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Abstract. Urban Heat Islands (UHI), characterized by elevated tem-
peratures, present important challenges to sustainability. This study in-
troduces a novel multimodal approach for high-resolution Land Surface
Temperature (LST) estimation, a critical component in addressing UHI.
The methodology initially employs RGB orthophotography for LST es-
timation and progressively integrates additional relevant variables cor-
related with LST, including elevation and land cover. Leveraging condi-
tional Generative Adversarial Networks (cGANs), LST maps are gener-
ated, enabling informed urban planning. Experimental results highlight
the potential of this multimodal approach, emphasizing that the combi-
nation of all data variables yields the most favorable outcomes. These
findings advance UHI research and support data-driven urban climate
management.

Keywords: conditional Generative Adversarial Networks (cGANs), Mul-
timodal Approach, Land Surface Temperature (LST) Estimation, Urban
Heat Islands (UHI)

1 Introduction

UHI persist as a prominent concern in the realms of urban planning and envi-
ronmental science. These localized zones, characterized by elevated temperatures
within urban environments compared to their surroundings, exert a profound in-
fluence on energy consumption, air quality, and public health [4] [10] [28]. In
light of these challenges, the accurate estimation of LST assumes paramount
importance, given its central role in UHI characterization and urban climate
studies [14] [16] [18].

LST estimation relies on various key parameters that influence its spatial dis-
tribution. Among these, RGB imagery offers valuable insights into urban char-
acteristics, such as buildings, roads, and green spaces. This visual data aids in
understanding how these features influence LST patterns. For example, densely
built-up areas with extensive impervious surfaces tend to absorb and re-emit
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heat, contributing to elevated LST values, while water bodies and vegetation
act as cooling agents by reducing surface temperatures through evaporation and
shading [22]. Furthermore, RGB channels, combined with other satellite chan-
nels, are pivotal for deriving and quantifying specific biophysical indices closely
linked to LST, providing deeper insights into the relationships between urban
characteristics and temperature variations [13]. These biophysical indices like the
Normalized Difference Vegetation Index (NDVI) and the Normalized Difference
Built-up Index (NDBI) are instrumental in assessing the impact of vegetation
density and urbanization on LST. Higher NDVI values indicate denser vege-
tation, associated with cooler temperatures due to shading and transpiration,
whereas elevated NDBI values signify intensified urban heat effects [6] [13]. Fur-
thermore, authors in [12] [20] confirm that Digital Elevation Models (referred
to as (D) in this paper) provide topographic information, as elevation signifi-
cantly impacts temperature patterns; higher altitudes generally exhibit cooler
temperatures, while slope steepness affects heat dispersion and accumulation.
Among the key parameters that influence the spatial distribution of LST es-
timation, land cover types are critical determinants, encompassing a range of
surface materials, such as impervious urban areas, vegetation, water bodies, and
barren [8] [11] [31]. These land cover categories exhibit distinct thermal prop-
erties, resulting in significant LST variations [23] [24] [29]. These interrelated
parameters emphasize the importance of integrating multi-source data, includ-
ing RGB, D, and land cover, to enhance the accuracy of LST estimation models,
a crucial aspect addressed in this study.

Various methods have been developed to estimate LST using satellite data.
[25] involves the use of radiative transfer models, such as the Planck-Blackbody
equation, which leverages thermal infrared (TIR) bands from multispectral sen-
sors to calculate LST. Additionally, in [17], temperature-emissivity separation
(TES) methods are employed to separate surface temperature from emissivity,
offering more accurate results. Furthermore, mono-window algorithm (MWA),
split window algorithm (SWA), and single-channel (SC) make use of different
TIR bands to correct for atmospheric effects [15] [26]. Advanced methods in-
corporate ancillary data like (D) to correct for topographic influences, and ma-
chine learning algorithms are increasingly applied for their ability to capture
complex spatial and spectral relationships in multispectral imagery [27] [30].
While these methods provide valuable insights into surface temperature dynam-
ics, they are not without limitations. These LST estimation methods often face
challenges. They may struggle to account for fine-scale surface heterogeneity,
leading to inaccuracies in areas with complex land cover patterns. They also
rely on detailed knowledge of sensor calibration and atmospheric parameters,
which can be a source of uncertainty. Furthermore, different satellite platforms
exhibit trade-offs between data frequency and spatial resolution. Some satellites
provide frequent data but at a moderate spatial resolution, while others offer
higher spatial resolution with less frequent data. Moreover, these satellites often
encounter challenges such as missing data. In such cases, a robust model bases



A Multimodal Deep Learning Approach for High-Resolution LST Estimation 3

its imputation of missing LST data on available information, thereby addressing
the limitations associated with satellite data characteristics.

GANs [5] empower the acquisition of profound insights by implicitly model-
ing complex, high-dimensional data distributions using two competitive submod-
els: the generator and the discriminator. This capability extends to conditional
Generative Adversarial Networks (cGANs), wherein the generator and discrim-
inator are conditioned on external information, enabling precise image genera-
tion. The emergence of cGANs, specially pix2pix [9], has seen them excel in
numerous image-to-image translation tasks, including RGB/(NDVI and NDRE)
translation [3], RGB/NIR translation [2], and Areal/Map transformations [7].
This impressive track record naturally prompts the question: given a sufficiently
extensive training dataset, can cGANs proficiently translate multimodal data
into LST maps?

The paper is structured into four sections that (at least partially) answers the
question. Section 2 will delve into the intricacies of the methodology, providing a
breakdown of the data pipeline and system architecture. In section 3, the findings
will be presented, offering both qualitative and quantitative insights. Section 4
will be dedicated to the in-depth discussion of the results. Finally, in section 5,
we will draw this paper to a close, summarizing the conclusions and outlining
potential avenues for future research.

2 Methodology

In this section, we provide a detailed description of the methodology followed to
estimate LST from diverse data modalities and sources, including raster RGB
imagery, raster Digital Elevation Model (D) data, vector Corine Land Cover
(C) data, and additional vector Land Cover (L) data. The approach is based
on a four-step pipeline designed to maximize the utilization of both vector and
raster information from these heterogeneous data sources while ensuring spatial
consistency. An overview of this pipeline is presented below (see Fig. 1).

2.1 Data collection

LST Imagery. Incorporated within the dataset is the LST surface imagery
sourced from [1], depicted through a gradient of colors that represent varying
degrees of warmth and coolness. This raster dataset is monochannel, with each
pixel representing a 30-meter section of terrain, corresponding to the spatial res-
olution of the source data from Landsat 8. The snapshot was captured on July
4, 2015, at 10:20 UTC (12:20 local time). The dataset was subjected to cor-
rection procedures to mitigate atmospheric, topographic, and emissivity effects,
ensuring the accuracy of the temperature readings. This LST dataset provides
insights into the warmest surface areas as observed from the sky during daylight
hours. In densely populated areas, the LST primarily reflects the temperature of
rooftops, while in wider thoroughfares, it encompasses temperature information
from roadways and other surfaces. The LST imagery can be visualized in Fig.
2.
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Fig. 1: Overall pipeline. LST: Land surface temperature; R: Red; G: Green; B:
Blue; D: Digital Elevation Model; C: Corine Land Cover; L: Land Cover Data.

*Vector data

RGB Imagery. The RGB imagery used is the ’Orthophotography 2015 of the
Lyon Metropolis’ dataset sourced from [1]. This raster dataset covers an ex-
tensive area of 1399 km², including the Lyon region and its surroundings. The
assembly table within the data source enabled the precise localization of 64 tiles,
each covering 25 km², according to the RGF93 CC46 grid, with a pixel resolution
of 0.08 m. The ’Orthophotography 2015 of the Lyon Metropolis’ dataset are ac-
quired through aerial imaging operations using a digital camera in May 2015. It
is georeferenced using the EPSG:4171 coordinate system, ensuring accurate spa-
tial alignment for subsequent analysis. It’s noteworthy that RGB orthophotog-
raphy data, exemplified by the ’Orthophotography 2015 of the Lyon Metropolis’
dataset, is readily accessible, providing a solid rationale for its incorporation into
this study.

Digital Elevation Model (D). The (D) dataset employed is provided in the
Raster TIFF format in [1] and is generated from raw data sources, including
slope break lines and ground-level reference points. The pixel size of this dataset
is 10 meters, offering a detailed representation of the terrain’s elevation charac-
teristics. The accessibility and the availability of elevation information provides
a robust foundation for the integration of such data into our analysis.

Corine Land Cover dataset (C). Corine Land Cover (C) data, available
as vector data in [1], provides comprehensive land cover information for the
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Fig. 2: False-Color LST Visualization of the Lyon Metropolitan Area in July
2015

metropolitan area, categorized into 25 main classes aligned with Corine Land
Cover level 1. These categories include artificial land, agricultural land, forests,
semi-natural areas, wetlands, and water bodies. C data enriches the understand-
ing of vegetation in urban and peri-urban environments. Data processing involves
photo-interpretation using 2015 orthophotography with an 0.08 m pixel resolu-
tion, infrared imagery, and 2015 LIDAR data. C data is also integrated with
selected vector data, such as Grand-Lyon cadastre (buildings and parcels), to
enhance urban context understanding. Notably, C data achieves a spatial preci-
sion of 1 hectare (locally lower for continuity preservation), compared to the 25-
hectare granularity of the standard Corine Land Cover dataset. It is noteworthy
that the widespread availability of Corine Land Cover data, as exemplified by its
presence beyond specific regional datasets such as the one for Lyon Metropolis in
this study, underscores its importance. It is noteworthy that this ubiquity makes
Corine Land Cover data a valuable asset for integration into diverse analytical
contexts.

Land Cover data (L). The Land Cover Data (L), available as vector data
in [1], offers a comprehensive perspective on the land use, classifying it into
45 distinct classes. This fine-grained data serve as a complementary source of
information to enhance the understanding of land use patterns in urban and
peri-urban environments. It’s worth noting that the Land Cover Data achieves
a spatial precision level, with a Minimum Mapping Unit (MMU) of 100 m² and
a Minimum Mapping Width (MMW) of 5 meters, maintaining continuity of at
least 1 meter.
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2.2 Data preprocessing

The dataset employed in this study comprises a diverse array of geospatial infor-
mation, encompassing both vector and raster data with distinct characteristics.
These datasets exhibit variations in coordinate systems, projection methods, and
spatial resolutions. To harness their full potential for analysis and modeling, a
comprehensive data preprocessing stage is imperative. This section elucidates
the preprocessing procedures undertaken to harmonize, reproject, and optimize
the disparate datasets, rendering them compatible and ready for subsequent
analysis and model training.

Warping. The first step in this preprocessing involves transforming the data
into a uniform Coordinate Reference System (CRS). The chosen CRS for this
purpose is the EPSG:3946 - RGF93 / CC46, characterized by its utilization of the
Lambert Conformal Conic projection method. This transformation harmonizes
the spatial references across all datasets.

Scaling for Resolution Uniformity. In order to ensure consistent data han-
dling, a preprocessing step involves both downscaling and upscaling of the vari-
ous datasets to achieve a uniform spatial resolution of 1 meter. 1 meter is consid-
ered appropriate as it aligns with the resolution interval present in our dataset.
The resolution of LST data is enhanced. Simultaneously, the spatial resolution
of the RGB imagery is reduced to the same 1-meter resolution, while the (D) un-
derwent an upscaling process. These scaling operations were performed using the
GDAL library, specifically the gdal translate tool, with cubic spline interpolation
to maintain spatial fidelity

Rasterization. To enhance their utilization within the cGANs model, rasteri-
zation of vector datasets: (C) and (L) are conducted. Both datasets were trans-
formed into raster format with a uniform resolution of 1 meter. During this pro-
cess, each class from (C) (25 categories) and (L) (45 distinct classes) is mapped
to pixel values within the [0, 255] range. The rasterization procedure is executed
using the gdal rasterize tool. This conversion ensures that the vector data can
be employed for further processing and training.

2.3 Data preparation

Data is standardized to share common characteristics, encompassing a raster
data type, uniform spatial projection, and an identical spatial resolution. These
measures have set the stage for the subsequent Data Preparation phase, where
we focus on preparing the datasets specifically for the cGANs-based training of
the model.



A Multimodal Deep Learning Approach for High-Resolution LST Estimation 7

Step 1: Regular Grid Generation. This step involves the application of
a consistent grid to all data layers. This process results in the creation of
monochannel tiles, each with dimensions of (1, 256, 256). These monochannel
tiles collectively cover the entire study area without overlap, forming a system-
atic grid. The retiling phase are executed using gdal retile tool.

Step 2: Data Combination. The monochromatic tiles are joined to obtain
multichannel tiles of size (H, 256, 256) using Python. H varies from 3 to 6, de-
pending on which data layers being integrated. Data combinations explored in
this study encompass RGB, DCL, RGBD, RGBC, RGBL, RGBDC, RGBDL,
RGBCL, RGBDCL. These diverse data combinations enable to investigate how
the integration of different information sources impacts the accuracy of the
pix2pix cGANs model for LST estimation.

2.4 cGANs Training

Architecture overview. The pix2pix model employs a conditional Generative
Adversarial Network (cGANs) architecture. The generator is based on the U-Net
architecture, which takes combined tiles as input and generates LST output im-
ages. The discriminator, composed of conventional layers, assesses pairs of com-
bined tiles and LST images to distinguish plausible transformations. Through
adversarial training, the generator aims to produce LST images that are indis-
tinguishable from real ones, enhancing the overall image generation quality.

Areas of experiments: Urban zone and extended zone. These studies are
conducted in two zones: an urban zone and an extended zone encompassing the
urban environment and its surroundings. Beginning in the urban zone allows a
progressive complexity assessment, ensuring model reliability before extending
it. It also aids in addressing urban-specific challenges and implementing data
augmentation for urban environments, enhancing overall performance.

Training configuration. In the urban zone, the data is composed of 400 tiles,
with 80% (320 tiles) allocation for training and the remaining 20% (80 tiles) for
testing. In the extended zone, we follow a similar 80% (6,500 tiles) training and
20% (1,623 tiles) testing split, totaling 8,123 tiles. A consistency is maintained
in hyperparameters. The Adam optimizer, known for handling complex neural
networks, is employed. The learning rate is set at 0.0002 and a batch size of 1 is
used. The training loss function combines mean absolute error and cross-entropy
loss, capturing both generation and classification aspects, following the same
approach as the original pix2pix paper. Over 50 epochs, our model iteratively
learns and refines from the data.

Evaluation Metrics. Root Mean Square Error (RMSE) is the evaluation met-
ric employed to assess the performance of the model.
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RMSE quantifies the average difference between the predicted LST images
and their corresponding ground truth LST images. Specifically, the RMSE is
calculated between every pair of predicted and ground truth images and then
compute the mean RMSE across all pairs. RMSE is calculated using the following
formula:

RMSE =

√√√√ 1

N

N∑
i=1

(Pi −Gi)2 (1)

where N represents the total number of pixels in the image, (Pi) denotes the
pixel value of the predicted LST image, (Gi) denotes the pixel value of the
corresponding ground truth LST image.

3 Results

Fig. 3 and Fig. 4 depict the evolution of mean RMSE over epochs. During the
training phase, the model is saved after each epoch, employing these saved mod-
els for test image inference in test set. RMSE is calculated between the generated
and ground truth images and the mean RMSE is computed for each model. Fig.
5 and Fig. 6 display the multimodal data to LST translation results for six exam-
ple sites using nine different data combinations for both the urban and extended
zones, respectively.

Fig. 3: mean RMSE in the urban zone

3.1 Urban zone

The initial input modality to the model is RGB alone, given its wide availability
and applicability to various regions. The mean RMSE hovers around 1.5°C. Vi-
sual comparison with ground-truth LST imagery reveals low performance when
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Fig. 4: mean RMSE in the extended zone

using only RGB data, as the generated LST imagery does not align well with
the ground truth. Subsequently, (D) modality is introduced due to its common
availability. Unfortunately, (D) has an adverse effect when merged with RGB.
The RGBD combination yields the poorest performance. Notably, the inclusion
of (D) in the majority of combinations has a negative impact on performance.
This can be explained by the urban zone’s somewhat constrained terrain ele-
vation variability. This will be further discussed in section 4. As a next step,
land cover data is incorporated, which provides additional information relevant
to LST. Here, performance improvements are observed, and the model exhibits
proficiency in generating LST imagery. Both qualitative and quantitative analy-
ses reveal that RGBCL and RGBDCL produce equivalent results, demonstrating
the best performance, with a slight advantage leaning toward RGBCL.

3.2 Extended zone

In the extended zone analysis, the objective is to augment the dataset and intro-
duce increased complexity by incorporating additional vegetation, slopes, and
terrain variations. This expansion aims to provide more challenging conditions
for the system, thus further assessing its performance. Following a similar ap-
proach as in the urban zone, the model is initially trained exclusively on RGB
data, resulting in unsatisfactory performance characterized by the highest RMSE
and numerous errors in the generated tiles, as evidenced by the visual examples in
the figure. To enhance the model’s performance, the (D) modality is introduced
to provide additional information. This inclusion yields significant improvements
in results, as clearly observed in the third example, where a substantial disparity
is evident between the LST generated solely from RGB data and that generated
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Fig. 5: Translation results in the urban zone
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Fig. 6: Translation results in the extended zone
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from RGBD. Subsequently, land cover data, (C) and (L), is integrated leading to
a notable enhancement in system performance. This improvement is exemplified
in the fifth example in Fig. 6, where the model accurately identified urban areas
in the lower-left and upper-right corners among other vegetated regions along
the diagonal, a capability not achieved with RGBD and RGB alone. Among all
combinations, RGBDL and RGBDC consistently yield the best results where all
three types of information are included (orthophotography, elevation and land
cover).

4 Discussion

The model demonstrates robust performance in both geographic zones we have
delineated. However, it is noteworthy that its performance in the urban zone
surpasses that in the extended zone. This discrepancy can be attributed to sev-
eral factors that warrant further elucidation. Firstly, the urban zone inherently
includes less complex and varied data compared to the extended zone. Within
the extended zone, we encounter instances such as non-cultivated fields, which
exhibit higher temperatures, yet the model tends to estimate them as cooler. Sim-
ilarly, forested areas and mountainous terrain, typically characterized by lower
temperatures, may not be accurately captured by the model due to a relative
scarcity of training data for such high-elevation forested regions.

The models based only on RGB data do not exhibit substantial performance,
which can be attributed to the limitation of utilizing orthophotography data
alone for estimating surface temperatures. An illustrative case encountered in
our study is the similarity in RGB color between natural and synthetic football
fields, despite a notable difference in surface temperatures.

In the urban observations, a negative impact of the elevation (D) is noticed.
This can be attributed to the urban zone’s relatively limited variability in terrain
elevation. Incorporating (D) to the input data, for this area, does not bring
any useful information for temperature estimation, makes learning only more
challenging, and contributes to diminishing the model’s ability to discern relevant
patterns.

The transition to the extended zone allows to leverage the positive effect of
D more effectively. In this scenario, the dataset featured a broader spectrum of
elevation variations, enabling the model to better utilize the D information and
understand its significance in the context of LST estimation.

The inclusion of land cover data proves to be beneficial to the model, regard-
less of whether it is combined with RGBD or RGB. This further underscores
the importance of land cover information in the model. Consequently, when es-
timating surface temperature, integrating such land cover data can significantly
enhance the accuracy of LST estimations. Notably, this integration allows for
the differentiation between synthetic sports fields and other natural terrains, as
well as distinguishing various types of vegetation and other land cover types.
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Collectively, these observations underscore that the system relies on the syn-
ergy of all types of data (RGB, elevation and land cover data) to achieve accurate
LST estimations.

Amongst related works employing pix2pix in various image-to-image trans-
lation tasks [19] [21] [32] and using RMSE as an evaluation metric, our study
demonstrates a comparable level of performance, as evidenced by the achieved
low RMSE, despite the complexity of the task.

While the study produces promising results, it is crucial to acknowledge cer-
tain limitations that may influence outcomes. The impact of data quality and
resolution on results cannot be overlooked, and adaptations may be necessary
when applying the model to diverse datasets. It is noteworthy that the training
set consistently demonstrates superior performance compared to the test set,
although occasional artifacts were observed between adjacent generated tiles. In
future iterations of this work, addressing these challenges will involve implement-
ing data augmentation methods, such as overlapping tiles, to mitigate artifacts
and enhance the model’s performance across both training and test sets. Despite
the correlation between RGB and other modalities with LST, it’s crucial to note
that these inputs don’t provide the exact LST value. This underscores the need
for a thorough understanding of the model’s capabilities and limitations, align-
ing with our roadmap for LST estimation. Despite these challenges, the study
presents significant potential for innovative applications in LST remote sensing
and temperature monitoring. Emphasizing the importance of context-awareness
and the utilization of high-quality data is paramount for achieving optimal re-
sults in such endeavors.

5 Conclusion

This study investigates the utilization of conditional Generative Adversarial Net-
works (cGANs) to transform RGB data into LST imagery. The results firmly
establish the feasibility of this data conversion task, showcasing significant im-
provements when integrating elevation and land cover data, thereby aligning
the generated imagery more closely with ground-truth values. The uniqueness
of this work lies in its reliance on RGB (and the other modalities) to gener-
ate LST images, a novel approach not explored in previous research based on
our findings. Additionally, our work highlights the capability of the pix2pix net-
work to manipulate and produce this type of imagery, a facet that has not been
thoroughly tested before. Demonstrating its proficiency in this task, despite its
complexity and dependency on various factors, showcases the adaptability of the
pix2pix model. This contributes to the originality of our research, offering a valu-
able perspective on the broader applicability and versatility of pix2pix network.
The implications of this research extend far beyond the confines of the study
itself. They hold the potential to revolutionize various aspects of LST remote
sensing applications, offering precise LST estimations and creating opportunities
for applications spanning UHI analysis, climate change monitoring, and thermal
anomaly detection.
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