)
ds

= T 2

∫
1(v<x<0)

ρ3(x)
dx

Thus, we obtain:∫
ρ(u)B2

11(u) du . T 2

∫
ρ2(v)ρ2(v′)1v<0,v′<0

(∫
1(v<x<0)

ρ3(x)

1(v′<x′<0)

ρ3(x′)
dxdx′

)1/2

dvdv′

= T 2

[∫
ρ2(v)1v<0

(∫
1(v<x<0)

ρ3(x)
dx

)1/2

dv

]2

.

We split ρ2(v) = ρ1/2(v)ρ3/2(v) and get:∫
ρ(u)B2

11(u) du = T 2

[∫
ρ1/2(v)1v<0

(∫
ρ3(v)

1(v<x<0)

ρ3(x)
dx

)1/2

dv

]2

≤ T 2

[∫
ρ1/2(v)1v<0 exp [−(3/2)Cv]

(∫ 0

v
exp (3Cxdx)

)1/2

dv

]2

. T 2.

Dealing analogously with the other terms, we �nally �nd (see (41) and (44)):

EA1 .
1

T 2
.

The proof of Lemma 10 is complete. 2

7.10. Proof of Lemma 2. We split the expectation along

Ωm,p =

{
‖V−1/2

m,p V̂m,pV
−1/2
m,p − Idm+p‖op <

1

2

}
.

(see (36)) and its complement. On the complement, we have, by the de�nition of ∆m,p ((28)),

E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p1Ωc

m,p

)
≤ 2E

(
(‖V̂−1

m,p‖2op + ‖V−1
m,p‖2op)1∆m,p1Ωc

m,p

)
≤ 10s2

0P(Ωc
m,p)
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Moreover

P(Ωc
m,p) ≤ 4E

(
‖V−1/2

m,p V̂m,pV
−1/2
m,p − Idm+p‖2op

)
≤ 4‖V−1

m,p‖2opE
(
‖V̂m,p −Vm,p‖2op

)
.

Thus, gathering the last two inequalities, we get, using [H5],

(47) E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p1Ωc

m,p

)
≤ 40s4

0 E
(
‖V̂m,p −Vm,p‖2op

)
.

For the other term, we have with [H5],

E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p1Ωm,p

)
≤ s2

0 E
(
‖V1/2

m,pV̂
−1
m,pV

1/2
m,p − Idm+p‖2op1∆m,p1Ωm,p

)
.

Let A = Idm+p and B = V
−1/2
m,p V̂m,pV

−1/2
m,p − Idm+p. Then we use the following theorem:

Theorem. (Stewart and Sun (1990)) Let A, B be (m × m) matrices. If A is invertible and

‖A−1B‖op < 1, then Ã := A + B is invertible and it holds

‖Ã−1 −A−1‖op ≤
‖B‖op‖A−1‖2op

1− ‖A−1B‖op
.

We have ‖A−1B‖op = ‖B‖op < 1/2 on Ωm,p, so that Ã = A + B = V
1/2
m,pV̂−1

m,pV
1/2
m,p and

‖Ã−1 −A−1‖op = ‖V1/2
m,pV̂

−1
m,pV

1/2
m,p − Idm+p‖op

≤
‖B‖op‖A−1‖2op

1− ‖A−1B‖op
=

‖V−1/2
m,p V̂m,pV

−1/2
m,p − Idm+p‖op

1− ‖V−1/2
m,p V̂−1

m,pV
−1/2
m,p − Idm+p‖op

≤ 1

2
‖V−1/2

m,p V̂m,pV
−1/2
m,p − Idm+p‖op

≤
‖V−1

m,p‖op

2
‖V̂m,p −Vm,p‖op.

Therefore we obtain
(48)

E
(
‖V̂−1

m,p −V−1
m,p‖2op1∆m,p1Ωm,p

)
≤ E

(
‖V̂−1

m,p −V−1
m,p‖2op1Ωm,p

)
≤ s4

0

4
E
(
‖V̂m,p −Vm,p‖2op

)
.

By (47) and (48), we get Lemma 2. 2

7.11. Proof of Proposition 8. Let gj := Γϕj be such that Lgj = ϕj −
∫
ϕj ρ, as de�ned in

Proposition 3, which is such that by (13)

(49) g′j(x) =
2

σ2ρ(x)

∫ x

−∞
(ϕj(y)−

∫
ϕjρ)ρ(y)dy = − 2

σ2ρ(x)

∫ +∞

x
(ϕj(y)−

∫
ϕjρ)ρ(y)dy,

and by (14)

(50)

∫ T

0

(
ϕj(X(s))−

∫
ϕj ρ

)
ds = σ

∫ T

0
g′j(X(s))dW (s) + gj(X(0))− gj(X(T )).

First by Pythagoras Theorem, the equality

(51) E‖ρ̂m − ρ‖2 = ‖ρ− ρm‖2 + E‖ρ̂m − ρm‖2
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holds. The result will follow from a bound on the second rhs term, E‖ρ̂m−ρm‖2 =
∑m−1

j=0 E[(âj−
aj)

2] which is the variance term.
By formula (50), and Inequality (15) in Proposition 3, we get

E(‖ρ̂m − ρm‖2) = E
m−1∑
j=0

(
1

T

∫ T

0
ϕj(X(s))ds−

∫
ϕjρ

)2

≤ 2

T

m−1∑
j=0

{
σ2

∫
(g′j)

2(x)ρ(x)dx+
4

T

∫
g2
j (x)ρ(x)dx

}
:=

2

T
(T1 +

1

T
T2).

Now we use (49), and write

T1 =

m−1∑
j=0

I+
j +

m−1∑
j=0

I−j ,

where I−j =
4

σ4

∫ 0

−∞

(∫ x

−∞
ϕk(y)ρ(y)dy − (

∫
ϕjρ)

∫ x

−∞
ρ(y)dy

)2 dx

ρ(x)
,

I+
j =

4

σ4

∫ +∞

0

(∫ +∞

x
ϕk(y)ρ(y)dy − (

∫
ϕjρ)

∫ +∞

x
ρ(y)dy

)2
dx

ρ(x)
.

Both terms are handled similarly, so we consider the �rst one only.

m−1∑
j=0

I+
j ≤ 8

σ4

∫ +∞

0


m−1∑
j=0

(∫ +∞

x
ϕj(y)ρ(y)dy

)2

+
m−1∑
j=0

(

∫
ϕjρ)2(

∫ +∞

0
ρ(y)dy)2

 dx

ρ(x)

≤ 8

σ4

∫ +∞

0

{∫ +∞

x
ρ2(y)dy + (

∫
ρ2)

∫ +∞

x
ρ(y)dy)2

}
dx

ρ(x)

≤ 8

σ4
C(ρ)

where C(ρ) is a �nite constant coming from Lemma 3.

For T2, we write T2 =
∑m−1

j=0 (
∫ 0
−∞ g

2
j ρ+

∫ +∞
0 g2

j ρ) and consider only the last sum, both terms
being again similar. For x ≥ 0, we write that

g2
j (x) =

(∫ x

0
g′j(u)du

)2

≤ x
∫ x

0
(g′j)

2(u)du.

Thus
m−1∑
j=0

∫ +∞

0
g2
j (x)ρ(x)dx ≤

∫ +∞

0
x
m−1∑
j=0

(∫ x

0
(g′j)

2(u)du

)
ρ(x)dx

Using (49), we get

m−1∑
j=0

∫ +∞

0
g2
j (x)ρ(x)dx ≤ 8

σ4

∫ +∞

0

{∫ +∞

x

[∫ +∞

u
ρ2(y)dy + (

∫
ρ2)

(∫ +∞

u
ρ(y)dy

)2
]

du

ρ2(u)

}
xρ(x)dx.

This term is �nite by Lemma 3. So T2 is bounded by say C?(ρ)/σ4. This yields

E(‖ρ̂m − ρm‖2) ≤ C(ρ)

σ4

1

T
(1 +

1

T
).

Plugging this in (51) ends the proof of Proposition 8. 2


