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Abstract 

Coexistence of both austenite and martensite during phase transformation is a common 

feature of all Shape Memory Alloys (SMAs). The martensite has different variants featuring 

characteristic deformations rotationally linked to each other due to the symmetries of the austenite 

parent phase, and can form twins by mixing pair of variants which lead to different mean 

characteristic deformations. Multiple-domain microstructures (consisting of austenite, martensite 

twins and individual martensite variants) evolve collectively within an SMA sample during the 

phase transformation, contributing thus to the material’s macroscopic response (e.g., its global 

deformation). Particularly, the multiple domains can exist at the diffuse austenite-martensite 

interface nucleating and propagating in a single crystal in certain conditions. This implies an 

energy barrier for this interfacial structure, influencing the interface kinetics and the driving force 

(energy dissipation) of the phase transformation. In this paper, we report an experimentally 

observed interface consisting of five domains (austenite, one martensite variant and three twins) 

in a Ni-Mn-Ga single-crystal initially consisting of one martensite variant and subjected to a 

uniaxial thermal gradient. The compatibility analysis (performed from the characteristic strains of 

the three martensite variants having approximately a tetragonal symmetry) reveals that the five-
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domain interface is not a perfectly compatible pattern like the basic habit plane (consisting of only 

one twin compatible with austenite). However, its level of non-compatibility is similar to that of 

the quite common X-interface (four-domain coexistence) which is observed in many SMAs. 

Further, the significant effects of the thermal loading path and the material initial state (the initial 

martensite variant) on the domain pattern formation are demonstrated and analyzed. The 

experimental observation and the theoretical analysis of the domain patterns can provide hints to 

better understand diffuse interface kinetics and phase transformation hysteresis. 

Keywords: microstructures, phase transformation, twinning, strain compatibility, martensite 

 

1. Introduction 

The superelasticity/pseudoelasticity and shape memory effect of shape memory alloys (SMAs) 

result from a 1st-order solid-solid phase transformation (martensitic transformation) that can be 

induced by thermal, mechanical, and magnetic loadings (Kiefer and Lagoudas, 2005; Arndt et al., 

2006; Karaca et al., 2006; Sehitoglu et al., 2012; Chen et al., 2014; Haldar et al., 2014; Kamarád 

et al., 2014; Pascan et al., 2015; Cisse et al., 2016; Heczko et al., 2016; Rogovoy and Stolbova, 

2016; Yin et al., 2016; Bruno et al., 2017; Zhang et al., 2018b; Chen and He, 2020; Zhang et al., 

2020). The high-temperature stable parent phase (austenite) has cubic symmetry whereas the low-

temperature stable product phase (martensite) has lower symmetry, such as tetragonal, 

orthorhombic, and monoclinic symmetry, depending on the chemical composition. Martensite 

appears in the form of several variants with different orientations with respect to the austenite 

parent crystal, and therefore different characteristic transformation strains (Bain strains) are 

resulted (Ball and James, 1989; M. Pitteri and Zanzotto, 1998; James and Hane, 2000; Pitteri and 

Zanzotto, 2002; Bhattacharya, 2003). According to equilibrium thermomechanics (Ericksen, 1975; 

Falk, 1980; James, 1980; Abeyaratne and Knowles, 1991; He and Sun, 2009; Duval et al., 2011; 

Hallai and Kyriakides, 2013) and the experimental observations (Segui et al., 1996; Glatz et al., 

2009; Seiner and Landa, 2009; Seiner, 2015; Zhang et al., 2020; Qin et al., 2023; Zhang et al., 

2023), the martensite variants and austenite with equal free energy can coexist during the phase 

transformation, among which there are twin boundaries (separating different martensite variants) 

and habit planes (separating austenite from martensite twins or variants). To guarantee the 
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deformation reversibility of the phase transformation (avoiding plasticity), the twin boundaries and 

the habit planes must be compatible (coherent), meaning that the characteristic transformation 

strains of the different domains (martensite variants, twins, and austenite) must be accommodated 

without elastic strain (called “perfectly compatible” domain patterns) or with only small elastic 

strains (so-called “non-perfectly compatible” domain patterns). In both cases (with or without 

elasticity), the displacement continuity is guaranteed when crossing the twin boundaries or the 

habit planes, satisfying the Hadamard equation (Ball and James, 1989; Bhattacharya, 2003). Based 

on the pioneering work in understanding the basic kinematics and energetics in 1950-1989 (Bowles, 

1951; Wechsler et al., 1953; Basinski and Christian, 1954; Bowles and Mackenzie, 1954; Roitburd, 

1978; Ericksen, 1980; Khachaturyan, 1983; Barsh and Krumhansl, 1984; Pitteri, 1984; Ball and 

James, 1989; Krumhansl and Gooding, 1989), various interfacial structures, especially the non-

perfectly compatible domain patterns, have been intensively studied from 1990 until now 

(Bhattacharya, 1991; Bhattacharya, 1992; Ruddock, 1994; Shield, 1995; Ball and Carstensen, 1997; 

Hane and Shield, 1998; M. Pitteri and Zanzotto, 1998; Hane, 1999; Hane and Shield, 1999b; Hane 

and Shield, 1999a; Hane and Shield, 2000a; Hane and Shield, 2000b; Balandraud and Zanzotto, 

2007; Stupkiewicz et al., 2007; Seiner et al., 2008; Seiner et al., 2009; Seiner and Landa, 2009; 

Balandraud et al., 2010; Levitas et al., 2010; Stupkiewicz and Górzyńska-Lengiewicz, 2012; 

Stupkiewicz et al., 2012; Seiner et al., 2014; Seiner, 2015; Bronstein et al., 2019; Seiner et al., 

2020; Stupkiewicz et al., 2021; He, 2023; Qin et al., 2023; Zhang et al., 2023).  

Particularly, the domain patterns in single-crystal SMAs can clearly indicate the material’s 

crystallographic relations and the associated compatibility requirements. For example, in clean 

single-crystals with little defects (such as annealed specimens in (Chang and Read, 1951)), the 

martensitic phase transformation can occur via a single interface propagation passing through a 

single-crystal specimen under thermal loadings such as a temperature gradient (Basinski and 

Christian, 1954; Salzbrenner and Cohen, 1979; Christian, 1982; Seiner et al., 2008; He, 2023; Qin 

et al., 2023; Zhang et al., 2023). The propagating interface can have different structures as 

classified in Fig. 1. 
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Fig. 1 Typical multiple-domain coexistence reported in literature; a domain represents a region 

where the macroscopic strain is approximately uniform. 

 

In the extremely ideal case (the simplest interfacial structure), only two domains coexist during 

the phase transformation as shown in Fig. 1(a) where the austenite domain is separated by an 

atomistically sharp interface from a single martensite variant Mi (the ith variant of the martensite 
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phase). This ideal case is rare in experiments and its requirement on the material’s lattice 

parameters is very strict, such as the “middle eigenvalue equal to 1” and “cofactor condition” (Cui 

et al., 2006; Chen et al., 2013; Gu et al., 2018). The case of a martensite variant perfectly 

compatible with austenite leads to many interesting features, such as extremely low hysteresis and 

ultra-high fatigue life.  

By contrast, three-domain coexistence is more common in experiments; see Fig. 1(b) where 

two basic patterns are shown: (1) Planar interface (one habit plane) involving the austenite, a twin 

laminate and a single martensite variant, whose detailed evolutions in experiments can be found 

in the movies of (Qin et al., 2023; Zhang et al., 2023); it has been verified by compatibility analysis 

that this planar-interface domain pattern is energy-minimizing (Ball and James, 1989; 

Bhattacharya, 2003; Bronstein et al., 2019; Seiner et al., 2020). (2) “Wedge” pattern involving an 

austenite domain and two different martensite twins (Otsuka and Shimizu, 1974; Saburi and 

Wayman, 1979; Shusong Tan and Xu, 1990; Bhattacharya, 1991; Otsuka and Wayman, 1998; 

Bhattacharya, 2003). The wedge microstructure might not be perfectly compatible according to 

the theory of Ball and James (Bhattacharya, 1991; Balandraud and Zanzotto, 2007; Balandraud et 

al., 2010), but it is still energy minimizing according to the more general theory in (Ruddock, 

1994). This means that the three-domain coexistence corresponds to a perfectly or nearly-perfectly 

compatible domain pattern without the strict requirement on material’s lattice parameters. Thus, 

the three-domain coexistence are often observed in experiments. 

Besides the three-domain coexistence, four-domain coexistence is also frequently observed in 

experiments; see Fig. 1(c) where the austenite, two twins and a single martensite variant Mi coexist 

(Basinski and Christian, 1954; Bhattacharya, 2003; Seiner et al., 2008; Seiner, 2015; Qin et al., 

2023). There are two typical patterns: X-interface and λ-interface; they can be distinguished by the 

orientations of the twin boundaries and the contact surfaces between the single martensite variant 

and the twins. For example, if any one of the twins has its twin boundary not parallel to its contact 

surface with the single variant Mi, the four-domain pattern is called λ-interface. Otherwise, the 

four-domain pattern is called X-interface (Seiner et al., 2008). As demonstrated in the general 

theory of (Ruddock, 1994) and in the analysis of (Glatz et al., 2009; Seiner et al., 2009), the four-

domain pattern (particularly the X-interface) is a non-perfectly compatible structure. That means 

there is elastic energy stored in this interfacial structure. As mentioned in (Ruddock, 1994), such 
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non-perfectly compatible structure might appear under high driving forces such as a high 

temperature gradient. 

From the above overview, we can see that the simplest pattern (two-domain coexistence) 

with small driving force (low hysteresis) can appear only in special materials whose lattice 

parameters satisfy strict conditions (Cui et al., 2006; Chen et al., 2013; Gu et al., 2018). By contrast, 

the medium complex pattern (three-domain coexistence) can be observed in most SMAs and under 

most loading conditions. More complex patterns (four-domain coexistence) are expected to appear 

with high driving force to overcome the energy barrier, i.e., the elastic energy stored in the non-

perfectly compatible interfacial structures. It is implied that the interfacial structure and the 

associated stored energy are closely related to the interface kinetics and the energy dissipation of 

the phase transformation. Detailed discussion on the relation between the interfacial energy and 

the phase-transformation hysteresis can be found in (Müller, 1989; Müller and Xu, 1991; Sun and 

He, 2008; Zhang et al., 2009; Petryk and Stupkiewicz, 2010; He, 2023). 

Thus, a question naturally rises: is it possible for the propagating interface to have a more 

complex pattern? The answer is yes. In Section 2 of this paper, we report a recently observed 

pattern of five-domain coexistence in a propagating interface in Ni-Mn-Ga single-crystal SMA as 

shown in Fig. 2(a) where we identified the austenite, a single variant M3 and three twins: Twin 

M3M2 consisting of two martensite variants M3 and M2 whose volume fractions are around 2/3 and 

1/3 respectively; Twins M3M1 and M1M3 with the same components M1 and M3, but their major 

component with 2/3 volume fraction is different (M3M1’s major component is M3 while that of 

M1M3 is M1). Although the material has three martensite variants with approximately tetragonal 

symmetry (Murray et al., 2000; Heczko et al., 2002; Zhang et al., 2018a) and its phase 

transformation has been intensively studied under different thermal, mechanical and magnetic 

loadings (James, 1980; James et al., 1995b; James et al., 1995a; Mañosa et al., 1997; Glavatska 

and Ullakko, 2000; James and Hane, 2000; Glavatska and Ullakko, 2001; Heczko et al., 2002; 

Karaman et al., 2006; Planes et al., 2007; Heczko et al., 2013; Haldar et al., 2014; Heczko et al., 

2016; Heczko et al., 2018; Zhang et al., 2018a, b; Chen and He, 2020), its interfacial 

microstructures have not yet been systematically investigated. To the best knowledge of the 

authors, there is no report in literature about a five-domain coexistence of propagating interface in 

Ni-Mn-Ga single-crystal SMA. To understand this new pattern, compatibility analysis is 
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performed in Section 3, where we combine the spirit of (Balandraud and Zanzotto, 2007; 

Balandraud et al., 2010) and (Glatz et al., 2009; Seiner et al., 2009) to characterize the interfacial 

structure’s non-compatibility with three “indicators” (three angles). Comparison is also made with 

the four-domain interface (X-interface). Then, the reasons for the new pattern formation are given 

from considerations about the thermal loading path and the material initial state (the initial 

martensite variant). The implications of the multi-domain observation and the theoretical analysis 

are discussed in Section 4. Final conclusions are given in Section 5. 

 

2. Experimental observation 

The specimen used in the current study is a Ni50Mn28Ga22 (at. %) single-crystal rectangular 

bar (from ETO, Germany) with the size of 20 mm (length) × 2.5 mm (width) × 1 mm (thickness) 

along x, y, and z directions respectively. It was cut approximately along the {100} planes of the 

cubic austenite crystal. The material’s characteristic transformation temperatures Ms, Mf, As, and 

Af, are 48 ℃, 45 ℃, 52 ℃, and 55 ℃, respectively, measured by DSC (Differential Scanning 

Calorimetry). So, the material is in the martensite state at room temperature (around 23 oC). 

According to (Murray et al., 2000; Heczko et al., 2002; Zhang et al., 2018a), the martensite variants 

can be considered to have approximately tetragonal symmetry with two long axes (denoted as ‘a’) 

and a short axis (denoted as ‘c’) while the lattice parameter of the cubic austenite is denoted as “a0” 

as shown in Fig. 2(a). In this study, the utilized lattice parameters are: a ≈ 5.95 Å, c ≈ 5.61 Å, and 

a0  ≈ 5.84 Å (Murray et al., 2000; Heczko et al., 2002; Zhang et al., 2018a). 

The experimental setup is shown in Fig. 2(b). It can be noted that the two ends of the specimen 

are supported by two plates, one in aluminum alloy connected to a heater (changing the 

temperature from room temperature to above 100 oC) and the other made of plastic foam to avoid 

strong constraint (i.e., the specimen can freely extend or shrink during the phase transformation). 

Thus, the temperature-induced M3A transformation occurs via an interface propagating from the 

specimen’s right end to the left end. To capture the interfacial structure, an optical microscope 

(AX70 Olympus, Japan) equipped with polarized light is adopted to observe the mechanically 

polished specimen’s top surface (x-y plane), corresponding to the (100) plane of the cubic austenite 

crystal. Via the optical microscope, the evolution of the propagating interface is recorded by a 
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camera (OV48C, OmniVision, China). Before the test (at room temperature), the specimen was 

compressed along its z-axis to become single martensite variant M3. During the heating at the 

specimen’s right end, a diffuse interface corresponding to a five-domain coexistence passes 

through the region observed by the microscope (from right to left); see the movies 1~3 in 

supplementary material. whose typical frames are given in Fig. 2.  
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Fig.2 The experimental evidence of a five-domain coexistence during the heating-driven interface 

propagation in a Ni-Mn-Ga single crystal: a) Experiment and associated observation from Movies 

1 and 2 in supplementary material; (b) Representative frames (at 3.63s, 7.16s and 10s) of the Movie 
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2 about the domains’ detailed evolution; (c) Magnified view (ii) from Movie 3 showing nearly 

horizontal laminates in Domain II.  

 

Movie 1 demonstrates the propagation of the five-domain configuration along the specimen 

while Movie 2 is a zoom to show the detailed evolution of the domains (see also the global view 

and the magnified view in Fig. 2(a)). Three typical frames of Movie 2 are shown in Fig. 2(b). It 

can be seen from Frame (i) that, when the diffuse interface approaches from the right, some narrow 

bands (vertical lines) appear in the domain of single variant M3 (the initial state of the specimen), 

forming thus a twin laminate referred to as Domain I. Further, Frame (ii) shows domains II and III 

and austenite besides domain I. It is seen that domains I and III have similarities: indeed, both have 

vertical lines (bands); but they have different fractions of bright and dark. Finally, Frame (iii) 

shows a uniform region, which should be austenite. In fact, we can measure the mean strain field 

within each domain with DIC (Digital Image Correlation) to determine its state (austenite, single 

variant or twin) as discussed in details in (Qin et al., 2023; Zhang et al., 2023). On the other hand, 

we can also determine the domain’s state by the combination of a simple compatibility analysis 

and the experimentally observed orientations of the domain walls (habit planes and the planes 

between different twins) and the twin-boundary orientation (the vertical lines in domains I and III) 

as shown in the following. 

According to the simple compatibility analysis of the habit plane between austenite and a twin 

consisting of two tetragonal martensite variants (Zhang et al., 2018a; Qin et al., 2023), only six 

twins can have habit planes with austenite: M1M2, M1M3, M2M1, M2M3, M3M1 and M3M2, whose 

major component has the volume fraction of around 2/3; the traces (projections) of their habit 

planes and twin boundaries on the specimen’s x-y surface are shown in Fig. 3. Strict derivation 

and quantification of the orientations of the habit planes and twin boundaries can be found in 

Appendix A. Now, from the comparison between Fig. 3 and Frame (ii) of Fig. 2(b), we can judge 

that the domain III with the vertical lines (twin boundaries) and the inclined trace of the habit plane 

(around 45o) should be M1M3. As domain I is different from domain III (different fractions of 

bright and dark bands), but has the similar twin boundaries (vertical lines in the domains), domain 

I should be M3M1 (in fact we can use the software Image J to measure the fractions of the bright 

and dark bands). Then, the domain II in Frame (ii) of Fig. 2(b) needs to be compatible with both 
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austenite and domain I. Based on the vertical trace of the habit plane between the domain II and 

austenite (i.e., line OB in Fig. 2(b)), we judge that domain II is either M3M2 or M1M2. And the 

magnified view (ii) of the experimental observation in Fig. 2(c) shows nearly horizontal laminates 

in the domain II; so, the domain II must be M3M2 according to Fig. 3 (the twin M3M2 has horizontal 

laminates while the twin M1M2 has inclined laminates). Moreover, it is easy to theoretically verify 

that the twin M3M2 of domain II can be compatible with the domain I (twin M3M1) through the 

inclined domain wall (OA line around 45° to the x-axis in Fig. 2(b)). In addition, the DIC 

deformation measurements on the domain II have the strain components ɛxx ≈ 2% and ɛyy ≈ 0%, 

which correspond to the average strain state of the twin M3M2. Detailed DIC strain measurements 

and discussions can be found in the Appendix C. 

 

 

Fig. 3.  The traces (projections) of the theoretically predicted habit planes and twin boundaries of 

the six possible twins on the specimen’s x-y surface.  

 

Thus, the main states of the domains are determined, but their global compatibility needs to 

be verified, because some rotation is needed for each compatible domain wall, and the rotations 

for all the compatible domain walls might restrict each other to generate non-compatibility 
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(causing elastic strain) as in the wedge and the X-interface (Balandraud and Zanzotto, 2007; Glatz 

et al., 2009; Seiner et al., 2009; Balandraud et al., 2010).  In the next section, the compatibility 

analysis of the domain walls, and the characterization of the global compatibility are performed. 

 

3. Compatibility analysis and the reason for five-domain formation 

3.1 Hadamard jump condition and twinning equation 

Hadamard jump condition, Eq. (1), applies to the following situation: two regions (originally 

connected by a plane) take different deformations and remain perfectly connected. 

𝐅I − 𝐅II  =  𝐚 ⊗ 𝐧̂      (1.) 

where 𝐅I and 𝐅II are the two different deformation matrices (so-called deformation gradients); 𝐧̂ 

denotes the unit normal of the plane in the undeformed configuration, and a is a vector (so-called 

shear vector).  

Concerning the cubic-to-tetragonal transformation in Ni-Mn-Ga single crystal, the austenite 

is taken as reference (described by an identify matrix I), and the characteristic deformations of the 

martensite variants are described by the three deformation matrices (so-called Bain matrices), Ui 

(i = 1, 2 or 3) in Eq. (2), corresponding to the three tetragonal variants in Fig. 2(a). 

𝐈 = (
1 0 0
0 1 0
0 0 1

),       𝐔1 = (
α 0 0
0 β 0
0 0 β

),      𝐔2 = (
β 0 0
0 α 0
0 0 β

),       𝐔3 = (
β 0 0
0 β 0
0 0 α

) (2.) 

where α and β are the so-called transformation stretches that are derived from the lattice parameters 

of austenite and martensite as follows: α = c/a0 = 0.9606 and β = a/a0 = 1.0188. Note that 0 < α < 

1< β and det(Ui) = 0.997 ≈ 1, meaning that the phase transformation is nearly isochoric. 

Generally, if letting 𝐅I and 𝐅II directly equal to the Bain matrices of two different variants (Ui 

and Uj) respectively, there is no solution to Eq. (1). Normally, a rotation of a variant relative to the 

other variant is needed to achieve a compatible plane (twin boundary) between the two variants, 

satisfying the Hadamard jump condition as shown in Eq. (3): 

𝐐𝑖𝑗𝐔𝑗 − 𝐔i  =  𝐚𝑖𝑗⊗ 𝐧̂𝑖𝑗     (3.) 
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where Qij is the rotation acting on Uj of the twin (consisting of the two variants Ui and Uj), whose 

shear vector and unit plane normal are aij and 𝐧̂𝑖𝑗  , respectively. The procedures to solve the 

twinning equation (Eq. (3)) can be found in Appendix A and (Bhattacharya, 2003). The solutions 

to Eq. (3) for all the possible twins are summarized in Table A1 of Appendix A. Particularly, the 

orientations of the twin boundaries are schematically shown in Fig. 3 where the traces (or 

projections) of the twinning planes on the x-y surface are horizontal or vertical or inclined 45o lines, 

agreeing with the current observation in Fig. 2 and other experiments (Qin et al., 2023; Zhang et 

al., 2023).  

3.2 Compatibility of domain walls (habit planes and twin-twin planes) 

After obtaining the pairs of compatible variants (particularly with the rotation Qij and the 

twinning plane unit normal 𝐧̂𝑖𝑗), we can denote the average characteristic deformation matrix for 

the twin by 𝐔𝑖𝑗: 

𝐔𝑖𝑗  =  λ𝑖𝑗𝐔𝑖 + (1 − λ𝑖𝑗) 𝐐𝑖𝑗𝐔𝑗,     (4.) 

where λ𝑖𝑗 ≥ 1/2 is the volume fraction of the major component Ui in the twin (Note: the twin 

consisting of major component Ui and minor component Uj is denoted by Uij; the opposite case is 

denoted by Uji). Generally, λ𝑖𝑗 can only take certain values to achieve compatible domain walls: 

(1) the habit plane between austenite and a twin (such as the domain walls OB and OD in Fig. 

2(b)), and (2) the twin-twin plane (such as the domain walls OA and OC in Fig. 2(b)). In the 

following, we formulate the compatibility for the two types of domain walls. 

3.2.1 Habit plane 

Similar to Eqs. (1) and (3), the compatibility equation of the habit plane can be written as: 

𝐅𝑖𝑗 − 𝐈 =  𝐛𝑖𝑗⊗ 𝐦̂𝑖𝑗     (5.) 

here, 𝐅𝑖𝑗  =  𝐑𝑖𝑗𝐔𝑖𝑗  where Uij is the average deformation matrix given by Eq. (4) and Rij is the 

rotation acting on twin Uij; 𝐛𝑖𝑗 and 𝐦̂𝑖𝑗  denote the shear vector and the habit-plane unit normal, 
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respectively. The procedure for solving Eqs. (4) and (5) to determine the rotation Rij, the volume 

fraction λ𝑖𝑗, and the habit plane normal 𝐦̂𝑖𝑗  can be found in Appendix A and (Bhattacharya, 2003). 

The solutions for all the possible habit planes and the associated twins are listed in Table A2, 

whose schematics are shown in Fig. 3 where the traces (projections) of the habit planes on the 

specimen’s x-y surface are approximately horizontal or vertical or inclined 45o lines, agreeing with 

the current observation in Fig. 2 and other experiments (Qin et al., 2023; Zhang et al., 2023). 

3.2.2 Twin-twin plane 

We can describe the compatible plane between two different twins with the average 

deformation matrices 𝐔𝑖𝑗 and 𝐔𝑘𝑙 respectively: 

𝐔𝑖𝑗  =  λ𝑖𝑗𝐔𝑖 + (1 − λ𝑖𝑗) 𝐐𝑖𝑗𝐔𝑗,     (6.) 

𝐔𝑘𝑙  =  λ𝑘𝑙𝐔𝑘 + (1 − λ𝑘𝑙) 𝐐𝑘𝑙𝐔𝑙,     (7.) 

𝐑𝑖𝑗𝑘𝑙𝐔𝑘𝑙 − 𝐔𝑖𝑗  =  𝐛𝑖𝑗𝑘𝑙⊗ 𝐦̂𝑖𝑗𝑘𝑙    (8.) 

where λ𝑖𝑗 and λ𝑘𝑙 are the volume fractions of the major component 𝐔𝑖 and 𝐔𝑘in the twin 𝐔𝑖𝑗 and 

𝐔𝑘𝑙, respectively; 𝐑𝑖𝑗𝑘𝑙 is the rotation acting on 𝐔𝑘𝑙; the two vectors 𝐛𝑖𝑗𝑘𝑙 and 𝐦̂𝑖𝑗𝑘𝑙  denote the 

shear vector and the plane normal, respectively. The procedure for solving the compatible twin-

twin plane Eqs. (6) ~ (8) is similar to that for the habit plane in Eqs. (3) and (4). However, the 

number of solutions for the compatible twin-twin plane is different from that of the habit plane. 

The habit plane has limited solutions whose twins’ major component has a fixed volume fraction 

(≈ 2/3 for the present cubic-to-tetragonal transformation) as shown in in Fig. 3 and Table A2, while 

the twin-twin plane can have infinite solutions (with infinite possible values of the volume 

fractions λ𝑖𝑗 and λ𝑘𝑙). A simple example is the domain wall OC in Fig. 2(b), separating the two 

domains (twins) which have different volume fractions of the variants M1 and M3. If considering 

only the compatibility between these two twins, without taking into account the constraints from 

other domains (such as the domains of austenite and twin M3M2 in Fig. 2(b)), we can find infinite 

solutions: For example, when the normal 𝐦̂1331 of the domain wall OC  has the same orientation 

as the twin boundary 𝐧̂𝟏𝟑 (also 𝐧̂𝟑𝟏), the volume fractions λ𝑖𝑗 and λ𝑘𝑙 (here the volume fractions 

of the twins’ major components λ13 and λ31) can be any value between 0.5 and 1. But, according 
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to current experiment (Fig. 2) and other experiments on the same material (Ni-Mn-Ga) in (Qin et 

al., 2023; Zhang et al., 2023), only a limited number of solutions (the twins with certain volume 

fractions) can be observed in the multiple-domain coexistence (such X-interface in (Qin et al., 

2023) and the five-domain coexistence in Fig. 2). Therefore, we need to consider not only the 

compatibility of each domain wall, but also the global compatibility (the inter-constraints of the 

co-existing multiple domains) as in the following. 

3.3 Global compatibility 

In this section, we mainly follow the spirit of (Balandraud and Zanzotto, 2007; Balandraud et 

al., 2010) to characterize the inter-constraints of the multiple domains. First, taking the austenite 

as reference, we determine the deformation matrices (deformation gradients) of the twins M3M2 

and M1M3 forming the habit planes OB and OD respectively. As discussed in Sections 3.1 and 3.2, 

the compatibility equations for these habit planes can be formulated. 

For habit plane OB with twin M3M2: 

𝐐32𝐔2 − 𝐔3  =  𝐚32⊗ 𝐧̂32     (9.) 

𝐔32  =  λ32𝐔3 + (1 − λ32) 𝐐32𝐔2,     (10.) 

𝐅32 − 𝐈 =  𝐛32⊗ 𝐦̂32     (11.) 

where 𝐅32  =  𝐑32𝐔32 (with R32 being the rotation matrix acting on U32) and λ32 is the volume 

fraction of the variants 𝐔3 in the twin 𝐔32. 

For habit plane OD with twin M1M3: 

𝐐13𝐔3 − 𝐔1  =  𝐚13⊗ 𝐧̂13     (12.) 

𝐔13  =  λ13𝐔1 + (1 − λ13) 𝐐13𝐔3,     (13.) 

𝐅13  − 𝐈 =  𝐛13⊗ 𝐦̂13     (14.) 

where 𝐅13  =  𝐑13𝐔13 (with R13 being the rotation matrix acting on U13) and λ13is the volume 

fraction of the variants 𝐔1 in the twin 𝐔13.  
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After solving Eqs. (9) ~ (14), we have four solutions for each of the two deformation matrices 

𝐅32 and 𝐅13 with the volume fractions λ32  and λ13 equal to around 2/3, as shown in Table A2 

(Appendix A) and Fig. 3. By comparison with the experimentally observed domain wall OD in 

Fig. 2(b), only 2 of the calculated matrices 𝐅13 with the proper habit-plane orientations (𝐦̂13 ≈ [1 

1 0] or [-1 -1 0]) are consistent with the current observation (OD is around 45° to x-axis). Thus, 

we have obtained four solutions of F32 and two solutions of F13 that can describe the two domains 

(twins M3M2 and M1M3) with the observed habit planes (OB and OD lines in Fig. 2). But, both 

domains II and III (twins with the deformation matrices 𝐅32 and 𝐅13) are contacting with domain I 

(twin M3M1); their compatibility also needs to be verified. 

Then, we study the compatible domain wall OA separating the twin M3M1 and the twin M3M2 

(with deformation matrix 𝐅32 among the four possible solutions obtained above): 

𝐐31𝐔1 − 𝐔3  =  𝐚31⊗ 𝐧̂31     (15.) 

𝐔31  =  λ31𝐔3 + (1 − λ31) 𝐐31𝐔1,     (16.) 

𝐅31  − 𝐅32  =  𝐛3231⊗ 𝐦̂3231    (17.) 

where 𝐅31  =  𝐑3231𝐔31  (with 𝐑3231  being the rotation matrix acting on 𝐔31 ) and λ31  is the 

volume fraction of the variants 𝐔3 in the twin 𝐔31. The solutions of F31 are shown in Table A3, 

among which, 8 solutions with the orientations (𝐦̂3231≈ [1 1 0] or [-1 -1 0]) agree with the 

observed domain wall OA in Fig. 2.  
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Fig. 4 (a) The multiple domains in the reference configuration (i.e., all are in the austenite state); 

(b) the multiple domains in the deformed configuration (i.e., the domains take different 

deformations that can generate a gap or overlap when the contact surface between the domains I 

and III is assumed to be released). 

 

Finally, we check the compatibility between domains M3M1 and M1M3 (with the deformation 

matrices 𝐅13 and 𝐅31 obtained above) by the Hadamard jump condition: 

𝐅31  − 𝐅13  =  𝐛1331⊗ 𝐦̂1331    (18.) 

If there were solutions of the two vectors 𝐛1331 and 𝐦̂1331 to satisfy Eq. (18), this multiple-

domain coexistence would be perfectly compatible; otherwise, it would not be perfectly 

compatible or not compatible. For current material, there is no solution for the 16 combinations of 
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the matrices 𝐅13 (2 solutions) and 𝐅31 (8 solutions) obtained above that can satisfy Eq. (18). That 

means, after the transformation from the reference configuration (Fig. 4(a)) to the deformed 

configuration (Fig. 4(b)), there is a gap or overlap between domains M3M1 and M1M3. According 

to (Balandraud et al., 2010), an extra rotation matrix R can be added in Eq. (18) to achieve the 

“compatibility”: 

𝐑 𝐅31  − 𝐅13  =  𝐛1331⊗ 𝐦̂1331     (19.) 

With the solution to Eq. (19), we can estimate the degree (level) of the non-compatibility of the 

multiple-domain pattern. There are three different indicators in literature to estimate the non-

compatibility magnitude as in the following: 

· Rotation angle ψ 

After solving Eq. (19) with the matrices 𝐅13 and 𝐅31 (among the 16 combinations derived 

above), we have 32 solutions of 𝐦̂1331 and the associated R. With the calculated rotation matrix 

R, we can define a rotation angle to characterize the non-compatibility: 

ψ =  arccos (
tr 𝐑 −1

2
)     (20.)  

The 32 values of ψ are shown in Fig. 6 and the detailed results are in Table A4 (Appendix A). 

· Mismatch angle 𝜑 

Based on the solution of Eq. (19), we have determined 𝐦̂1331, which is the normal of the 

twin-twin plane separating the two domains M3M1 and M1M3 in the reference configuration. The 

magnitude of the gap or overlap between the two domains can be estimated by the mismatch angle 

φ defined in Eq. (21) and schematically plotted in Fig. 4(b).  

φ = arccos (
|n1 ∙ n2|

|n1||n2|
)     (21.) 

where n1 = (𝐅13)
−T𝐦̂1331 and n2 = (𝐅31)

−T𝐦̂1331 are the normals of the twin-twin plane in the 

deformed configuration calculated on each side of the contact surface. Values for φ are also 

summarized in Table A4 (Appendix A) and in Fig. 6. As noted in (Balandraud et al., 2010), 

similarities can be found between the current problem and that of a fracture problem. By 
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construction, the mismatch angle φ can be seen as the mode I aperture of a crack whereas rotation 

angle ψ provides a more general evaluation of the mismatch (involving potentially analogs of crack 

modes I, II, III). Thus, φ is always lower or equal to ψ. But, as for a fracture problem, the “mode 

I” like angle φ should be more important in terms of stress concentration. 

· Non-coplanarity angle θ 

As mentioned by (Ruddock, 1994), the normals of the domain walls of the perfectly 

compatible multi-domain pattern must be coplanar; i.e., the four domain walls (habit planes and 

twin-twin planes) cross at a single line as in Fig. 5(a). However, for the current non-perfectly 

compatible case, the solution to Eq. (19) gives R ≠ I (i.e., Eq. (18) has no solution); in addition, 

the normals of the domain walls may not be coplanar. According to (Seiner et al., 2009), the non-

coplanarity in the reference configuration can be quantified by an angle θ in Eq. (22) and described 

schematically in Fig. 5(b). 

θ = |arcsin(𝐯̂  ∧  𝐰̂)|     (22.) 

where 𝐯̂ =  𝐦̂32  ∧  𝐦̂𝟏𝟑 represents the intersecting line of the two habit planes and 𝐰̂ =  𝐦̂3231  ∧

 𝐦̂1331 represents the intersecting line of the two twin-twin planes.  
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Fig. 5 (a) The perfect coplanarity of the unit normal vectors of the four domain walls; (b) The 

angle θ characterizing the case of a non-perfect coplanarity. 

 

The calculated ψ, φ, and θ angles for the 32 solutions to Eq. (19) are plotted in Fig. 6 (sorted 

by the rotation angle ψ). The detailed results can be found in Appendix A where Table A4 lists the 

deformation matrices, the normals of twin-twin planes and habit planes, etc. It is seen in Fig. 6 that 

the 32 cases can be divided into two groups: (i) slightly non-compatible cases 1 ~ 16 where θ < 

10°, ψ and φ are less than 0.25°; (ii) strongly non-compatible cases 17 ~ 32 where θ > 60°, ψ and 

φ are larger than 2.3°. Although the 32 cases can provide the traces of the domain walls (OA, OB, 

OC, and OD) agreeing with the experimental observation, only the cases of group (i) with slightly 

non-compatibility are possible to describe the equilibrium (or near-equilibrium) three-dimensional 

interfacial structure as shown in Fig. 7, where we plot the four optimal cases: cases 1 and 2 with 

ψ = 0.0542°, φ = 0.0555°, and θ = 0.6922°; cases 3 and 4 with ψ = 0.0606°, φ = 0.0612°, and θ = 

0.5111°. The values of the indicator θ for the four optimal cases are smaller than 2.5° of the X-

interface of (Seiner et al., 2009), and their ψ and φ values are smaller than 0.32° of the wedge 

pattern of (Balandraud and Zanzotto, 2007). That means, the observed five-domain pattern in Fig. 
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2 can be considered as near perfectly-compatible (causing only a little elastic strain), and can 

appear without a large driving force.  

In fact, the previous study (Qin et al., 2023) on the same material (Ni-Mn-Ga) also 

demonstrated the formation of the four-domain structure (X-interface), whose non-compatibility 

indicators are calculated by similar procedures (details in Appendix B). The result shows that the 

X-interface in (Qin et al., 2023) can also have small values of the non-compatibility indicators: ψ 

(0.1238°), φ (0.1244°), and θ (0.3919°), which are close to the values of the four optimal cases of 

the five-domain interface in Fig. 7. That means, both the X-interface (four-domain coexistence in 

(Qin et al., 2023)) and five-domain coexistence in the current experiment (Fig. 2) can have 

similarly small values of the indicators (angles). Therefore, all the patterns of the multiple-domain 

coexistence (three-domain, four-domain, and five-domain) can be observed in the single crystal 

Ni-Mn-Ga in the current experiment and previous experiments (Qin et al., 2023; Zhang et al., 

2023). Which pattern will finally win out might depend on the loading path, the material’s initial 

state, and internal defects. The effects of these factors are studied in the following sub-section. 
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Fig. 6 The calculated non-coplanarity angle θ, mismatch angle φ, and rotation angle ψ (in degree) 

of the 32 cases capable to describe the experimentally observed domain walls on the specimen’s 

top surface (x-y plane) in Fig. 2. 
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Fig. 7 The four optimal cases of the interfacial structures can have the same traces of the domain 

walls on the x-y plane (specimen’s top surface) as in the experimental observation. The predicted 

traces on the other surfaces of the specimen need to be verified in future experiments. 

 

3.4 Reason for five-domain formation 

As mentioned in Section 2, the specimen’s initial state is the single martensite variant M3 

whose short axis is along the specimen’s thickness direction (z-direction), while the heating at the 

specimen’s right end generates a thermal gradient along the x-direction ( ∇𝑇 //  𝑥) to drive the 

phase transformation from M3 to the austenite via the propagation of a diffuse austenite-martensite 

interface as shown in Fig. 8. Based on the simple compatibility analysis results in Fig. 3, there are 

six possible twins to form habit planes. Considering the thermal loading ( ∇𝑇 //  𝑥) to drive the 

phase transformation, the habit planes should not be parallel to the x-direction. That is to say, only 
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four cases (the cases (a), (c), (e) and (f)) are possible. Because the initial state is M3, the twins in 

the diffuse interfacial zone should include M3. So, there are three possible twins (M1M3, M2M3 

and M3M2 with ratio of ≈ 2:1) which can form the diffuse interfacial zone simultaneously 

connecting the austenite and M3, leading to the three possible 3-domain configurations, namely 

(c), (e) and (f) in Fig. 8.  

It should be noted that the three possible twins can connect to the single crystal M3 by different 

kinds of domain walls. The twin M1M3 of the case (c) can connect to M3 directly by their twinning 

boundary (twinning plane), while the twins M2M3 and M3M2 of the cases (e) and (f) connect to M3 

via a special domain wall—a needle transitional zone making the volume fraction of M3 change 

from 100% (𝑓M3
= 1 in single variant M3) to 33% (𝑓M3

= 1/3 in twin M2M3) and 67% (𝑓M3
 = 2/3 

in twin M3M2), respectively. An example of the needle pattern is shown in Fig. 8. More detailed 

experiments and discussion on the needle patterns can be found in (Zhang et al., 2018a; Zhang et 

al., 2023). As the needle-like domain wall would cost energy, it is expected that the M3M2 of case 

(f) is better than the M2M3 of case (e) in connection to the single variant M3, considering that the 

volume fraction difference between the M3M2 and M3, ∆𝑓M3
= 1–2/3 = 1/3, is less than that between 

the M2M3 and M3 (where ∆𝑓M3
= 1–1/3 = 2/3). That might explain the experimental observation in 

literature (Qin et al., 2023; Zhang et al., 2023): the case (f) of the three-domain configuration has 

been observed, while the case (e) did not appear. This means that the most likely three-domain 

configurations are only the cases (c) and (f). 

Among the two most possible three-domain configurations, which one would win out depends 

on the fluctuation/nucleation at the beginning of the phase transformation, and on the defects (such 

as residual martensite variants M1 or/and M2 in the specimen). Anyway, if both M1 and M2 

participate in the phase transformation, the cases (c) and (f) in Fig. 8 can be generated 

simultaneously to form more complicated interfacial zones, such as the four-domain 

configurations in Fig. 9, where the domain of single variant M3 is connected to the twin M1M3 (the 

configuration (i)) or M3M2 (the configuration (ii)), or both (the configuration (iii)). It is seen that, 

in the configurations (i) and (ii), the two twins M1M3 and M3M2 would need to contact to each 

other. But these are not compatible, as shown in the following analysis. 
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Fig. 8 The possible three-domain configurations from the material initial state M3 subjected to a 

thermal gradient along the specimen’s longitudinal direction (x-direction). 
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Fig. 9 The four-domain configurations. The configurations (i) and (ii) are not possible due to the 

incompatibility between the twins M3M2 and M1M3. The configuration (iii) is possible, but not yet 

observed experimentally. 

 

Based on Eq. (4), the average characteristic deformation matrix for the twins M1M3 and M3M2 

are denoted as 𝐔13 and 𝐔32, respectively, which can be approximately expressed as: 

𝐔13 =
2

3
(

α 0 0
0 β 0
0 0 β

) +
1

3
(
β 0 0
0 β 0
0 0 α

) =
1

3
(

2α + β 0 0
0 β 0
0 0 α + 2β

) ≈ (
0.98 0 0
0 1.02 0
0 0 1

)       

(23a) 

𝐔32 =
2

3
(
β 0 0
0 β 0
0 0 α

) +
1

3
(
β 0 0
0 α 0
0 0 β

) =
1

3
(

β 0 0
0 α + 2β 0
0 0 2α + β

) ≈ (
1.02 0 0
0 1 0
0 0 0.98

)        

(23b) 

with α ≈ 0.96 and β ≈ 1.02. It should be noted that the rotation Q in Eq. (4) is ignored here for the 

following simplified analysis. According to the deformation matrices in Eq. (23) and the 

compatibility analysis in Appendix A and (Bhattacharya, 2003), these two twins are not compatible 

with each other. So, the configurations (i) and (ii) in Fig 9 are not energetic preferable. By contrast, 
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the configuration (iii) is possible (like the four-domain configuration of the λ-interface in Fig. 1); 

however, it has not been observed experimentally in current material.  

Another choice for the pattern formation is the five-domain configuration as shown in Fig. 10 

where a “buffering” zone separates the three domains: the domains of single variant M3, and the 

twins M1M3 and M3M2. That means, the buffering zone needs to be compatible simultaneously 

with the three domains. If the buffering zone is assumed as a twin including M3 as a component 

(because of the initial state M3), there are two possible compositions for the buffering zone: M3—

M1 (Fig. 10(a)) and M3—M2 (Fig. 10(b)), whose volume fractions of M3 denoted as fM3 can be 

determined theoretically in the following sub-sections. 

 

 

Fig. 10 The possible five-domain configurations: (a) the buffering zone M3—M1 with the volume 

fraction 𝑓M3
=  2/3 can be compatible with all its neighboring domains, which agrees with the 

current experimental observation in Fig. 2; (b) the buffering zone M3—M2 with volume fraction 

𝑓M3
= 1/3  can be compatible with all its neighboring domains, but it was not observed 

experimentally.  

 

3.4.1 Buffering zone M3—M1 

The deformation matrices of the single variant M3 and the buffering zone M3—M1 are 

denoted as 𝐔3 and 𝐔M3−M1
 , respectively. 
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𝐔3 = (
β 0 0
0 β 0
0 0 α

)                (24a) 

 

𝐔M3−M1
 = 𝑓M3

(
β 0 0
0 β 0
0 0 α

) + (1 − 𝑓M3
) (

α 0 0
0 β 0
0 0 β

)

= (

α(1 − 𝑓M3
) + β𝑓M3

0 0

0 β 0
0 0 α𝑓M3

+ β(1 − 𝑓M3
)
) 

(24b) 

It is seen from Eqs. (23a), (24a) and (24b) that all the deformation matrices 𝐔13, 𝐔3 and 𝐔M3−M1 

have β as the second diagonal component. That means, these domains can be easily compatible to 

each other. In fact, their compatible domain walls are just their twining boundaries (twining planes) 

as shown in Fig. 2. 

In addition, the buffering zone M3—M1 needs also compatible with the twin M3M2. That 

means, one of the diagonal components in their deformation matrices (Eqs. (23(b) and (24b)) must 

be equal to each other. 

           α(1 − 𝑓M3
) + β𝑓M3

=
1

3
β           (25a) 

or       
1

3
(α + 2β) = β      (25b) 

or    α𝑓M3
+ β(1 − 𝑓M3

)= 
2α+β

3
    (25c) 

Eq. (25b) is obviously impossible as α ≠ β (α ≈ 0.96 and β ≈ 1.02). Eq. (25a) leads to 𝑓M3
=

1

3
β−α

β−α
<

0. So, only Eq. (25c) gives the reasonable prediction 𝑓M3
= 2/3 which agrees with the current 

experiments in Fig. 2. That means, the twin buffering zone M3—M1 of the five-domain pattern in 

Fig. 10(a) must have the volume fraction 𝑓M3
= 2/3  to be compatible to all its neighboring 

domains. 
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3.4.2 Buffering zone M3—M2 

Similarly, the deformation matrix of the buffering zone M3—M2 is denoted as 𝐔M3−M2
,  

𝐔M3−M2
 = 𝑓M3

(
β 0 0
0 β 0
0 0 α

) + (1 − 𝑓M3
) (
β 0 0
0 α 0
0 0 β

)

= (

β 0 0
0 β𝑓M3

+ α(1 − 𝑓M3
) 0

0 0 α𝑓M3
+ β(1 − 𝑓M3

)
)  

(26) 

For the compatibility between the buffering zone M3—M2 and the twin M1M3, one of the diagonal 

components in their deformation matrices, Eqs. (26) and 23(a), must be equal to each other. 

        
1

3
(2α + β) = β              (27a) 

or    β𝑓M3
+ α(1 − 𝑓M3

) =
1

3
β       (27b) 

or    α𝑓M3
+ β(1 − 𝑓M3

) =  
α+2β

3
    (27c) 

Similarly, Eq. (27a) is obviously impossible as α ≠ β (α ≈ 0.96 and β ≈ 1.02). Eq. (27b) leads to 

𝑓M3
=

1

3
β−α

β−α
< 0. So, only Eq. (27c) gives prediction 𝑓M3

= 1/3 .  

In addition, the buffering zone M3—M2 and the twin M3M2 need compatible with each other, 

which is easy via their twinning boundary (twinning planes). However, their twinning plane is 

parallel to the x-direction as shown in Fig. 10(b). That means, such buffering zone does not really 

separate the single domain M3 from the twin M3M2 (domain II in Fig. 2). As a result, this explains 

why the five-domain configuration in Fig. 10(b) was not observed experimentally. 

 

In summary, considering the loading path (thermal gradient along x-direction) and the 

material initial state (M3), there are only a few possible three-domain, four-domain, and five-
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domain configurations. Which one would appear depends on the fluctuation/defects during the 

phase transformation. Particularly, if both M1 and M2 participate in the phase transformation, the 

most possible configuration is the 5-domain configuration in Fig. 10(a), which agrees with the 

current experimental observation (Fig. 2). 

 

4. Discussions 

Among many external loading parameters and material internal factors influencing the domain-

pattern formation, the interface kinetics (driving force or interface velocity) and the initial 

state/defects are mostly mentioned in literature. For example, the simple two-domain coexistence 

with perfect compatibility between austenite and a martensite variant implies little elastic energy 

and small hysteresis (low energy dissipation) (Cui et al., 2006; Chen et al., 2013; Gu et al., 2018); 

by contrast, the relatively complex non-perfectly compatible domain patterns such as wedges and 

X-interfaces are expected to appear with larger driving force (e.g., higher thermal gradient) 

(Ruddock, 1994; Balandraud and Zanzotto, 2007; Stupkiewicz et al., 2007; Seiner et al., 2008; 

Balandraud et al., 2010; Petryk and Stupkiewicz, 2010; Stupkiewicz et al., 2021). In normal 

interface kinetics, larger driving force leads to faster interface propagation (Abeyaratne and 

Knowles, 1991; Faran and Shilo, 2011, 2015). Then, there might be a relation between the 

interfacial structure and the interface propagation velocity. However, up to now, we have only a 

few data: the velocity of the five-domain interface in current experiment is around 280 μm /s (see 

the movies in supplementary material); the four-domain interface (X-interface) propagates at 

around 170 μm/s  in (Qin et al., 2023); and the speed of the three-domain interface is in the range 

of 280 ~ 520 μm/s (Qin et al., 2023; Zhang et al., 2023). A clear relation between the interfacial 

structure and speed is not yet established. The reason might be that the interface kinetics depends 

on the energy barriers caused by not only the elastic energy (due to the interface non-compatibility), 

but also the material’s initial state or/and defects/imperfections (Chang and Read, 1951; Zreihan 

et al., 2015). The initial-state effect on the interfacial structure was clearly demonstrated in (Qin 

et al., 2023) while material imperfections such as the residual stress and the inhomogeneous 

chemical compositions were discussed in (Chang and Read, 1951; Ruddock, 1994). Once a certain 

domain pattern was nucleated due to the defects or the initial state, it would continue during the 

interface propagation because most of the domain patterns are meta-stable (near local energy 
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minimizer). That means, various domain patterns might appear randomly, depending on the 

interface nucleation or the barriers/obstacles the propagating interface encounter.  

Strictly speaking, the five coexisting domains emphasized in this paper just show the meso-

scale features of a macroscopic diffuse austenite-martensite interface in the Ni-Mn-Ga magnetic 

SMA. Within each domain, there are many sub-domains such as the twin laminate (Fig. 2), the 

magnetic domains (in the ferromagnetic austenite and martensite of the current material with a 

Curie temperature around 100 ℃) (Kiefer and Lagoudas, 2005; Peng et al., 2015; Qin et al., 2023), 

the so-called “AB twin”, and “modulation twin” (if the slightly monoclinic deformation in the 

martensite takes effect (Straka et al., 2011; Chulist et al., 2013; Heczko et al., 2013; Pascan et al., 

2015; Qin et al., 2023)). The interactions between these sub-domains can generate much more 

complicated patterns including numerous microscopic domain walls, whose interfacial energy is 

ignored in usual compatibility analysis (Ruddock, 1994). Alternatively, the effects of these sub-

domains and microscopic domain walls might be taken into account in macroscopic continuum 

models by multi-scale analysis such as (Stupkiewicz et al., 2021). Even though the global 

continuum model might not be simple (e.g., with the softening stress-strain curve and non-convex 

energy), the macroscopic process, the single-interface propagation in a SMA single crystal, is very 

simple, compared with the phase transformation in polycrystals.  

In the grains of a polycrystalline SMA, the nucleation and propagation of multiple interfaces 

would take place. Moreover, due to the constraints of the grain boundaries and the grain-grain 

interactions, the interface propagation would encounter various resistant forces generating 

complex domain patterns, most of which are far from compatibility; i.e., lots of elastic energy is 

stored in the domain patterns (Salzbrenner and Cohen, 1979; Christian, 1982; Wollants et al., 1993; 

Levitas et al., 2010; Petryk and Stupkiewicz, 2010). For example, the diamond pattern (one of the 

self-accommodating martensite microstructures generated within the sea of austenite) is not a 

compatible configuration based on the analysis of (Hane and Shield, 1998). The large elastic 

energy stored in the grains during phase transformation would cause large energy dissipation 

(hysteresis) because the energy storage and release do not occur smoothly, but happen suddenly 

(unstable process) (He, 2023). That might be the reason for the empirical rule: the hysteresis of 

polycrystalline SMA is usually higher than that of single crystals. In the current study on single 

crystal, although the interfacial structure includes multiple domains, the compatibility analysis 
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demonstrates that these domain patterns are near perfectly compatible with small elastic energy so 

that the hysteresis is not large in the single crystal SMA.  

 

5. Summary and conclusions: 

The experimental observation on the five-domain interfacial structure is reported and 

accompanied by a compatibility analysis, comparing the non-compatibility between the new 

pattern and the previously reported four-domain pattern (X-interface), with three different 

indicators to characterize the degree of the non-compatibility. Moreover, the effects of the thermal 

loading path and the material initial state have been studied. Some conclusions can be drawn: 

1. The elasticity due to the non-compatibility of the complex domain patterns in the interfacial 

structure would generate energy barrier for the phase transformation. In a clean single 

crystal (with little defect), the perfectly compatible patterns (such as the three-domain 

pattern with planar interface in Fig. 1(b)) would be generated more easily than the complex 

patterns such as the four-domain and five-domain patterns (which are not perfectly 

compatible). 

2. The non-compatibility indicators show that both the present five-domain pattern and the 

four-domain pattern (X-interface) in the single crystals are very near the perfect 

compatibility, implying that they would cause only small elastic energy and can appear 

without large driving forces. 

3. The compatibility analysis predicts several near-perfectly-compatible configurations of the 

five-domain interfaces whose formation/nucleation might depend on the loading condition, 

the material’s initial state and defects. 

 

 

 

Declaration of Competing Interest  

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 



34 
 

 

Acknowledgements 

Chengguan Zhang would like to acknowledge China Scholarship Council (CSC) for the financial 

support (NO. 202006890005). 

 

Appendix A: Compatibility solution procedures 

Following the method in (Ball and James, 1992; James and Hane, 2000; Bhattacharya, 2003; 

Balandraud et al., 2010; Zhang et al., 2018a), if FI and FII were defined as a pair of homogenous 

deformation gradients and a planar interface with normal 𝐧̂ existing between the two parts, the 

perfectly compatible interface plane can be achieved when the Hadamard condition of kinematic 

compatibility holds: 

𝐑  𝐅𝐈  −  𝐅𝐈𝐈  =  𝐚  ⊗ 𝐧̂     (A.1) 

where R is the rotation, a is the shear vector, 𝐧̂ is the unit normal of the interface in the reference 

(undeformed) configuration. A sufficient and necessary condition for Eq. (A.1) to have solutions 

is that the matrix C =  𝐅𝐈𝐈
−T 𝐅𝐈

T 𝐅𝐈 𝐅𝐈𝐈
−1 has ordered eigenvalues μ1 ≤ μ2 = 1 ≤ μ3, and the solutions 

to Eq. (A.1) can be given in pair as follows: 

{
𝐧̂±  =

√𝜇3 − √𝜇1

𝜌√𝜇3−𝜇1
 (−√1 − 𝜇1 𝐅𝐈𝐈

T 𝐞1  + 𝑘 √𝜇3 − 1 𝐅𝐈𝐈
T 𝐞3)

𝐚± = 
𝜌

√𝜇3−𝜇1
(√𝜇3(1 − 𝜇1) 𝐞1  + 𝑘 √𝜇1(𝜇3 − 1) 𝐞3)

  (A.2) 

where ρ is a constant to make 𝐧̂ a unit vector, e1 and e3 are the eigenvectors corresponding to μ1 

and μ3, respectively, and the notation ‘±’ of 𝐧̂ and a is corresponding to k = ± 1. Once 𝐧̂ and a are 

calculated, the rotation R can be obtained by substituting 𝐧̂ and a back to Eq. (A.1).  

1. Twinning equations 

By substituting the Bain matrices Ui and Uj (defined in Eq. (2)) into FI and FII in Eq. (A.1), we 
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can obtain the twinning equation: 

𝐐𝑖𝑗  𝐔𝑗  −  𝐔i  =  𝐚𝑖𝑗  ⊗ 𝐧̂𝑖𝑗     (A.3) 

where Qij is the rotation acting on Uj. Solving Eq. (A.3) with the different combinations of the 

three tetragonal martensite variants can give all the orientations of the compatible twin planes (twin 

boundaries), which are summarized in Table A1. The results indicate that the projection of the 

twinning plane between M1 and M2 on the x-y plane is 45° to the x-axis, while that of the twinning 

plane between M1 and M3 (M3 and M2) is vertical (parallel) to the x-axis as shown in Fig. 3.  

 

 

Table A1 Solutions for twinning equations between martensite variants Mi and Mj. 

 Normal of the twinning plane 𝐧̂𝑖𝑗  
Rotation acting on Mj in MiMj 

Qij 

M1-M2 

𝐧̂12
+  = 

√2

2
[1  -1  0] Q12

+ = (
0.9983 −0.0588 0
0.0588 0.9983 0
0 0 1

) 

𝐧̂12
−  = 

√2

2
[-1  -1  0] Q12

− = (
0.9983 0.0588 0
−0.0588 0.9983 0

0 0 1
) 

M2-M1 

𝐧̂21
+  = 

√2

2
[-1  1  0] Q21

+ = (−
0.9983 0.0588 0
0.0588 0.9983 0
0 0 1

) 

𝐧̂21
−  = 

√2

2
[-1  -1  0] Q21

− = (
0.9983 −0.0588 0
0.0588 0.9983 0
0 0 1

) 

M1-M3 

𝐧̂13
+  = 

√2

2
[1  0  -1] Q13

+ = (
0.9983 0 −0.0588
0 1 0

0.0588 0 0.9983
) 

𝐧̂13
−  = 

√2

2
[-1  0  -1] Q13

− = (
0.9983 0 0.0588
0 1 0

−0.0588 0 0.9983
) 

M3-M1 

𝐧̂31
+  = 

√2

2
[-1  0  1] Q31

+ = (
0.9983 0 0.0588
0 1 0

−0.0588 0 0.9983
) 

𝐧̂31
−  = 

√2

2
[-1  0  -1] Q31

− = (
0.9983 0 −0.0588
0 1 0

0.0588 0 0.9983
) 

M2-M3 

𝐧̂23
+  = 

√2

2
[0  1  -1] Q23

+ = (
1 0 0
0 0.9983 −0.0588
0 0.0588 0.9983

) 

𝐧̂23
−  = 

√2

2
[0  -1  -1] Q23

− = (
1 0 0
0 0.9983 0.0588
0 −0.0588 0.9983

) 

M3-M2 

𝐧̂32
+  = 

√2

2
[0  -1  1] Q32

+ = (
1 0 0
0 0.9983 0.0588
0 −0.0588 0.9983

) 

𝐧̂32
−  = 

√2

2
[0  -1  -1] Q32

− = (
1 0 0
0 0.9983 −0.0588
0 0.0588 0.9983

) 
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2. Habit plane equations 

In Eq. (A.1), when FII = I for austenite and FI = 𝐔𝑖𝑗  =  λ𝑖𝑗𝐔𝑖 + (1 − λ𝑖𝑗) 𝐐𝑖𝑗𝐔𝑗  for the 

deformation gradient of the twin MiMj (λ𝑖𝑗 is the volume fraction of the major component Mi in 

the twin), the compatibility condition of the austenite-twin interface can be expressed as: 

𝐑𝑖𝑗  𝐔𝑖𝑗  −  𝐈 =  𝐛𝑖𝑗  ⊗ 𝐦̂𝑖𝑗      (A.4) 

where Rij is the rotation acting on Uij and 𝐅𝑖𝑗 = 𝐑𝑖𝑗  𝐔𝑖𝑗 describes the deformation gradient of the 

rotated twin MiMj. According to (Bhattacharya, 2003), the necessary and sufficient conditions for 

Eq. (A.4) are: 

{

𝐚𝑖𝑗  ∙  𝐔𝑖  (𝐔𝑖
2  − 1)−1 𝐧̂𝑖𝑗  ≤  −2

tr(𝐔𝑖
2)  −  det(𝐔𝑖

2)  −  2 + 
|𝐚𝑖𝑗|

2

𝟐 𝐚𝑖𝑗∙ 𝐔𝑖 (𝐔𝑖
2 −1)

−1
 𝐧̂𝑖𝑗 

 ≥  0
  (A.5) 

where 𝐚𝑖𝑗 and 𝐧̂𝑖𝑗 are solutions to Eq. (A.3). And there are two λ values that are given as: 

{
λ

𝑖𝑗

I
 =  

1

2
 (1 − √1 +

2

𝐚𝑖𝑗∙ 𝐔𝑖 (𝐔𝑖
2 −1)

−1
 𝐧̂𝑖𝑗 
)

λ
𝑖𝑗

II
 =  1 − λ

𝑖𝑗

    (A.6) 

Two values can be obtained from Eq. (A.6): λ𝑖𝑗 ≈ 0.6823 or 0.3177 . The former value λ𝑖𝑗 ≈

0.6823 is selected because λ𝑖𝑗 is defined as the major volume fraction in the current study. The 

solutions to Eq. (A.4) are listed in Table A2, where we can see that, for each twin MiMj of the habit 

plane, there are four solutions (a) ~ (d) of the habit plane unit normal 𝐦̂𝑖𝑗, the deformation gradient 

𝐅𝑖𝑗, etc. The projections of the habit planes onto the x-y plane are plotted in Fig. 3, which help 

identify the composition of the twinning structures in the experimental observation. 
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Table A2 Compatible planes (habit planes) between austenite phase and martensite twins. The 

solutions marked in grey are consistent with the current experimental observation (giving similar 

traces (or projections) of the habit planes and twinning planes on the specimen’s x-y plane). 

 

Twin 

MiMj 

Qij acting 

on Mj  
λ𝑖𝑗  

Normal of the habit 

plane 𝐦̂𝑖𝑗  

Rotation acting on MiMj 

Rij 

Deformation 

gradient Fij 

M1M2 

Q12
+  

0.6823 

𝐦̂𝟏𝟐(a)  
[0.7245 -0.0253 0.6888] 

R12(a)  

(
0.9996 0.0187 −0.0200
−0.0187 0.9998 0.0007
0.0200 −0.0003 0.9998

) 
F12(a) 

𝐦̂𝟏𝟐(b)  
[0.7245 -0.0253 -0.6888] 

R12 (b)  

(
0.9996 0.0187 0.0200
−0.0187 0.9998 −0.0007
−0.0200 0.0003 0.9998

) 
F12(b) 

Q12
−  

𝐦̂𝟏𝟐(c)  
[0.7245 0.0253 0.6888] 

R12 (c)  

(
0.9996 −0.0187 −0.0200
0.0187 0.9998 −0.0007
0.0200 0.0003 0.9998

) 
F12(c) 

𝐦̂𝟏𝟐(d)  
[0.7245 0.0253 -0.6888] 

R12 (d)  

(
0.9996 −0.0187 0.0200
0.0187 0.9998 0.0007
−0.0200 −0.0003 0.9998

) 
F12(d) 

M2M1 

Q21
+  

0.6823 

𝐦̂𝟐𝟏(a) 
[-0.0253 0.7245 0.6888] 

R21(a)  

(
0.9998 −0.0187 0.0007
0.0187 0.9996 −0.0200
−0.0003 0.0200 0.9998

) 
F21(a) 

𝐦̂𝟐𝟏(b) 
[-0.0253 0.7245 -0.6888] 

R21 (b)  

(
0.9998 −0.0187 −0.0007
0.0187 0.9996 0.0200
0.0003 −0.0200 0.9998

) 
F21(b) 

Q21
−  

𝐦̂𝟐𝟏(c) 
[0.0253 0.7245 0.6888] 

R21 (c)  

(
0.9998 0.0187 −0.0007
−0.0187 0.9996 −0.0200
0.0003 0.0200 0.9998

) 
F21(c) 

𝐦̂𝟐𝟏(d) 
[0.0253 0.7245 -0.6888] 

R21 (d)  

(
0.9998 0.0187 0.0007
−0.0187 0.9996 0.0200
−0.0003 −0.0200 0.9998

) 
F21(d) 

M1M3 

Q13
+  

0.6823 

𝐦̂𝟏𝟑(a)  
[-0.7245 0.6888 0.0253] 

R13 (a)  

(
0.9996 0.0200 0.0187
−0.0200 0.9998 0.0003
−0.0187 −0.0007 0.9998

) 
F13(a) 

𝐦̂𝟏𝟑(b)  
[-0.7245 -0.6888 0.0253] 

R13 (b)  

(
0.9996 −0.0200 0.0187
0.0200 0.9998 −0.0003
−0.0187 0.0007 0.9998

) 
F13(b) 

Q13
−  

𝐦̂𝟏𝟑(c)  
[0.7245 -0.6888 0.0253] 

R13 (c)  

(
0.9996 0.0200 −0.0187
−0.0200 0.9998 −0.0003
0.0187 0.0007 0.9998

) 
F13(c) 

𝐦̂𝟏𝟑(d)  
[0.7245 0.6888 0.0253] 

R13 (d)  

(
0.9996 −0.0200 −0.0187
0.0200 0.9998 0.0003
0.0187 −0.0007 0.9998

) 
F13(d) 
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Table A2(continue) 

 

 

 

Twin 

MiMj 

Qij acting 

on Mj 
λ𝑖𝑗  

Normal of the habit plane 

𝐦̂𝑖𝑗  

Rotation acting on MiMj 

Rij 

Deformation 

gradient Fij 

M3M1 

Q31
+  

0.6823 

𝐦̂𝟑𝟏(a) 
[-0.0253 -0.6888 0.7245] 

R31(a)  

(
0.9998 −0.0007 −0.0187
0.0003 0.9998 −0.0200
0.0187 0.0200 0.9996

) 
F31(a) 

𝐦̂𝟑𝟏(b) 
[-0.0253 0.6888 0.7245] 

R31 (b)  

(−
0.9998 0.0007 −0.0187
0.0003 0.9998 0.0200
0.0187 −0.0200 0.9996

) 
F31(b) 

Q31
−  

𝐦̂𝟑𝟏(c) 
[0.0253 0.6888 0.7245] 

R31 (c)  

(
0.9998 −0.0007 0.0187
0.0003 0.9998 0.0200
−0.0187 −0.0200 0.9996

) 
F31(c) 

𝐦̂𝟑𝟏(d) 
[0.0253 -0.6888 0.7245] 

R31 (d)  

(
0.9998 0.0007 0.0187
−0.0003 0.9998 −0.0200
−0.0187 0.0200 0.9996

) 
F31(d) 

M2M3 

Q23
+  

0.6823 

𝐦̂𝟐𝟑(a) 
[0.6888 0.7245 -0.0253] 

R23(a)  

(
0.9998 0.0200 −0.0003
−0.0200 0.9996 0.0187
0.0007 −0.0187 0.9998

) 
F23(a) 

𝐦̂𝟐𝟑(b) 
[-0.6888 0.7245 -0.0253] 

R23 (b)  

(
0.9998 −0.0200 0.0003
0.0200 0.9996 0.0187
−0.0007 −0.0187 0.9998

) 
F23(b) 

Q23
−  

𝐦̂𝟐𝟑(c) 
[0.6888 0.7245 0.0253] 

R23 (c)  

(
0.9998 0.0200 0.0003
−0.0200 0.9996 −0.0187
−0.0007 0.0187 0.9998

) 
F23(c) 

𝐦̂𝟐𝟑(d) 
[-0.6888 0.7245 0.0253] 

R23 (d)  

(
0.9998 −0.0200 −0.0003
0.0200 0.9996 −0.0187
0.0007 0.0187 0.9998

) 
F23(d) 

M3M2 

Q32
+  

0.6823 

𝐦̂𝟑𝟐(a)  
[0.6888 -0.0253 0.7245] 

R32 (a) 

(
0.9998 −0.0003 0.0200
0.0007 0.9998 −0.0187
−0.0200 0.0187 0.9996

) 
F32(a) 

𝐦̂𝟑𝟐(b)  
[-0.6888 -0.0253 0.7245] 

R32 (b) 

(
0.9998 0.0003 −0.0200
−0.0007 0.9998 −0.0187
0.0200 0.0187 0.9996

) 
F32(b) 

Q32
−  

𝐦̂𝟑𝟐(c)  
[0.6888 0.0253 0.7245] 

R32 (c) 

(
0.9998 0.0003 0.0200
−0.0007 0.9998 0.0187
−0.0200 −0.0187 0.9996

) 
F32(c) 

𝐦̂𝟑𝟐(d)  
[-0.6888 0.0253 0.7245] 

R32 (d) 

(
0.9998 −0.0003 −0.0200
0.0007 0.9998 0.0187
0.0200 −0.0187 0.9996

) 
F32(d) 
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3. Global compatibility of the experimentally observed five-domain structure  

 

 

Fig. A1 The schematic of the experimentally observed five-domain structure. 

 

Based on the experimental observation (as shown in Fig. A1), the compatibility equations for habit 

planes OB and OD can be formulated as follows. 

For habit plane OB with the twin M3M2: 

𝐐32𝐔2 − 𝐔3  =  𝐚32⊗ 𝐧̂32     (A.7) 

𝐔32  =  λ32𝐔3 + (1 − λ32) 𝐐32𝐔2,     (A.8) 

𝐅32 − 𝐈 =  𝐛32⊗ 𝐦̂32     (A.9) 

where 𝐅32  =  𝐑32𝐔32 and λ32 is the volume fraction of the variants 𝐔3 in the twin 𝐔32. 

For habit plane OD: 

𝐐13𝐔3 − 𝐔1  =  𝐚13⊗ 𝐧̂13     (A.10) 

𝐔13  =  λ13𝐔1 + (1 − λ13) 𝐐13𝐔3,     (A.11) 

𝐅13  − 𝐈 =  𝐛13⊗ 𝐦̂13     (A.12) 

where 𝐅13  =  𝐑13𝐔13 and λ13is the volume fraction of the variants 𝐔1 in the twin 𝐔13.  

By solving Eqs. (A.7) ~ (A.12) (results in Table A2) and comparison with Fig. A1, we obtain four 

solutions of F32 (e.g., F32 (a) ~ (d)) and two solutions of F13 (e.g., F13 (b) and (d)) that can describe 

the two domains (twins M3M2 and M1M3) with the observed habit planes OB and OD, whose traces 

(or projections) on the x-y plane are approximately vertical and 45° to x-axis, respectively.  
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The compatibility between twins M3M1 and M3M2 separated by the domain wall OA can be 

described by equations below: 

𝐐31𝐔1 − 𝐔3  =  𝐚31⊗ 𝐧̂31     (A.13) 

𝐔31  =  λ31𝐔3 + (1 − λ31) 𝐐31𝐔1,     (A.14) 

𝐅31  − 𝐅32  =  𝐛3231⊗ 𝐦̂3231    (A.15) 

where 𝐅31  =  𝐑3231𝐔31 and λ31 is the volume fraction of the variants 𝐔3 in the twin 𝐔31. Similar 

to the solution procedures above, we calculate the matrix C =  𝐅32
−T 𝐔31

T 𝐔31 𝐅32
−1 , whose 

eigenvalues α1, α2, and α3 now depend on the volume fraction λ31 . To satisfy the compatible 

condition in Eq. (A.15), one of the eigenvalues must be one, and the other two should be greater 

than one and smaller than one, respectively. As a result, we obtain two λ31 values (λ31 ≈ 1 or λ31 

≈ 0.6823), and λ31  ≈ 0.6823 is utilized because this value is consistent with our experimental 

observation. Based on the obtained λ31, the solutions to Eq. (A.15) are shown in Table A3, among 

which only 8 solutions (marked in grey, 𝐦̂3231≈ [1 1 0] or [-1 -1 0]) can capture the experimentally 

observed domain wall OA (whose trace (or projection) on the x-y plane is around 45° to the x-axis).  
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Table A3 Compatibility between twin M3M2 (whose deformation gradient F32 has been already 

verified to be compatible with austenite in Table A2) and twin M3M1 (whose deformation gradient 

F31 is currently solved) for the five-domain structure. The solutions marked in grey are consistent 

with the experimental observation. 

 

 

 

Deformation 

matrix F32 

Q31 

acting 

on M1 

λ31 

Normal of the twin-twin 

plane 

𝐦̂3231 

Rotation acting on M3M1 

R3231 

Deformat

ion 

gradient 

F31 

F32(a) 

Q31
+  

0.6823 

𝐦̂𝟑𝟐𝟑𝟏(a) 
[0.7061 0.7061 -0.0544] 

R3231(a)  

(
0.9998 −0.0194 0.0021
0.0194 0.9998 −0.0011
−0.0021 0.0011 1

) 
F31(a) 

𝐦̂𝟑𝟐𝟑𝟏(b) 
[0.7071 -0.7071 0] 

R3231 (b)  

(
0.9998 0.0180 0.0006
−0.0180 0.9998 0.0011
−0.0006 −0.0011 1

) 
F31(b) 

Q31
−  

𝐦̂𝟑𝟐𝟑𝟏(c) 
[0.7061 -0.7061 0.0544] 

R3231(c)  

(
0.9991 0.0180 0.0380
−0.0180 0.9998 −0.0011
−0.0380 0.0004 0.9993

) 
F31(c) 

𝐦̂𝟑𝟐𝟑𝟏(d) 
[0.7071 0.7071 0] 

R3231(d)  

(
0.9990 −0.0194 0.0394
0.0194 0.9998 0.0011
−0.0395 −0.0004 0.9992

) 
F31(d) 

F32(b) 

Q31
+  

0.6823 

𝐦̂𝟑𝟐𝟑𝟏(e) 
[0.7071 -0.7071 0] 

R3231(e)  

(
0.9990 0.0194 −0.0394
−0.0194 0.9998 0.0011
0.0395 −0.0004 0.9992

) 
F31(e) 

𝐦̂𝟑𝟐𝟑𝟏(f) 
[0.7061 0.7061 -0.0544] 

R3231(f)  

(
0.9991 −0.0180 −0.0380
0.0180 0.9998 −0.0011
0.0380 0.0004 0.9993

) 
F31(f) 

Q31
−  

𝐦̂𝟑𝟐𝟑𝟏(g) 
[0.7071 0.7071 0] 

R3231(g)  

(
0.9998 −0.0180 −0.0006
0.0180 0.9998 0.0011
0.0006 −0.0011 1

) 
F31(g) 

𝐦̂𝟑𝟐𝟑𝟏(h) 
[0.7061 -0.7061 0.0544] 

R3231(h)  

(
0.9998 0.0194 −0.0021
−0.0194 0.9998 −0.0011
0.0021 0.0011 1

) 
F31(h) 
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Table A3(continue)  

 

Now, we obtain all the deformation matrices of 𝐅13  (2 solutions) and 𝐅31  (8 solutions) that are 

consistent with the experimental observation, but none of them satisfy Eq. (A.16): 

𝐅31  − 𝐅13  =  𝐛1331⊗ 𝐦̂1331   (A.16) 

According to (Balandraud et al., 2010), an extra rotation matrix R can be added in Eq. (A.16) to 

achieve the “compatibility”: 

𝐑 𝐅31  − 𝐅13  =  𝐛1331⊗ 𝐦̂1331    (A.17) 

With the solution to Eq. (A.17), there are three indicators in the literature to estimate the non-

compatibility: the rotation angle ψ, the mismatch angle φ , and the non-coplanarity angle θ as 

defined in Eqs. (20) ~ (22). 

Deformation 

matrix F32 

Q31 

acting 

on M1 

λ31 

Normal of the twin-twin 

plane 

𝐦̂3231 

Rotation acting on M3M1 

R3231 

Deformat

ion 

gradient 

F31 

F32(c) 

Q31
+  

0.6823 

𝐦̂𝟑𝟐𝟑𝟏(i) 
[0.7061 -0.7061 -0.0544] 

R3231(i) 

(
0.9998 0.0194 0.0021
−0.0194 0.9998 0.0011
−0.0021 −0.0011 1

) 
F31(i) 

𝐦̂𝟑𝟐𝟑𝟏(j) 
[0.7071 0.7071 0] 

R3231(j) 

(
0.9998 −0.0180 0.0006
0.0180 0.9998 −0.0011
−0.0006 0.0011 1

) 
F31(j) 

Q31
−  

𝐦̂𝟑𝟐𝟑𝟏(k) 
[0.7061 0.7061 0.0544] 

R3231(k) 

(
0.9991 −0.0180 0.0380
0.0180 0.9998 0.0011
−0.0380 −0.0004 0.9993

) 
F31(k) 

𝐦̂𝟑𝟐𝟑𝟏(l) 
[0.7071 -0.7071 0] 

R3231(l) 

(
0.9990 0.0194 0.0394
−0.0194 0.9998 −0.0011
−0.0395 0.0004 0.9992

) 
F31(l) 

F32(d) 

Q31
+  

0.6823 

𝐦̂𝟑𝟐𝟑𝟏(m) 
[0.7071 0.7071 0] 

R3231(m) 

(
0.9990 −0.0194 −0.0394
0.0194 0.9998 −0.0011
0.0395 0.0004 0.9992

) 
F31(m) 

𝐦̂𝟑𝟐𝟑𝟏(n) 
[0.7061 -0.7061 -0.0544] 

R3231(n) 

(
0.9991 0.0180 −0.0380
−0.0180 0.9998 0.0011
0.0380 −0.0004 0.9993

) 
F31(n) 

Q31
−  

𝐦̂𝟑𝟐𝟑𝟏(o) 
[0.7071 -0.7071 0] 

R3231(o) 

(
0.9998 0.0180 −0.0006
−0.0180 0.9998 −0.0011
0.0006 0.0011 1

) 
F31(o) 

𝐦̂𝟑𝟐𝟑𝟏(p) 
[0.7061 0.7061 0.0544] 

R3231(p) 

(
0.9998 −0.0194 −0.0021
0.0194 0.9998 0.0011
0.0021 −0.0011 1

) 
F31(p) 
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The solutions to Eq. (A.17), which are consistent with the experimental observation, and their 

corresponding non-compatibility indicators are listed in Table A4.  

 

Table A4 The calculation details of the compatibility between F13 and F31 (which are consistent 

with the experimental observation), for the five-domain structure, and their corresponding non-

compatibility indicators. 

Deformation 

matrix  
Normal of the twin-

twin plane 

𝐦̂1331 

Corresponding F32 
Rotation 

angle ψ (°) 

Mismatch 

angle φ (°) 

Non-

coplanarity 

angle θ (°) 

Order after 

sorting by 

angle ψ F13 F31 

F13(b) 

F31(a) 
[-0.7071 0 -0.7071] 

F32(a) 

with 

𝐦̂𝟑𝟐(a) 
[0.6888 -0.0253 0.7245] 

0.0612 0.0606 0.5111 3 

[0.7071 0 -0.7071] 2.4186 2.4182 70.2299 25 

F31(d) 
[0.6820 0 -0.7313] 2.4258 2.4257 67.221 31 

[-0.7313 0 -0.6820] 0.0824 0.0437 3.92 5 

F13(d) 

F31(a) 
[0.6820 0 0.7313] 0.1196 0.1110  2.5595 7 

[-0.7313 0 0.6820] 2.4239 2.4218 73.0426 29 

F31(d) 
[-0.7071 0 -0.7071] 0.0555 0.0542 0.6922 1 

[0.7071 0 -0.7071] 2.4222 2.4219 69.9423 27  

F13(b) 

F31(f) 
[-0.7071 0 -0.7071] 

F32(b) 

with 

𝐦̂𝟑𝟐(b) 
[-0.6888 -0.0253 0.7245] 

2.3389 2.3369 66.916 19  

[0.7071 0 -0.7071] 0.1708 0.1567 4.3191 9  

F31(g) 
[0.6820 0 -0.7313] 0.2045 0.2040  0.8533 15  

[-0.7313 0 -0.6820] 2.3407 2.3354 69.8405 21  

F13(d) 

F31(f) 
[0.6820 0 0.7313] 2.3424 2.3420  64.2001 23  

[-0.7313 0 0.6820] 0.1828 0.1345 7.6672 13  

F31(g) 
[-0.7071 0 -0.7071] 2.3353 2.3331 67.0371 17  

[0.7071 0 -0.7071] 0.1754 0.1629 4.0332 11  

F13(b) 

F31(j) 
[-0.7071 0 -0.7071] 

F32(c) 

with 

𝐦̂𝟑𝟐(c) 
[0.6888 0.0253 0.7245] 

0.1754 0.1629 4.0332 12  

[0.7071 0 -0.7071] 2.3353 2.3331 67.0371 18  

F31(k) 
[0.6820 0 -0.7313] 2.3424 2.3420  64.2001 24  

[-0.7313 0 -0.6820] 0.1828 0.1345 7.6672 14  

F13(d) 

F31(j) 
[0.6820 0 0.7313] 0.2045 0.2040  0.8533 16  

[-0.7313 0 0.6820] 2.3407 2.3354 69.8405 22  

F31(k) 
[-0.7071 0 -0.7071] 0.1708 0.1567 4.3191 10  

[0.7071 0 -0.7071] 2.3389 2.3369 66.9160  20  

F13(b) 

F31(m) 
[-0.7071 0 -0.7071] 

F32(d) 

with 

𝐦̂𝟑𝟐(d) 
[-0.6888 0.0253 0.7245] 

2.4222 2.4219 69.9423 28  

[0.7071 0 -0.7071] 0.0555 0.0542 0.6922 2 

F31(p) 
[0.6820 0 -0.7313] 0.1196 0.1110  2.5595 8  

[-0.7313 0 -0.6820] 2.4239 2.4218 73.0426 30  

F13(d) 

F31(m) 
[0.6820 0 0.7313] 2.4258 2.4257 67.221 32  

[-0.7313 0 0.6820] 0.0824 0.0437 3.92 6  

F31(p) 
[-0.7071 0 -0.7071] 2.4186 2.4182 70.2299 26  

[0.7071 0 -0.7071] 0.0612 0.0606 0.5111 4 
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Appendix B: Compatibility of the experimentally observed four-domain structure 

 

 

Fig. B1 The schematic of the experimentally observed four-domain structure. 

 

In our previous experiments on the same material (Ni-Mn-Ga single crystal) (Qin et al., 2023), 

a four-domain interfacial structure consisting of the M1 variant, twin M1M3, twin M1M2 and 

austenite was observed, as schematically shown in Fig. B1. The compatibility of the domain walls 

can be formulated as follows: 

For habit plane OA: 

𝐐12𝐔2 − 𝐔1  =  𝐚12⊗ 𝐧̂12     (B.1) 

𝐔12  =  λ12𝐔1 + (1 − λ12) 𝐐12𝐔2,     (B.2) 

𝐅12 − 𝐈 =  𝐛12⊗ 𝐦̂12     (B.3) 

where 𝐅12  =  𝐑12𝐔12 and λ12 is the volume fraction of the variant 𝐔1 in the twin 𝐔12. 

For habit plane OC: 

𝐐13𝐔3 − 𝐔1  =  𝐚13⊗ 𝐧̂13     (B.4) 

𝐔13  =  λ13𝐔1 + (1 − λ13) 𝐐13𝐔3,     (B.5) 

𝐅13  − 𝐈 =  𝐛13⊗ 𝐦̂13     (B.6) 

where 𝐅13  =  𝐑13𝐔13  and λ13  is the volume fraction of the variant 𝐔1  in the twin 𝐔13 . The 

solutions to the above habit planes are already shown in Table A2 of Appendix A. 

For domain wall OD: 
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𝐅1  − 𝐅12  =  𝐛121⊗ 𝐦̂121     (B.7) 

where 𝐅1  =  𝐑121𝐔1. With the given F12 of Table A2, the solutions of F1 to Eq. (B.7) are listed in 

Table B1. 

 

Table B1 Compatibility planes between the single variant M1 and the twin M1M2 (whose 

deformation gradient F12 is already verified to be compatible with austenite in Table A2) for the 

four-domain structure. 

 

Finally, we need to check the compatibility of the domain wall OB. It is easy to find that the 

Hadamard condition with the deformation matrices F1 and F13 derived above is not satisfied; i.e., 

there is no solution to the equation 𝐅1  − 𝐅13  =  𝐛131⊗ 𝐦̂131. An extra rotation R is needed to 

achieve the “compatibility”: 

Deformatio

n matrix 

F32 

Normal of the twin-twin 

plane 

𝐦̂121 

Rotation acting on M3M1 

R121 

Deformation gradient 

F1 

F12(a) 

𝐦̂𝟏𝟐𝟏(a) 
[0.6782 0.7349 0] 

R121(a)  

(
0.9996 −0.0187 −0.0200
0.0187 0.9998 0.0007
0.0200 −0.0011 0.9998

) 
F1(a) 

𝐦̂𝟏𝟐𝟏(b) 
[0.7071 -0.7071 0] 

R121 (b)  

(
0.9996 0.0187 −0.0200
−0.0187 0.9998 0.0007
0.0200 −0.0003 0.9998

) 
F1(b) 

F12(b) 

𝐦̂𝟏𝟐𝟏(c) 
[0.6782 0.7349 0] 

R121(c)  

(
0.9996 −0.0187 0.0200
0.0187 0.9998 −0.0007
−0.0200 0.0011 0.9998

) 
F1(c) 

𝐦̂𝟏𝟐𝟏(d) 
[0.7071 -0.7071 0] 

R121(d)  

(
0.9996 0.0187 0.0200
−0.0187 0.9998 −0.0007
0.0200 −0.0003 0.9998

) 
F1(d) 

F12(c) 

𝐦̂𝟏𝟐𝟏(e) 
[0.7071 0.7071 0] 

R121(e)  

(
0.9996 −0.0187 −0.0200
0.0187 0.9998 −0.0007
0.0200 0.0003 0.9998

) 
F1(e) 

𝐦̂𝟏𝟐𝟏(f) 
[0.6782 -0.7349 0] 

R121(f)  

(
0.9996 0.0187 −0.0200
−0.0187 0.9998 −0.0007
0.0200 0.0011 0.9998

) 
F1(f) 

F12(d) 

𝐦̂𝟏𝟐𝟏(g) 
[0.7071 0.7071 0] 

R121(g)  

(
0.9996 −0.0187 0.0200
0.0187 0.9998 0.0007
−0.0200 −0.0003 0.9998

) 
F1(g) 

𝐦̂𝟏𝟐𝟏(h) 
[0.6782 -0.7349 0] 

R121(h)  

(
0.9996 0.0187 0.0200
−0.0187 0.9998 0.0007
−0.0200 −0.0011 0.9998

) 
F1(h) 
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𝐑 𝐅1  − 𝐅13  =  𝐛131⊗ 𝐦̂131      (B.8) 

Solving Eqs. (B.1) ~ (B.8), we obtain four domain wall unit normals 𝐦̂12, 𝐦̂13, 𝐦̂121, and 

𝐦̂131. The corresponding non-compatibility indicators ψ, φ, and θ defined in Eqs. (20) ~ (22) of 

the main text of the paper are: 

ψ =  arccos (
tr 𝐑 −1

2
)     (B.9)  

where R is the extra rotation from Eq. (B-8). 

φ = arccos (
|n1 ∙ n2|

|n1||n2|
)     (B.10) 

where n1 = (𝐅13)
−T𝐦̂131  and n2 = (𝐅1)

−T𝐦̂131  are normal of twin-twin planes in deformed 

configurations (domains of the twin M1M3 and the single variant M1). 

θ = |arcsin(𝐯̂  ∧  𝐰̂)|     (B.11) 

where 𝐯̂ =  𝐦̂12  ∧  𝐦̂𝟏𝟑  and 𝐰̂ =  𝐦̂121  ∧  𝐦̂131  denote the intersecting line of the two habit 

planes and the intersecting line of the two variant-twin planes, respectively. 

The results (cases with slightly non-compatibility) of the domain wall normals and the 

indicators for the four-domain structure (consisting of the M1 variant, twin M1M3, twin M1M2, and 

austenite) are listed in Table B2 and are plotted in Fig. B2, where all the values of ψ and φ are 

small, compared to 0.32° of the wedge pattern (Balandraud and Zanzotto, 2007). By contrast, there 

are only four cases with the angle θ much smaller than 2.5° of the X-interface of (Seiner et al., 

2009). The four cases are marked in grey in Table B2 and highlighted in the orange circle in Fig. 

B2, and their schematics are shown in Fig. B3. The four cases with small non-compatibility 

indicators should be energetically preferred during the phase transformation. Interestingly, as 

shown by the schematics in Fig. B3, they are all X-interface rather than λ-interface. To verify the 

calculated 3D interface structures, more systematic experiments are needed in the future. 
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Table B2 All the possible solutions of the four-domain structure (consisting of the M1 variant, twin 

M1M2, twin M1M3, and austenite) that satisfy the ‘almost coplanarity’ condition and their 

corresponding non-compatibility indicators. 

 

 

 

 

 

 

 

 

 

Deformation matrix  Normal of the twin-

twin plane 

𝐦̂121 

Normal of the twin-

twin plane 

𝐦̂131 

Rotation 

angle ψ (°) 

Mismatch 

angle φ (°) 

Non-coplanarity 

angle θ (°) 

Order after 

sorting by 

the angle θ F12 F13 F1 

F12(a) 

F13(a) F1(b) [0.7071 -0.7071 0] [0.6782 0 0.7349] 0.1095 0.0836 2.3887 5 

F13(b) F1(a) [0.6782 0.7349 0] [0.6782 0 0.7349] 0.1461 0.0766 4.5339 15 

F13(c) F1(b) [0.7071 -0.7071 0] [0.7071 0 0.7071] 0.1244 0.1238 0.3919 1 

F13(d) F1(a) [0.6782 0.7349 0] [0.7071 0 0.7071] 0.1095 0.0858 2.3887 6 

F12(b) 

F13(a) F1(d) [0.7071 -0.7071 0] [0.7071 0 -0.7071] 0.1244 0.1238 0.3919 2 

F13(b) F1(c) [0.6782 0.7349 0] [0.7071 0 -0.7071] 0.1095 0.0858 2.3887 7 

F13(c) F1(d) [0.7071 -0.7071 0] [0.6782 0 -0.7349] 0.1095 0.0836 2.3887 8 

F13(d) F1(c) [0.6782 0.7349 0] [0.6782 0 -0.7349] 0.1461 0.0766 4.5339 13 

F12(c) 

F13(a) F1(f) [0.6782 -0.7349 0] [0.6782 0 0.7349] 0.1461 0.0766 4.5339 16 

F13(b) F1(e) [0.7071 0.7071 0] [0.6782 0 0.7349] 0.1095 0.0836 2.3887 9 

F13(c) F1(f) [0.6782 -0.7349 0] [0.7071 0 0.7071] 0.1095 0.0858 2.3887 10 

F13(d) F1(e) [0.7071 0.7071 0] [0.7071 0 0.7071] 0.1244 0.1238 0.3919 3 

F12(d) 

F13(a) F1(h) [0.6782 -0.7349 0] [0.7071 0 -0.7071] 0.1095 0.0858 2.3887 11 

F13(b) F1(g) [0.7071 0.7071 0] [0.7071 0 -0.7071] 0.1244 0.1238 0.3919 4 

F13(c) F1(h) [0.6782 -0.7349 0] [0.6782 0 -0.7349] 0.1461 0.0766 4.5339 14 

F13(d) F1(g) [0.7071 0.7071 0] [0.6782 0 -0.7349] 0.1095 0.0836 2.3887 12 
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Fig. B2 The non-compatibility indicators of the four-domain structures (consisting of the M1 

variant, twin M1M2, twin M1M3, and austenite). 
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Fig. B3 The schematics for the optimal cases of the four-domain structure with small non-

compatibility indicators. 
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Appendix C 

The three martensite variants M1, M2, and M3, whose short axes are along the x-, y- and z-

coordinates respectively, are shown in Fig. 2(a). In this study, since the utilized lattice parameters 

are: martensite long axis a ≈ 5.95 Å, martensite short axis c ≈ 5.61 Å, and austenite characteristic 

length a0 ≈ 5.84 Å (Murray et al., 2000; Heczko et al., 2002; Zhang et al., 2018a), taking the 

austenite as the reference, the martensite variants have the strains of 4% and +2% along their 

short- and long-axis. Therefore, the transformation strains of the three variants can be obtained: 

M1 (εxx ≈ 4%, εyy ≈ 2%, and εzz ≈ 2%), M2 (εxx ≈ 2%, εyy ≈4%, and εzz ≈ 2%), and M3 (εxx ≈ 2%, 

εyy ≈ 2%, and εzz ≈ 4%). If we denote the volume fraction of variant M1, M2, and M3 as 𝑓M1
, 𝑓M2

 

and 𝑓M3
 respectively, there is a relation between these volume fractions in a fully martensitic zone: 

𝑓M1
+ 𝑓M2

+ 𝑓M3
= 1      (C.1) 

Based on optical images on the specimen’s x-y plane, the two local strain components εxx and 

εyy have been measured by DIC analysis using software VIC-2D. The relationship between the 

measured strain components (εxx and εyy) and the volume fractions (𝑓M1
, 𝑓M2

, and 𝑓M3
) can be 

derived as: 

{

𝜀𝑥𝑥 = −0.04 𝑓M1
+ 0.02 𝑓M2

+  0.02 𝑓M3

𝜀𝑦𝑦 =  0.02 𝑓M1
− 0.04 𝑓M2

+  0.02 𝑓M3

    (C.2) 

Combining Eqs. (C.1) and (C.2), the volume fractions can be expressed as a function of εxx and εyy: 

{
 
 

 
 𝑓M1

= 
0.02−𝜀𝑥𝑥

0.06

 𝑓M2
= 

0.02−𝜀𝑦𝑦

0.06

𝑓M3
= 

0.02 +𝜀𝑥𝑥+ 𝜀𝑦𝑦

0.06

      (C.3) 

As the laminates in the domain II in Fig. 2 are very fine, we would like to confirm the volume 

fractions of martensite variants in this domain by the DIC stain measurements and the above Eq. 
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(C3). Figure C1 shows the strain distribution over a specific region (yellow dotted area) occupied 

successively by the single variant M3, the domain II and the austenite, corresponding sequentially 

to the Frames (i), (ii) and (iii) respectively from Movie 3. For the DIC processing, taking the 

austenite as the reference state (εxx = %, εyy = 0%), the measured strain components of the domain 

II are εxx ≈ 2% and εyy ≈ 0%, which are combined with Eq. (C.3) to give the volume fractions 𝑓M1
 

= 0,  𝑓M2
 = 1/3, and 𝑓M3

 = 2/3. That means, the domain II is a twin consisting of M3 and M2 with 

the volume ratio ≈ 2:1. Such a result is consistent with the compatibility analysis (in Fig. 3) and 

the observed orientation of the habit plane and twin boundaries (in Fig. 2). 
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Fig. C1. The DIC strain maps and the associated strain profiles of a region (yellow dotted area) 

occupied by the single variant M3, the domain II (defined in Fig. 2) and the austenite sequentially 

in the Frames (i), (ii) and (iii) respectively from Movie 3 (corresponding to the time moments 0s, 

12.14s, and 14.32s, respectively). 
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