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Abstract

Determining which parameters of a non-linear model could best describe a set of experimental data is a
fundamental problem in science and it has gained much traction lately with the rise of complex large-scale
simulators (a.k.a. black-box simulators). The likelihood of such models is typically intractable, which is
why classical MCMC methods can not be used. Simulation-based inference (SBI) stands out in this context
by only requiring a dataset of simulations to train deep generative models capable of approximating the
posterior distribution that relates input parameters to a given observation. In this work, we consider a
tall data extension in which multiple observations are available and one wishes to leverage their shared
information to better infer the parameters of the model. The method we propose is built upon recent
developments from the flourishing score-based diffusion literature and allows us to estimate the tall data
posterior distribution simply using information from the score network trained on individual observations.
We compare our method to recently proposed competing approaches on various numerical experiments
and demonstrate its superiority in terms of numerical stability and computational cost.

1 Introduction

Inverting non-linear models describing natural phenomena is a fundamental problem in science and has been
tackled by many fields (Gonçalves et al., 2020; Vasist et al., 2023; Dax et al., 2023). In this work, we consider
a Bayesian approach (Tarantola, 2005) in which the input parameters θ ∈ Rm of a modelM that best explain
a set of output observations x ∈ Rd are described via a posterior distribution p(θ | x). Obtaining samples
of the posterior can, however, be very challenging when the outputs of M are obtained through complex
simulations (e.g. solutions of non-linear differential equations (Jansen and Rit, 1995)). Indeed, in these cases
the likelihood function p(x | θ) is often impossible to evaluate and MCMC procedures can not be used.

Simulation-based inference (SBI) (Cranmer et al., 2020) is a promising approach that bypasses the difficul-
ties of likelihood evaluations via simulations from the model and leverages the recent advances from deep
generative learning. The procedure relies on the choice of a prior distribution λ(θ) encoding knowledge
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Figure 1: The posterior distri-
bution of a Gaussian simulator
model with Gaussian prior con-
centrates around the true param-
eter θ⋆ as the number n of obser-
vations x⋆i ∼ p(x | θ⋆) increases.
We compare the analytic posterior
to the posterior estimated with our
score-based proposal (GAUSS).

about the values ofM’s parameters and a simulated dataset generated as per:

Θi ∼ λ(θ) , Xi ∼ p(x | Θi) , (Θi, Xi) ∼ p(θ, x) .

Letting Ns be a fixed simulation budget, one can build a dataset D = {(Θi, Xi)}Ns
i=1 and train conditional

deep generative models to generate samples from p(θ | x⋆) for any new observation x⋆. Usual approaches
approximate either directly the posterior distribution (NPE) (Greenberg et al., 2019), the likelihood function
(NLE) (Papamakarios et al., 2019), or the ratio of likelihoods (NRE) (Hermans et al., 2020). In NPE, the
posterior samples can be obtained directly by sampling a conditional normalizing flow (Papamakarios et al.,
2021), whereas in NLE and NRE it is necessary to use a MCMC sampler.

In this work, we consider a natural extension of the above Bayesian framework to a tall data setting (Bardenet
et al., 2015), in which multiple observations x⋆1:n = (x1, . . . , xn) are available and the posterior distribution

p(θ | x⋆1:n) ∝ λ(θ)1−n
n∏
j=1

p(θ | x⋆j ) , (1)

is expected to provide more precise information about how to invertM (see Fig 1). Despite being a setup
with much practical interest, there has not been many previous works providing a satisfactory extension to
usual SBI procedures. In Rodrigues et al. (2021), the authors merge a fixed number of extra observations
via a Deepset (Zaheer et al., 2017) and fall back to NPE with an augmented training dataset with samples
Dn = {(Θi, Xi,1:n)}. Important drawbacks of such approach are the lack of flexibility on the number of
extra observations at inference time and the potentially heavy cost of generating extra observations from the
simulator. In Hermans et al. (2020), the authors show how to handle the tall data setting with NRE and an
equivalent extension can be done for NLE as well (Geffner et al., 2023). Note, however, that both approaches
still require a MCMC sampler to obtain posterior samples, which is often undesirable in SBI applications.

Recently, Sharrock et al. (2022) proposed to use score-based generative models (SBGM) (Ho et al., 2020;
Song et al., 2021b) to approximate the conditional posterior distribution targeted in SBI, called Neural
Posterior Score estimation (NPSE). SBGM introduces an easy-to-train objective for learning the score of
a sequence of perturbed versions of the target distribution. This relies on a network sϕ(θ, xi, t) trained
using the simulated dataset. SBGM rivals state-of-the-art generative models such as generative adversarial
networks (GANs) (Goodfellow et al., 2014) and normalizing flows in high-dimension challenging datasets
without the need of adversarial training or special network architectures.

However, extending NPSE to a tall data setting is challenging, as a direct application of the method would
require training a score network sϕ(θ, x1:n, t) to approximate ∇θ log pt(θ | x1:n) on an augmented dataset
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Dn, leading to the same drawbacks from the augmented NPE approach. Recently, Geffner et al. (2023) pro-
posed a method named F-NPSE in which the target tall posterior is approximated via an annealed Langevin
procedure, using a sequence of probability distributions for which the score can be computed using the
individual scores sϕ(θ, xi, t), thus avoiding the requirement of an augmented training dataset. The major
drawback of this approach, however, is reintroducing the need of MCMC for sampling from the posterior.

In this paper, we propose an algorithm that approximates the score of the tall data posteriors using only the
individual scores from the individual SBGMs and without a Langevin sampler. We demonstrate the superior-
ity of our approach as compared to F-NSPE on several numerical experiments: two Gaussian toy models for
which all quantities of interest are known analytically, three examples from the SBI benchmark (Lueckmann
et al., 2021a), and the inversion of a challenging model from neuroscience (Jansen and Rit, 1995).

2 Background

2.1 Score based generative models (SBGM)

Score estimation. The goal of score-based generative modelling is to learn how to sample new data from
am-dimensional target distribution qdata using an approximation of the score on “noisy versions” of samples
from qdata. In the variance preserving (VP) framework (Ho et al., 2020; Yang et al., 2023), a sequence of
noisy versions {θt}t∈[1:T ] of qdata is defined for t ∈ [1 : T ], by

θt =
√
αtθ0 +

√
1− αtϵt ,

where θ0 ∼ qdata, {ϵt}t∈[1:T ] are i.i.d. with distribution N (0, Im), {αt}t∈[1:T ] ∈ [0, 1]T is a decreasing
sequence of positive real numbers. Let qt|0(θt|θ0) = N (θt;

√
αtθ0, (1 − αt)Im) be the probability density

function of the conditional distribution of θt given θ0 and qt the density of θt. Following the seminal works
of Hyvärinen and Dayan (2005); Vincent (2011), we can learn the score of qt via a neural network sψ by
minimising L : ψ 7→ Eθt∼qt

[
∥sψ(θt, αt)−∇ log qt(θt)∥2

]
without knowledge of the ground-truth data

score. Using Fisher’s identity, we can define the SBGM loss as

Lscore(ψ) =

T∑
t=1

γ2t Eθ0∼qdata,θt∼qt|0(·|θ0)
[
∥sψ(θt, αt)−∇ log qt|0(θt|θ0)∥2

]
, (2)

where γt is a positive weighting function introduced in Vincent (2011).

Backward sampling. Once we have the score approximation sψ(θt, αt) of ∇ log qt(θt), our goal is to
sample backwards from the distributions qT , . . . , q1. There are many ways of carrying out this sampling,
such as using annealed Langevin dynamics (Song and Ermon, 2019), stochastic differential equations (Song
et al., 2021b), or ordinary differential equations (Karras et al., 2022). In this work, we follow the approach
proposed in Song et al. (2021a), which yields the denoising diffusion implicit models (DDIM) sampler.
DDIM introduces a set of inference distributions indexed by σ = {σt ∈ (0, α

1/2
t−1)}t∈[1:T−1] defined for

t ∈ [1 : T − 1] as:
qσt|t+1,0(θt|θ0, θt+1) = N

(
θt−1;µt(θ0, θt), σ

2
t Im

)
,
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with µt(θ0, θt) = αt−1
1/2θ0 + (υt−1 − σ2

t )
1/2(θt − αt1/2θ0)

/
(1− αt)1/2. Note that µt is chosen so that

qσt|0(θt|θ0) = N (θT ;
√
αtθ0, (1−αt)Im) (Song et al., 2021a, Lemma 1, Appendix B). This property allows

us to write
qt−1(θt−1) =

∫
qσt−1|t,0(θt−1|θt, θ0)× q0|t(θ0|θt)qt(θt)dθ0dθt .

Even though the equation above suggests a way of passing from qt to qt−1 it involves an intractable kernel∫
qσt−1|t,0(θt−1|θt, θ0)q0|t(θ0|θt)dθ0. The marginal distribution can be approximated by

q̂t−1(θt−1) =

∫
qσt−1|t,0(θt−1|θt, µt(θt))qt(θt)dθt , (3)

where µt(θt) is the conditional mean of θ0 given θt under the inference distribution; i.e. µt(θt) :=
Eθ0∼qσ0|t(·|θt) [θ0]. As µt(θt) is not available explicitly, in order to effectively sample from (3), we can
estimate µt(θt) using the approximate score sψ(θt, t). By noting that

α
1/2
t µt(θt)− θt = (1− αt)Eθ0∼qσ0|t(·|θt)

[
∇ log qt|0(θt|θ0)

]
,

we can use (2) to define the following approximation for all t ∈ [1 : T ]

µψ,t(θt) := α
1/2
t

(
θt + (1− αt)sψ(θt, αt)

)
. (4)

We can finally define the backward Markov chain

pψ,0:T (θ0:T ) = pT (θT )

T∏
t=1

pψ,t−1|t(θt−1|θt) , (5)

where pT (θT ) = qT (θT ), pψ,t−1|t(θt−1|θt) = qσt−1|t,0(θt−1|θt, µψ,t(θt)) and pψ,0|1(θ0|θ1) =

N (θ0;µψ,1(θ1), σ
2
0Im), with σ0 > 0 a free parameter.

Note that we use the procedure described above to learn the score of the conditional distribution of θ given
x. To do so, we learn an amortized score sψ(θ, x, αt) as in Batzolis et al. (2021).

2.2 Factorized neural posterior score estimation

The F-NPSE method proposed in Geffner et al. (2023) defines a sequence of distributions {ϱt(· | x)}t∈[0:T ]

as per

∇θ log ϱt(θ | x⋆1:n) = (1− n)(1− t)∇θ log λ(θ) +
n∑
j=1

sψ(θ, xi, αt) , (6)

where the score of ϱ0 is the score of the tall posterior defined in (1) and ∇θ log λ(θ) can be computed
analytically for common prior choices; see Appendix D. F-NPSE uses Langevin dynamics to sample ϱt for
each t = T, . . . , 1 and has shown superior performance as compared to all competing methods for tall data
settings (i.e. augmented versions of NPE, NLE, and NRE) in terms of posterior reconstruction, achieving
the best trade-off between sample efficiency and accumulation of errors when the number of observations
grows. However, this performance is at the cost of an increased number of neural net evaluations. The
main limitation of F-NPSE is the use of annealed Langevin dynamics which is very sensitive to the choices
of step-size at each sampling iteration, as well as the total number of steps. We justify these claims with
empirical results in Section 4.1 and Appendix J.
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3 Diffusion posterior sampling for tall data

3.1 Exact computation of the tall data posterior score

Let x⋆1:n = {x⋆1, . . . , x⋆n} ∼iid p(x | θ⋆) be observations sampled using the same parameter θ⋆ ∈ Rm. Our
goal is to sample from the tall data posterior p(θ | x⋆1:n) via the backward sampling Markov chain defined
in (5), while only relying on a score estimate sϕ(θ, x, αt) of ∇θ log pt(θ | x) of the diffused posterior for a
single observation. To do so, we need to build an approximation of the diffused tall data posterior score

∇θt log pt(θt | x⋆1:n) = ∇θt log
∫
p(θ | x⋆1:n)qt|0(θt|θ)dθ

that solely depends on∇θ log pt(θ | x⋆j ), for all j ∈ [1, n]. Using (1) we can write

pt(θ | x⋆1:n) =
∫
p(θ0 | x⋆1:n)qt|0(θ|θ0)dθ0 ∝

∫ λ(θ0)1−n n∏
j=1

p(θ0 | x⋆j )

 qt|0(θ|θ0)dθ0 . (7)

Given the diffused prior pλt (θ) =
∫
λ(θ0)qt|0(θ|θ0)dθ01, we now introduce the following backward transi-

tion kernels obtained via Bayes’ rule:

p0|t(θ0|θ, x) =
p(θ0 | x)qt|0(θ|θ0)

pt(θ | x)
and pλ0|t(θ0|θ) =

λ(θ0)qt|0(θ|θ0)
pλt (θ)

. (8)

Rearranging terms in equation (7) and replacing them with the quantities in (8), gives us

pt(θ | x⋆1:n) ∝
∫ (

λ(θ0)qt|0(θ|θ0)
)1−n n∏

j=1

p(θ0 | x⋆j )qt|0(θ|θ0)dθ0

=

∫ (
pλ0|t(θ0|θ)p

λ
t (θ)

)1−n n∏
j=1

p0|t(θ0|θ, x⋆j )pt(θ | x⋆j )dθ0

=

pλt (θ)1−n n∏
j=1

pt(θ | x⋆j )

Lλ(θ, x
⋆
1:n) ,

with Lλ(θ, x⋆1:n) :=
∫
pλ0|t(θ0|θ)

1−n∏n
j=1 p0|t(θ0|θ, x⋆j )dθ0 . The associated Fisher score therefore writes

∇θ log pt(θ | x⋆1:n) = (1− n)∇θ log pλt (θ) +
n∑
j=1

∇θ log pt(θ | x⋆j ) +∇θ logLλ(θ, x⋆1:n) .

The first two terms in the above equation are known: the prior score can be computed analytically in most
cases2. and the (single) posterior scores are approximated by evaluating the learned score model sϕ(θ, x, αt)
in every x⋆j . This leaves us with the last term, that we still need to approximate.

1The diffused prior can be computed analytically for simple (e.g. uniform or Gaussian) prior distributions as in Sharrock et al.
(2022).

2See Appendix D for the Gaussian and Uniform cases. If not, it can be learned via the classifier-free guidance approach (Ho and
Salimans, 2022), at the same time as the posterior score (more details and experimental results are provided in Appendix K)
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3.2 Second order approximation of logLλ

In this section, we consider a Gaussian approximation of the backward kernels defined in (8) via

p̂0|t(θ0|θ, x) = N (θ0;µt(θ, x),Σt(θ, x)) (9)

and p̂λ0|t(θ0|θ) = N (θ0;µt,λ(θ),Σt,λ(θ)) , (10)

where µt(θ, x), µt,λ(θ) and Σt(θ, x), Σt,λ(θ) are the means and covariance matrices of the backward
processes respectively associated with the diffused posterior pt(θ | x) and prior pλt (θ) distributions.3 This
leads us to the following estimator of logLλ(θ, x⋆1:n):

ℓλ(θ, x
⋆
1:n) = log

∫
p̂λ0|t(θ0|θ)

1−n
n∏
j=1

p̂0|t(θ0|θ, xj)dθ0 . (11)

From now on, we alleviate the dependency on xj and write µt,j(θ) = µt,j(θ, xj) and Σt,j(θ) = Σt(θ, xj).
We now state the two Lemmas that are the foundation of our approximation of the score of the tall posterior.
All proofs are postponed to Appendix A.

Lemma 3.1. For all θ ∈ Rm, let Λ(θ) =
∑n
j=1 Σ

−1
t,j (θ) + (1 − n)Σ−1

t,λ(θ). Assume that Λ(θ) is positive
definite. Then, for all θ ∈ Rm and x⋆i ∈ Rd, 1 ≤ i ≤ n,

ℓλ(θ, x
⋆
1:n) =

n∑
j=1

ζj(θ) + (1− n)ζλ(θ)− ζall(θ) , (12)

where
ζ(µ,Σ) = −

(
m log 2π − log |Σ−1|+ µ⊤Σ−1µ

)
/2 ,

and ζj(θ) = ζ(µt,j(θ),Σt,j(θ)) for all j ∈ [1 : n], ζλ(θ) = ζ(µt,λ(θ),Σt,λ(θ)) and ζall(θ) =
ζ(Λ(θ)−1η(θ),Λ(θ)−1) with η(θ) =

∑n
j=1 Σ

−1
t,j (θ)µt,j(θ) + (1− n)Σ−1

t,λ(θ)µt,λ(θ).

Lemma 3.2. For all θ ∈ Rm and x⋆i ∈ Rd, 1 ≤ i ≤ n, the full gradient can be written as

∇θ log pt(θ | x⋆1:n) = Λ(θ)−1
n∑
j=1

Σ−1
t,j (θ)∇θ log pt(θ | xj)

+ (1− n)Λ(θ)−1Σ−1
t,λ(θ)∇θ log p

λ
t (θ) + F (θ, x⋆1:n) ,

where F (θ, x1:n) = 0 if ∇θΣt,j(θ) = 0 for all j ∈ [1 : n] and ∇θΣλ,t(θ) = 0.

We now focus on the particular choice of Σt,i(θ) that we use in our approximation. It can be shown that
Σt,i(θt) = ∇θtµt,i(θt) (Boys et al., 2023). This corresponds to Algorithm 2, which we refer to as JAC.
However, this approach possesses two main drawbacks. The first is that it scales poorly with the dimension;
indeed, we need to calculate a m×m matrix which is prohibitive for large m. The second is that we have to
take the derivative w.r.t. the inputs of the score neural network, which is known to be unstable. Note that as
proposed in Boys et al. (2023), we do not propagate gradients through Σt,i(θt), rendering F (θt, x1:n) = 0
in Lemma 3.2.

3Note that µt(θ) = E [θ0 | θ] and Σt(θ) = E
[
(θ0 − µt(θ)) (θ0 − µt(θ))

⊤ | θ
]

. They are explicitly known for certain distribu-
tion choices and are respectively functions of the score and its derivatives; see Boys et al. (2023).
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As an alternative, we consider a constant approximation of the covariance matrix. To do so, we start by
noting that in the case where qdata is a Gaussian distribution with mean µ0 and variance Σ0, we have
Σt = (Σ−1

0 +αt(1−αt)−1Im)−1, see Appendix D. Note that choosing Σ0 = Im results in the approximation
proposed by Song et al. (2023). We use the formula for the Gaussian case as an approximation of the real
covariance matrix, yielding Algorithm 1 which we refer to as GAUSS. To do so, we need to first estimate Σ0

for each x, which we do by first running a DDIM with a small number of iterations (100) for each i and using
the empirical covariance matrix of the samples as Σ0. Note that in this case, we also have F (θt, x1:n) = 0
in Lemma 3.2.

Algorithm 1 GAUSS (Gaussian approximation)

Input:θ, x1:n, t, Σ̂1:n, prior fn
Output: s1:n
Σ−1
t,λ, sλ ← prior fn(θ, t)

for j ← 1 to n do
sj ← sψ(θ, xj , αt)

Σ̂−1
t,j ← Σ̂−1

j + αt

(1−αt)
Im

end for
Λ← (1− n)Σ−1

t,λ +
∑n
i=1 Σ̂

−1
t,i

s̃1:n ← (1− n)Σ−1
t,λsλ +

∑n
i=1 Σ̂

−1
t,i si

s1:n ← LinSolve(Λ, s̃1:n)

Algorithm 2 JAC (Jacobian approximation)

Input: θ, x1:n, t, prior fn
Output: s1:n
Σ−1
t,λ, sλ ← prior fn(θ, t)

for j ← 1 to n do
sj ← sψ(θ, xj , αt)

Σ̂−1
t,j ←

αt

(1−αt)
(Im + (1− αt)∇θsψ(θ, xj , αt))−1

end for
Λ← (1− n)Σ−1

t,λ +
∑n
i=1 Σ̂

−1
t,i

s̃1:n ← (1− n)Σ−1
t,λsλ +

∑n
i=1 Σ̂

−1
t,i si

s1:n ← LinSolve(Λ, s̃1:n)

4 Experiments

In this section, we investigate the performance of GAUSS and JAC for different tasks from SBI literature
with increasing difficulty. We take F-NPSE (Geffner et al., 2023) as a baseline for comparisons, which uses
unadjusted Langevin dynamics (ULD) with L = 5 steps and τ = 0.5. We have decided to not compare
our methods to augmented versions of NPE, NLE, and NRE because this has already been done in Sharrock
et al. (2022) and Geffner et al. (2023) with the score-diffusion framework demonstrating clearly superior
performance. Of course, this choice reduces the range of comparisons of our experimental section, but allows
us to focus solely on the best alternative method from current literature. For GAUSS and JAC we sample
with the backward Markov chain defined in Section 2 with σ2

t = η2(1 − αt−1)/(1 − αt)(1 − αt/αt−1)
where η = 0.2, 0.5, 0.8, 1 for a number of steps T = 50, 150, 400, 1000 respectively. We use a uniform
scheduling {ti = i/T}Ti=1. The code reproducing all experiments is available in the following repository:
https://github.com/JuliaLinhart/diffusions-for-sbi.

4.1 Gaussian toy models

We consider two toy examples for which the analytic form of the posterior and corresponding score dis-
tributions are known. Our first example is a multivariate Gaussian simulator defined by p(x | θ) =
N (x; θ, (1 − ρ)Im + ρ1m) with correlation factor ρ = 0.8. The second is a Mixture of Gaussians (GMM)
p(x | θ) = 0.5 N (x; θ, 2.25Σ) + 0.5 N (x; θ,Σ/9), where Σ is a diagonal matrix with values increasing
linearly between 0.6 and 1.4, following Geffner et al. (2023). Both examples are carried out with a Gaus-
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Algorithm N steps ∆t (s) sW
GAUSS 50 0.45 +/- 0.00 0.17 +/- 0.08
JAC 50 0.41 +/- 0.00 3.14 +/- 4.12

LANGEVIN 50 0.83 +/- 0.00 nan +/- nan
GAUSS 150 0.90 +/- 0.00 0.17 +/- 0.06
JAC 150 1.22 +/- 0.00 1.57 +/- 2.33

LANGEVIN 150 2.50 +/- 0.01 0.65 +/- 0.42
GAUSS 400 2.04 +/- 0.00 0.20 +/- 0.11
JAC 400 3.26 +/- 0.01 0.85 +/- 1.20

LANGEVIN 400 6.65 +/- 0.02 0.65 +/- 0.43
GAUSS 1000 4.77 +/- 0.01 0.22 +/- 0.10
JAC 1000 8.18 +/- 0.03 0.25 +/- 0.09

LANGEVIN 1000 16.65 +/- 0.03 0.65 +/- 0.42

Table 1: Sliced Wasserstein (sW) and total elapsed time ∆t for the Gaussian toy problem with m = 10,
n = 32 and ϵ = 10−2 per algorithm and number N of sampling steps. Mean and std over 5 different seeds.

sian prior λ(θ) = N (θ; 0, Im) in dimension m = 10. Here, the samples of the true posterior for multiple
observations are obtained either directly for Gaussian or via Metropolis Adjusted Langevin (MALA) for
GMM (see Appendix E for further details). We use the sliced Wasserstein (sW) distance to measure how close
the obtained posterior samples are to the true samples.4 The sW is computed with 104 slices, on 103 samples
and results are reported over 5 different seeds.

Consider the following approximate score model

s̃ψ(θ, x, αt) = sψ(θ, x, αt) + ϵ(1− αt)r(θ, x, αt) ,

where ϵ ≥ 0, sψ(θ, x, αt) is the analytical posterior score and r is a randomly initialized neural net with
outputs in range [−1, 1], see Appendix D. This construction leads to an error of ϵ over the “noise predictor”
network defined as −s̃ψ(θ, x, αt)/(1 − αt), which is the neural network that one actually optimizes when
training a score model. Note that unlike the Gaussian case, Tweedie’s approximation is not exact for GMM,
i.e. p0|t|(θ0|θt) is not a Gaussian density for all θt and all t ∈ [1 : T ]. Therefore, this example allows us to
quantify the effect of Tweedie’s approximation while still controlling the score estimation error (through ϵ).

Table 1 displays the total running time and sW for each algorithm on the Gaussian example (Table 3 in
Appendix G shows similar results for GMM). Based on this table, we consider “equivalent time settings”,
namely we run our algorithm with 400 and 1000 steps for JAC and GAUSS respectively and LANGEVIN
for 400 steps. We can see that our algorithm yields smaller sW than the equivalent Langevin sampler while
accounting for 5 times less neural network evaluation (NNE), thus 5 times faster. We show in Appendix G
the differences in speed for each tested setting.

Figure 2 portrays the effect of the perturbation ϵ in the posterior approximation for each algorithm for
n ∈ [1, 100]. In the Gaussian example we see that GAUSS is better in all settings. This is the expected
behaviour, since in this example our method based on second order approximations fits perfectly the score
of the tall posterior. JAC is exact for zero or very small perturbations (ϵ = 0, 0.001), but becomes unstable
when it increases (ϵ = 0.01). In GMM, our approximation GAUSS is competitive with LANGEVIN, achieving

4In order to account for the finite-sample effects on sW, we considered a normalized version of the distance by removing the
expected sW over different sample sets from the true distribution.
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Figure 2: Normalized sliced Wasserstein (sW) distance as a function of the number of observations n for the
Gaussian and GMM toy examples, for each algorithm (GAUSS, JAC and LANGEVIN) and with different
levels of ϵ. Mean and std over 5 different seeds.

smaller sW for small n and then reaching the same sW for n = 90, while being the best for all n in the
setting with the highest amount of perturbation (ϵ = 10−1). We see that JAC is extremely precise for ϵ = 0
(which corresponds to the case where the analytical posterior score is available) and becomes unstable for
ϵ > 0. This suggests that GAUSS offers a good trade-off between precision and robustness and thus the
better algorithm choice in SBI settings where the posterior score is unknown and has to be approximated.

We include in Appendix G a complete analysis for the Gaussian example, comparing all algorithms for
different choices of dimensions m, number of observations n, and precision ϵ.

4.2 Benchmark SBI examples

We consider three examples from the increasingly popular SBI benchmark presented in Lueckmann et al.
(2021b).

• SLCP (m = 5, d = 8): Uniform prior and Gaussian simulator whose mean and covariance are
non-linear functions of input parameter θ.

• SIR (m = 2, d = 10): Log-Normal prior and simulator based on a set of differential equations and
outputs sampled from a Binomial distribution.

• Lotka-Volterra (m = 4, d = 20): Log-Normal prior and simulator based on a set of differential
equations and outputs sampled from a Log-Normal output.

The score corresponding to each prior distribution is analytically computable; see Appendix D.5 However,
contrarily to the toy models considered in Section 4.1, the analytical posterior score is not available for

5The Log-Normal distribution can easily be transformed into a Gaussian distribution since when θ ∼ LogNormal(m, s) then
log θ ∼ N (m, s).
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the chosen examples and is, therefore, learned via score-matching (considering the loss function from Sec-
tion 2.1).

Note that the purpose of the experiments in this section is not to find the best score model and the best
posterior approximations for each task, which has already been done by Sharrock et al. (2022) and Geffner
et al. (2023), but to evaluate the robustness of the different sampling algorithms. This is why we use the same
score model architecture and training hyper parameters for all tasks, which may lead to different quality for
the score estimator in each example (the data dimension and shape of the posterior impact the training of
the score model). The used score model is always a MLP with 3 hidden layers, trained on Ntrain samples
over 5000 epochs using the Adam optimizer. We standardize the train data to have zero-mean and Im
covariance matrix, which ensures that all the random variables θt created during the generative process have
zero-mean and Im covariance. Further details on the model architecture and training procedure are provided
in Appendix E.

According to the equivalent time setting defined in Section 4.1, we use 1 000 sampling steps for GAUSS
and 400 steps for JAC and LANGEVIN. We also consider clipped versions for all proposed algorithms
(represented with dotted lines in all figures), where the generated samples at each step are clipped between
(-3,3) so to ensure that all samples stay within the region of high probability for the standard Gaussian
distribution. We introduce this numerical procedure to stabilize the JAC and LANGEVIN algorithms, that
we found to be less robust than GAUSS, with quickly diverging sW for poor score estimators; see Section 4.1.
However, this procedure significantly slows down the sampling procedure and can introduce some bias in
the posterior approximation.

Our empirical evaluation samples twenty-five6 different ground truth parameters θ⋆ ∼ λ(θ) from the prior
distribution, each of which used to simulate observations x⋆j ∼ p(x | θ⋆) for j = 1, . . . , n, later plugged in
as conditioning variables in the tall posterior p(θ | x⋆1:n). For all three examples, samples from the true tall
posterior can be obtained via MCMC using the numpyro package (Phan et al., 2019; Bingham et al., 2019)
and used to compute the sliced Wasserstein (sW) distance in every setting corresponding to varying Ntrain

and n.

Figure 3 portrays the sW distance for each task as a function of the size Ntrain of the training set for the
score model. Larger values of Ntrain are expected to yield better score estimates and thus more accurate
posterior approximations. This is the case for all three examples, where we observe a decreasing tendency
and convergence to 0 for all n. Overall, we observe that our algorithm GAUSS outperforms all others.
Indeed, it scales to high n values, while LANGEVIN diverges (or is non-decreasing) for n ≥ 14 for the
Lotka-Volterra and SIR examples. Note that the un-clipped version of JAC diverges in every case as
soon as n > 1, which is why we didn’t include it in the plots. GAUSS yields consistently lower distance
values than LANGEVIN. JAC-clip is more or less equivalent to GAUSS, with slightly better results for
SLCP. In Appendix H, Figure 11 display the same results, but as a function the number of observations
n ∈ [1, 8, 14, 22, 30] for a given score model (i.e. fixed Ntrain). We also report results for the Maximum
Mean Discrepancy (MMD) metric in Figures 12 and 13. Additionally, Figures 14 and 15 showcase the
ability of the obtained posterior samples to concentrate around the ground truth parameter θ⋆.

6We discarded outliers (max. 3% of the 25 points), which correspond to a sW for GAUSS above the 99% quantile (or NaNs).
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Figure 3: Sliced Wasserstein (sW) distance as a function of Ntrain ∈ [103, 3.103, 104, 3.104] between the
samples obtained by each algorithm (GAUSS, JAC and LANGEVIN) and the true tall posterior distribution
p(θ | x⋆1,n) for n ∈ [1, 8, 14, 22, 30]. Mean and std over 25 different parameters θ⋆ ∼ λ(θ).

4.3 Inverting a non-linear model from computational neuroscience

We illustrate our proposal on a classic model from computational neuroscience and consider the Bayesian
inversion of the Jansen & Rit neural mass model (JRNMM) (Jansen and Rit, 1995). Neural mass models are
non-linear models constructed based on physiologically motivated stochastic differential equations and are
able to replicate oscillatory electrical signals experimentally observed with electroencephalography (EEG).
Neural mass models are commonly used in large-scale simulators of the brain (Sanz Leon et al., 2013) and
are present in several simulation studies in cognitive and clinical neuroscience (Aerts et al., 2018).

We follow the setup proposed by Rodrigues et al. (2021). Specifically, we consider a stochastic version of the
JRNMM (Ableidinger et al., 2017) and use the C++ code provided by the authors of Buckwar et al. (2019).
The output x(t) of this generative model is a time series obtained by taking as input a set of four parameters
θ = (C, µ, σ, g). To help with the interpretations of the results, we provide some details on the parameters:
Parameter C influences the general shape of the oscillatory behavior, (µ, σ) drive the statistics of the signals
s(t) generated by the physiological model, and g represents a gain factor of an amplifier (resp. attenuator)
used to measure the signals and produce the actual model output x(t) = 10g/10s(t). The coupling-effect of
parameters g and (µ, σ) on the amplitude of the output signal x(t) means that the model is non-injective:
the same observed signal x⋆(t) could be generated with larger (resp. smaller) values of g and smaller (resp.
larger) values of µ and σ.
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Figure 4: Inference on the 3D JRNMM (fixed g = 0). Left: MMD between the marginals of the ap-
proximate posterior obtained for for GAUSS, JAC, and LANGEVIN, and the Dirac of the true parameters
θ⋆ = (125, 220, 2000) (black dotted lines) used to simulate the observations x⋆1:n. Right: Histograms of the
1D marginals of the posterior samples obtained with GAUSS for 30 single observations x⋆1, . . . , x

⋆
30 (n = 1)

and for observation sets x⋆1:n of increasing size. We see that p(θ | x⋆1:n) concentrates around θ⋆.

We now apply the different sampling algorithms GAUSS, JAC and LANGEVIN (and their clipped versions7),
again with respectively 1000, 400 and 400 steps, to infer the posterior distribution of the JRNMM for a set of
n observations x⋆j ∼ p(x | θ⋆) independently simulated with θ⋆ = (C⋆, µ⋆, σ⋆, g⋆) = (125, 220, 2000, 0).
A uniform prior distribution is placed over the range of physiologically meaningful values of the simulator
parameters as done in Buckwar et al. (2019); Rodrigues et al. (2021). The posterior score is again estimated
using the model architecture and training procedure from Section 4.2. We evaluate the ability of our posterior
approximator to concentrate around the true parameters θ⋆, which we quantify using the Maximum Mean
Discrepancy (MMD) between the marginals of the approximate posterior and the Dirac distribution δθ⋆

centered at the true parameter θ⋆.

We first consider a simplified setting for which the gain parameter is fixed g = g⋆ = 0 so to lift the
indeterminacy on the estimation of parameters (µ, σ). Results are shown in Figure 4. On the left, we plot
the MMD as a function of the number n of observations. JAC yields values outside of the plot limits.
All other methods perform as wanted, with decreasing MMD. On the right are displayed the 1D marginals
corresponding to the posterior samples obtained with GAUSS for observation sets x⋆1:n of increasing size.
We observe a progressive concentration around θ⋆.

Figure 5 displays the results for the full 4-dimensional JRNMM. On the left plot, we can see that GAUSS
yields consistenty lower MMD values, with a decrease for lower n, LANGEVIN is unstable and JAC yields
values outside of the plot limits. The 1D and 2D marginals for samples obtained for GAUSS are shown on
the right. The non-decreasing behaviour of MMD for higher n can be explained by the indeterminacy in the
inference task for the (µ, σ) parameters, and is illustrated on the right plot, showing the 1D and 2D marginals
for samples obtained for GAUSS. Indeed, we observe a “sharpened banana” shaped posterior distribution,
containing the true parameters, concentrated around C and g, but dispersed along the dimensions of (µ, σ).

7Numerical procedure used to stabilize JAC; see Section 4.2.

12



Figure 5: Inference on the full
JRNMM. Left: MMD between
the marginals of the approximate
posterior obtained for GAUSS,
JAC, and LANGEVIN, and the
Dirac of the true parameters
θ⋆ = (125, 220, 2000, 0) used to
simulate the observations x⋆1,n.
Right: Histograms of the 1D and 2D
marginals of the posterior samples
obtained with GAUSS for a single
observations x⋆ (n = 1) and for
observation sets x⋆1:n of increasing
n. We observe a progressive con-
vergence of the inferred posterior
mean towards θ⋆ (black dots and
lines), a sharpening around (C, g)
and a sustained dispersion along
the dimensions of (µ, σ) due to
JRNMM’s intrinsic indeterminacy.

5 Conclusion

In every experimental setting it is always desirable to leverage information from as much data as possible.
Model inversions with SBI are no exception and the tall data extension considered in this paper provides a
way of parsing extra observations in an efficient way. Indeed, our method only requires the training of an ini-
tial score model for a single observation to construct the score of the tall data posterior. This allows GAUSS
and JAC to be more simulation efficient, avoiding the shortcomings of the augmented datasets required by
NPE, NLE, and NRE. Moreover, we tackle directly the challenge of constructing a diffused version of the
posterior distribution for tall data based on recently proposed second order approximations of the backward
diffusion kernels. This is considerably different from what was proposed in Geffner et al. (2023), where the
problem was simplified by constructing a sequence of distributions relying on the individual scores, but at
the cost of drastically reducing the arsenal of samplers available for sampling from a score based genera-
tive model. Indeed, our methodology can benefit from recent advances of score-diffusion literature, such as
DDIM Song et al. (2021b), to perform backward sampling of the diffusion path and obtain samples from the
posterior distribution in a much faster and stable way than the annealed Langevin procedure used in Geffner
et al. (2023). We have illustrated the performance of our methods on different settings of increasing com-
plexity, starting with toy examples for which the analytic posterior and scores were known, considering three
examples from the SBI benchmark, and then finally applying the methodology to a challenging non-linear
model from computational neuroscience. We demonstrated the superiority of our methods in terms of sam-
ple quality for almost all examples, and the reduced computational cost and increased numerical stability in
every instance. Our work has confirmed the flexibility and viability of score-diffusion methods to approxi-
mate posterior distributions conditioned on sets of variable sizes and we expect that it will encourage other
researchers to explore the score-diffusion framework for SBI problems.
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Podlaski, W. F., Haddad, S. A., Vogels, T. P., Greenberg, D. S., and Macke, J. H. (2020). Training deep
neural density estimators to identify mechanistic models of neural dynamics. eLife, 9:e56261.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.,
and Weinberger, K., editors, Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc.

Greenberg, D., Nonnenmacher, M., and Macke, J. (2019). Automatic posterior transformation for likelihood-
free inference. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages 2404–2414. PMLR.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane,
A., del Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,
Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy. 585(7825):357–
362. Number: 7825 Publisher: Nature Publishing Group.

Hermans, J., Begy, V., and Louppe, G. (2020). Likelihood-free MCMC with amortized approximate ratio
estimators. In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 4239–4248. PMLR.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851.

Ho, J. and Salimans, T. (2022). Classifier-free diffusion guidance.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. 9(3):90–95. Conference Name: Computing
in Science & Engineering.

Hyvärinen, A. and Dayan, P. (2005). Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4).

Jansen, B. H. and Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a
mathematical model of coupled cortical columns. Biological Cybernetics 1995 73:4, 73:357–366.

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space of diffusion-based
generative models. In Proc. NeurIPS.

Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P., and Macke, J. (2021a). Benchmarking
simulation-based inference. In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 343–351. PMLR.

15



Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P., and Macke, J. (2021b). Benchmarking
simulation-based inference. In Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 343–351. PMLR.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021). Normal-
izing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 22:1–64.

Papamakarios, G., Sterratt, D., and Murray, I. (2019). Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. 89:837–848.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Phan, D., Pradhan, N., and Jankowiak, M. (2019). Composable effects for flexible and accelerated proba-
bilistic programming in numpyro. arXiv preprint arXiv:1912.11554.

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of langevin distributions and their
discrete approximations. Bernoulli, pages 341–363.

Rodrigues, P. L. C., Moreau, T., Louppe, G., and Gramfort, A. (2021). HNPE: Leveraging Global Parameters
for Neural Posterior Estimation. In NeurIPS 2021, Sydney (Online), Australia.

Sanz Leon, P., Knock, S., Woodman, M., Domide, L., Mersmann, J., McIntosh, A., and Jirsa, V. (2013). The
virtual brain: a simulator of primate brain network dynamics. Frontiers in Neuroinformatics, 7:10.

Sharrock, L., Simons, J., Liu, S., and Beaumont, M. (2022). Sequential neural score estimation: Likelihood-
free inference with conditional score based diffusion models.

Song, J., Meng, C., and Ermon, S. (2021a). Denoising diffusion implicit models. In International Conference
on Learning Representations.

Song, J., Vahdat, A., Mardani, M., and Kautz, J. (2023). Pseudoinverse-guided diffusion models for inverse
problems. In International Conference on Learning Representations.

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. Ad-
vances in neural information processing systems, 32.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021b). Score-based
generative modeling through stochastic differential equations. In International Conference on Learning
Representations.

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Society for
Industrial and Applied Mathematics.

Vasist, M., Rozet, F., Absil, O., Mollière, P., Nasedkin, E., and Louppe, G. (2023). Neural posterior estima-
tion for exoplanetary atmospheric retrieval. Astronomy and Astrophysics, 672:A147.

16



Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural computation,
23(7):1661–1674.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peter-
son, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., Vander-
Plas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for
scientific computing in python. 17(3):261–272. Number: 3 Publisher: Nature Publishing Group.

Waskom, M. L. (2021). seaborn: statistical data visualization. 6(60):3021.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W., Cui, B., and Yang, M.-H. (2023).
Diffusion models: A comprehensive survey of methods and applications. ACM Computing Surveys,
56(4):1–39.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

17



A Proofs

A.1 Proof of Lemma 3.1

Let (µk)1≤k≤K ∈ (Rm)K and (Σk)1≤k≤K be covariance matrices in Rm×m. Denote by pk the Gaussian
pdf with mean µk and covariance matrix Σk. Note that

pk : θ0 7→ exp

(
ζ̃k + (Σ−1

k µk)
⊤θ0 −

1

2
θ⊤0 Σ

−1
k θ0

)
,

where
ζ̃k = −1

2

(
m log 2π − log |Σ−1

k |+ µ⊤
k Σ

−1
k µk

)
.

Therefore,

K∏
k=1

pk(θ0) = exp

(
K∑
k=1

ζ̃k − ζ̃all

)
exp

(
ζ̃all + η̃⊤θ0 −

1

2
θ⊤0 Λ̃θ0

)

= exp

(
K∑
k=1

ζ̃k − ζ̃all

)
N (θ0; Λ̃

−1η̃, Λ̃−1) ,

with η̃ =
∑K
k=1 Σ

−1
k µk, Λ̃ =

∑K
k=1 Σ

−1
k , and ζ̃all = −(m log 2π − log |Λ̃| + η̃⊤Λ̃−1η)/2. We can apply

this result to equation (11) with

η(θ) =

n∑
j=1

Σ−1
t (θ, xj)µt(θ, xj) + (1− n)Σ−1

t,λ(θ)µt,λ(θ) ,

Λ(θ) =

n∑
j=1

Σ−1
t (θ, xj) + (1− n)Σ−1

t,λ(θ) ,

since by assumption Λ(θ) is definite positive. This provides the following reformulation of equation (11):

ℓλ(θ, x
⋆
1:n) = log

∫
exp

 n∑
j=1

ζj(θ) + (1− n)ζλ(θ)− ζall(θ)

N (θ0; Λ
−1(θ)η(θ),Λ−1(θ))dθ0 ,

which concludes the proof.
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A.2 Proof of Lemma 3.2

Let ζ(µ,Σ−1) = −
(
m log 2π − log |Σ−1|+ µ⊤Σ−1µ

)
/2. Then,

∇θζj(θ, xj) = ∇θζ(µt(θ, xj),Σ−1
t (θ, xj))

= ∇µζ(µt(θ, xj),Σ−1
t (θ, xj))

⊤∇θµt(θ, xj)
+∇Σ−1ζ(µt(θ, xj),Σ

−1
t (θ, xj))∇θΣ−1

t (θ, xj) ,

where

∇µζ(µ,Σ−1) = −Σ−1µ

∇−1
Σ ζ(µ,Σ−1) = (1/2)

(
Σ− µµ⊤) .

Therefore, we obtain

∇θζj(θ, xj) = −µt(θ, xj)⊤Σ−1
t (θ, xj)

⊤∇θµt(θ, xj)
+ (1/2)

(
Σt(θ, xj)− µt(θ, xj)µt(θ, xj)⊤

)
∇θΣ−1

t (θ, xj) .

Note that∇θµt(θ, xj) = (
√
αt/υt)Σt(θ, xj), which leads to

∇θζj(θ, xj) = −
√
αt
υt

µt(θ, xj) + (1/2)
(
Σt(θ, xj)− µt(θ, xj)µt(θ, xj)⊤

)
∇θΣ−1

t (θ, xj)

= −υ−1
t θ −∇θ log pt(θ)xj + (1/2)

(
Σt(θ, xj)− µt(θ, xj)µt(θ, xj)⊤

)
∇θΣ−1

t (θ, xj) .

This leads to

∇θℓλ(θ, x1:n) = −(1− n)∇θ log pλt (θ)−
n∑
j=1

∇θ log pt(θ)x⋆j − υ−1
t θ −∇θζall(θ)

+ (1/2)

 n∑
j=1

(
Σt(θ, xj)− µt(θ, xj)µt(θ, xj)⊤

)
∇θΣ−1

t (θ, xj)


+

1− n
2

(
Σt,λ(θ)− µt,λ(θ)µt,λ(θ)⊤

)
∇θΣ−1

t,λ(θ, xj) .

The score is then given by

∇θ log pt(θ)x1:n = −υ−1
t θ −∇θζall(θ)

+ (1/2)

 n∑
j=1

(
Σt(θ, xj)− µt(θ, xj)µt(θ, xj)⊤

)
∇θΣ−1

t (θ, xj)


+

1− n
2

(
Σt,λ(θ)− µt,λ(θ)µt,λ(θ)⊤

)
∇θΣ−1

t,λ(θ, xj) .

We now estimate∇θζall(θ) by noting that ζall = ζ(Λ(θ)−1η(θ),Λ(θ)). We obtain

∇θζall(θ) = −∇θ(Λ(θ)−1η(θ))η(θ) + (1/2)
[
Im − Λ(θ)−1η(θ)η(θ)⊤

]
Λ(θ)−1∇θΛ(θ)

= −Λ(θ)−1∇θη(θ)η(θ)− η(θ)⊤∇Λ(θ)−1η(θ) + (1/2)
[
Im − Λ(θ)−1η(θ)η(θ)⊤

]
Λ(θ)−1∇θΛ(θ) .
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Note now that

∇θη(θ) =
n∑
j=1

Σ−1
t (θ, xj)∇θµt(θ, xj) + µt(θ, xj)

⊤∇θΣ−1
t (θ, xj)

+(1− n)
(
Σ−1
t,λ(θ)∇θµt,λ(θ) + µt,λ(θ)

⊤∇θΣ−1
t,λ(θ)

)
=

√
αt
υt

Im +

n∑
j=1

µt(θ, xj)
⊤∇θΣ−1

t (θ, xj) + (1− n)µt,λ(θ)⊤∇θΣ−1
t,λ(θ) ,

which leads to

∇θη(θ)η(θ) =
√
αt
υt

η(θ) +

 n∑
j=1

µt(θ, xj)
⊤∇θΣ−1

t (θ, xj) + (1− n)µt,λ(θ)⊤∇θΣ−1
t,λ(θ)

 η(θ) . (13)

Note that

√
αtη(θ) =

n∑
j=1

Σ−1
t (θ, xj) (θ + υt∇θ log pt(θ)xj) + (1− n)Σ−1

t,λ(θ)
(
θ + υt∇θ log pλt (θ)

)

= Λ(θ)θ + υt

 n∑
j=1

Σ−1
t (θ, xj)∇θ log pt(θ)xj + (1− n)Σ−1

t,λ(θ)∇θ log p
λ
t (θ)

 ,
which finally leads to

∇θ log pt(θ | x⋆1:n) = Λ(θ)−1

 n∑
j=1

Σ−1
t (θ, xj)∇θ log pt(θ)xj + (1− n)Σ−1

t,λ(θ)∇θ log p
λ
t (θ)

+F (θ, x⋆1:n) ,
where

F (θ, x⋆1:n) = η(θ)⊤∇Λ(θ)−1η(θ) + (1/2)
[
Im − Λ(θ)−1η(θ)η(θ)⊤

]
Λ(θ)−1∇θΛ(θ)

+ (1/2)

 n∑
j=1

(
Σt(θ, xj)− µt(θ, xj)µt(θ, xj)⊤

)
∇θΣ−1

t (θ, xj)


+

1− n
2

(
Σt,λ(θ)− µt,λ(θ)µt,λ(θ)⊤

)
∇θΣ−1

t,λ(θ, xj) .
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B Positive Definiteness of Λ(θ)

The approximation described in Section 3.2 is only valid if matrix Λ(θ) is symmetric positive definite (SPD),
i.e. it is a valid covariance matrix. In what follows, we will show what are the conditions on the choice of
the p.d.f. for the prior distribution that will ensure such property. Using the partial ordering defined by the
convex cone of SPD matrices (Bhatia, 2006) it follows that:

Λ(θ) ≻ 0 ⇐⇒
n∑
j=1

Σ−1
t (θ, xj) + (1− n)Σ−1

t,λ(θ) ≻ 0 , (14)

⇐⇒
n∑
j=1

Σ−1
t (θ, xj) ≻ (n− 1)Σ−1

t,λ(θ) , (15)

⇐⇒ Σt,λ(θ) ≻

 1

(n− 1)

n∑
j=1

Σ−1
t (θ, xj)

−1

. (16)

Note that as n increases, the R.H.S. of the inequality converges to the harmonic mean of the Σt(θ, xj),
which helps building an intuition to the correct choice for the covariance Σt,λ(θ) of the prior. For instance,
a sufficient choice (not necessarily optimal) would be to have a Σt,λ(θ) whose associated ellipsoid8 covers
the ellipsoids generated by all other covariance matrices Σt(θ, xj).

C Influence of the correction term∇θℓλ(θ, x
⋆
1:n).

Intuition following the definition of the backward kernels in equation (8):

• For t → 1: the forward kernel and diffused distribution approach the noise, i.e. pt(θ | x) →
t→1

N (θ; 0, Im) and qt|0(θ | θ0) →
t→1
N (θ; 0, Im). The backward kernel is thus equivalent to the target

distribution:

p0|t(θ0 | θ, x) =
p(θ0 | x)qt|0(θ | θ0)

pt(θ | x)
∼
t→1

p(θ0 | x) . (17)

Therefore the backward kernels vary very little with θ, and because they define ℓλ(θ, x⋆1:n) (see eq.
(11)), its gradient is close to zero. In other words, ∇θℓλ(θ, x⋆1:n) has no significant impact at the
beginning of the backward diffusion (aka. sampling or generative process).

• For t → 0: the denominator is the diffused distribution that gets close to the target data distribution
pt(θ | x) →

t→0
p(θ0 | x). Therefore the backward kernel is approximately

p0|t(θ0 | θ, x) =
p(θ0 | x)qt|0(θ | θ0)

pt(θ | x)
∼
t→0

qt|0(θ | θ0) →
t→0

δθ0(θ) . (18)

Here, the dependence on θ is convergence to a Dirac function. This means that the gradient of
ℓλ(θ, x

⋆
1:n) will increase during the sampling process and finally explode when t approaches 0. The

correction term therefore plays an important role as we approach the target tall data posterior distribu-
tion, at the end of the sampling process.

8The ellipsoid EA associated with SPD matrix A is defined as EA = {x : x⊤A−1x < 1}
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D Analytical formulas for score and related quantities

D.1 Gaussian case

The considered Bayesian Inference task is to estimate the mean θ ∈ Rm of a Gaussian simulator model
p(x | θ) = N (x; θ,Σ), given a Gaussian prior λ(θ) = N (θ;µλ,Σλ). For a single observation x⋆, the true
posterior is also a Gaussian obtained using Bayes formula, as the product of two Gaussian distributions:

p(θ | x⋆) = N (θ;µpost(x
⋆),Σpost) (19)

with µpost(x
⋆) = Σpost(Σ

−1x⋆ + Σ−1
λ µλ) and Σpost = (Σ−1 + Σ−1

λ )−1. Note that in this case, the full
posterior can be written as

p(θ | x⋆1:n) = N (θ;µpost(x
⋆
1:n),Σpost,n) (20)

with Σpost,n = (nΣ−1 +Σ−1
λ )−1 and µpost(x

⋆
1:n) = Σpost,n(

∑n
j=1 Σ

−1x⋆j +Σ−1
λ µλ).

Assume that qt|0(θ | θ0) = N (θ;
√
αtθ0, υtIm); see Section 2. Using standard results (e.g. equation 2.115

in Bishop, 2006), we can derive the analytic formula of the diffused prior

pλt (θ) =

∫
λ(θ0)qt|0(θ | θ0)dθ0 (21)

= N (θ;
√
αtµλ, αtΣλ + υtIm) (22)

and of the diffused posterior

pt(θ | x⋆) =

∫
p(θ0 | x⋆)qt|0(θ | θ0)dθ0 (23)

= N (θ;
√
αtµpost(x

⋆), αtΣpost + υtIm). (24)

The corresponding Fisher scores are

∇θ log pλt (θ) = −(αtΣλ + υtIm)−1(θ −
√
αtµλ) , (25)

∇θ log pt(θ | x⋆) = −(αtΣpost + υtIm)−1(θ −
√
αtµpost(x

⋆)) . (26)

Replacing the score from (26) in the formulas from (Boys et al., 2023), we get the following expressions for
the mean and covariance matrix of the posterior backward diffusion kernel p0|t(θ0 | θ, x):

Σt(θ, x
⋆) =

υt
αt

(
1− υt

(
αtΣpost + υtIm

)−1
)

= Σt ,

µt(θ, x
⋆) =

1
√
αt

(
1− υt

(
αtΣpost + υtIm

)−1
)
θ + υt

(
αtΣpost + υtIm

)−1

µpost(x
⋆)

=

√
αt
υt

Σtθ + υt

(
αtΣpost + υtIm

)−1

µpost(x
⋆) .
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The same goes for the prior backward diffusion kernel pλ0|t(θ0 | θ):

Σt,λ(θ) =
υt
αt

(
1− υt

(
αtΣλ + υtIm

)−1
)

= Σt,λ ,

µt,λ(θ) =
1
√
αt

(
1− υt

(
αtΣλ + υtIm

)−1
)
θ + υt

(
αtΣλ + υtIm

)−1

µλ

=

√
αt
υt

Σt,λθ + υt

(
αtΣλ + υtIm

)−1

µλ .

We now consider the tall data setting with n i.i.d. observations x⋆1:n = {x⋆1, . . . , x⋆n} and compute the
correction term ∇θℓλ(θ, x⋆1:n). Note that the covariance matrices above are independent of θ and therefore
Λ(θ) does not depend on θ and is referred to as Λ. Consequently, we only need to consider the terms that
depend on the means µt(θ, x⋆j ) or µt,λ(θ) when computing the gradient w.r.t. θ.

From Boys et al. (2023) we have

∇ζ0|t(θ, x) = −
√
αt
υt

µt(θ, x) , ∇ζ0|t,λ(θ) = −
√
αt
υt

µt,λ(θ) . (27)

For ζ0|t,all, write

η0|t(θ) =

N∑
j=1

Σ−1
t

[√
αt
υt

Σtθ + υt

(
αtΣpost + υtIm

)−1

µpost(x
⋆
j )

]

+ (1− n)Σ−1
t,λ

[√
αt
υt

Σt,λθ + υt

(
αtΣλ + υtIm

)−1

µλ

]
=

√
αt
υt

θ + υtΣ
−1
t

(
αtΣpost + υtIm

)−1 N∑
j=1

µpost(x
⋆
j ) + (1− n)υtΣ−1

t,λ

(
αtΣλ + υtIm

)−1

µλ .

We need to assure the positive definiteness of Λ(θ). Let v ∈ Rd such that ∥v∥ = 1. Thus,

v⊤Λ(θ)v ∝ 1

υt
+ α2

t (1− n)v⊤Σλv + nα2
t v

⊤Σpostv . (28)

Therefore, for Λ(θ) to be positive definite is equivalent to

v⊤Σpostv >
n− 1

n
v⊤Σλv −

1

nυtα2
t

, (29)

for all v ∈ Rd such that ∥v∥ = 1. Note that it is not trivial to find meaningful worst case scenario sufficient
condition for the inequality above. To see why, let emin

post be the smallest eigenvalue of Σpost and emax
λ the

biggest eigenvalue of Σλ. Then, a sufficient condition would be emax
λ < emin

post, since

v⊤Σpostv > emin
post > emax

λ >
n− 1

n
v⊤Σλv −

1

nυtα2
t

. (30)

But this does not make much sense, since we are asking the prior to be more concentrated than the posterior!
Therefore, we obtain ∇ζ0|t,all = −

√
αtΛ

−1η0|t(θ)/υt, which yields

∇ℓλ(θ, x⋆1:n) = −
√
αt
υt

 n∑
j=1

µt(θ, x
⋆
j ) + (1− n)µt,λ(θ)− Λ−1η0|t(θ)

 . (31)
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D.2 Score of the diffused Uniform prior

Consider the case where the prior is a Uniform distribution λ(θ) = U(θ; a, b), with (a, b) ∈ Rm × Rm, the
lower and upper bounds respectively. Assume that qt|0(θ | θ0) = N (θ;

√
αtθ0, υtIm); see Section 2 with

υt = 1− αt. We then get the following analytic formula for the diffused prior:

pλt (θ) =

∫
λ(θ0)qt|0(θ | θ0)dθ0 (32)

=
1∏m

i=1(bi − ai)

∫
[a1,b1]×···×[am,bm]

N (θ;
√
αtθ0, υtIm) (33)

=
1

√
αt
∏m
i=1(bi − ai)

m∏
i=1

(Φ (
√
αtbi; θi, υt)− Φ (

√
αtai; θi, υt)) , (34)

where Φ(.;µ, σ2) is the c.d.f. of a univariate Gaussian with mean µ and variance σ2. The score of the above
quantity is then simply obtained by computing the score of each one-dimensional element in the above
product. For i ∈ [1,m],∇θ log pλt (θ)i = ∇θi log f(θi) =

∇θi
f(θi)

f(θi)
with

f(θi) = (Φ (
√
αtbi; θi, υt)− Φ (

√
αtai; θi, υt)) (35)

∇θif(θi) = − 1
√
αtυt

(N (
√
αtbi; θi, υt)−N (

√
αtai; θi, υt)) . (36)

D.3 Mixture of Gaussians

In the case of the Mixture of Gaussians, the prior is λ = N (0, Im), the simulator is given by p(x|θ) =
(1/2)N (x; θ,Σ1) + (1/2)N (x; θ, 1/9Σ2) where Σ1 = 2.25Σ, Σ2 = 1/9Σ and Σ is a diagonal matrix with
values increasing linearly between 0.6 and 1.4. In this case, the posterior pdf is

p(θ|x) = ω1(x)N (θ;µ1,Σ1,p) + ω2(x)N (θ;µ2,Σ2,p) (37)

where for i = 1, 2, Σi,p =
(
Σ−1
i + Im

)−1
, µi = Σi,pΣ

−1
i x, ω̃i(x) = N (x; θ,Σi + Im) and ωi =

ω̃i/
∑2
j=1 ω̃j .

Therefore, the diffused marginals are

pt(θ|x) = ω1(x)N (θ;α
1/2
t µ1, αtΣ1,p + (1− αt)Im) + ω2(x)N (θ;α

1/2
t µ2, αtΣ2,p + (1− αt)Im) , (38)

from which the score is

∇θ log pt(θ|x) = −ω1(x)(αtΣ1,p+(1−αt)Im)−1(θ−α1/2
t µ1)−ω2(x)(αtΣ2,p+(1−αt)Im)−1(θ−α1/2

t µ2) .
(39)
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E Implementation details

All experiments are implemented with Python combined with PyTorch.

The score network. The same score model architecture and training hyper parameters are used for all
tasks. Our implementation of the score model sϕ(θ, x, t) is an MLP with layer normalization and 3 hidden
layers of 256 hidden features. It takes as input the variables (θ, x, t) and outputs a vector of the same size
as θ ∈ Rm. Before being passed to the score network, a positional embedding is computed for t ∈ [0, 1] as
per: (cos(tiπ), sin(tiπ))1≤i≤F , where we chose F = 3 for the number of frequencies. Optionally, θ and
x can each be passed to an embedding network. Note that for the benchmark experiment in Section 4.2,
no embedding networks were used, as we chose to use the same score model architecture across all tasks,
each with different data dimensions. For the more complex neuroscience application in Section 4.3, θ and
x were each embedded with with a MLP with 3 hidden layers of 64 hidden features and output embedding
dimension of 32.

The score model is trained by minimizing the denoising score-matching (DSM) loss
E
[
∥sϕ(θ, x, t)−∇θ log qt|0(θ | θ0)∥2

]
, parametrized with the VP-SDE and a linear noise schedule

β(t) = 32t (Song et al., 2021b). For more stability we actually learn the noise distribution ϵϕ (Ho et al.,
2020; Song et al., 2021a), which is related to the score function via ϵϕ(θ, x, t) = −σ(t)sϕ(θ, x, t). Given

a training dataset
(
{(θ0,i, xi)}Ns

i=1 ∼ p(θ, x), ti ∼ U(0, 1), zi ∼ N (0, Im)
)

, the empirical loss function
writes:

L(ϕ) = 1

Ns

Ns∑
i=1

∥ϵϕ(θi, xi, ti)− zi∥2 , with θi =
√
α(ti)θ0,i + σ(ti)zi . (40)

Training is done using the Adam optimizer over 5 000 epochs and early stopping using 20% of the training
data. Note that early stopping requires to be done with care, since the loss function is stochastic. For each
example and training set Ntrain, we therefore trained several models for different learning rates and batch
sizes, and selected the one that corresponds to the best trade-off between smallest validation loss and latest
stopping epoch (we want the score network to be trained over as many epochs as possible). See Figure 6
that displays the train and validation losses for all SBI examples and explains our model selection strategy
(i.e. choices of learning rate and batch size).

The training dataset is always normalized to zero mean and standard variance (for variables θ and x). The
same transformation has to be applied to the observations x⋆1:n and the prior score function ∇θ log pλt (θ)
during sampling. After sampling, the inverse transformation is applied to the obtained samples, which are
then compared to samples from the true posterior distribution p(θ | x⋆1:n). For the cases where the prior and
/ or the simulator corresponds to a Log-Normal distribution, an additional log-transformation is applied to θ
and / or x.9

(Diffusion) Posterior Sampling. For sampling the approximate tall posteriors, we use the score-based
samplers chosen in Section 4.1 according to the equivalent time setting, i.e. DDIM with respectively 1 000
steps, η = 1 and 400 steps, η = 0.8 for GAUSS and JAC, and 400 steps for LANGEVIN with the the same
hyper-parameters as in (Geffner et al., 2023).

9This applies to the prior for both, the Lotka Volterra and SIR examples, and to the simulator for Lotka Volterra only.
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The true posterior samples are obtained via MCMC using numpyro with jax, except for the Gaussian
Mixture Toy Model from section 4.1, for which we consider the Metropolis-Adjusted Langevin Algorithm;
see (Roberts and Tweedie, 1996). For a given number of observations n, we initialize the samples at
n−1

∑n
j=1 x

⋆
j + ϵ where ϵ ∼ N (0, Im). We run the MALA algorithm for 103 iterations with a learning

rate of n−110−3. We adapt the learning rate in the first 500 iterations to target an acceptance ratio of 0.5. To
do so, we increase the learning rate by a factor of 1.01 if the acceptance rate is larger than 0.5 or by a factor
of 0.99 if the acceptance rate is smaller than 0.45.

Evaluation metrics. To evaluate the accuracy of the sampling algorithms, we compute the sliced Wasser-
stein (sW) distance using the implementation form POT with 1 000 projections and the Maximum Mean
Discrepancy (MMD) from the sbi package. We also evaluate the distance to the true parameters θ⋆ used to
simulated the observations x⋆1:n by computing the MMD to the Dirac function δθ⋆ (MMD to Dirac).
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F Loss functions, training strategy and model selection

(a) Batch size 64. (b) Batch size 256.

Figure 6: Train and validation losses for the SBI benchmark examples obtained for score networks trained
over 5 000 epochs with the Adam optimzer and learning rates lr = 1e−3 (orange) and lr = 1e−4 (blue). The
two Figures respectively corresponds to a batch size of 64 and 256. For small Ntrain, over fitting behavior
can be detected (SLCP and Lotka Volterra). In these cases, a higher batch size of 256 is chosen, since
it yields more stable loss functions, with delayed over fitting and thus also delayed early stopping. Since
the best validation loss in each setting is similar (with small variations due to the stochasticity of the loss
function), the learning rate can then be chosen to correspond to the latest early stopping epoch.

Figure 7: Loss functions for the Jansen & Rit Neural Mass Model. The validation loss was computed on a
held-out validation set of 20% of the training dataset of size Ntrain = 50 000.
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G Additional results for the toy models

m Speed up GAUSS Speed up JAC
2 0.39 ± 0.01 0.56 ± 0.00
4 0.39 ± 0.01 0.55 ± 0.00
8 0.39 ± 0.01 0.56 ± 0.00
10 0.38 ± 0.01 0.52 ± 0.00
16 0.38 ± 0.01 0.54 ± 0.00
32 0.37 ± 0.01 0.52 ± 0.00

Table 2: Confidence intervals for the ratio between elapsed time for each algorithm (GAUSS, JAC) and the
equivalent Langevin sampler in the Gaussian case for each tested m. The values are averaged over number
of sampling steps, ϵ and n.

Algorithm N steps ∆t (s) sW
GAUSS 50 0.99 +/- 0.00 0.30 +/- 0.05

JAC 50 0.89 +/- 0.00 82.73 +/- 67.41
Langevin 50 1.77 +/- 0.01 0.24 +/- 0.01
GAUSS 150 1.83 +/- 0.01 0.31 +/- 0.04

JAC 150 2.66 +/- 0.00 5.89 +/- 1.07
Langevin 150 5.28 +/- 0.01 0.35 +/- 0.02
GAUSS 400 3.91 +/- 0.01 0.31 +/- 0.04

JAC 400 7.13 +/- 0.02 3.41 +/- 1.04
Langevin 400 14.06 +/- 0.04 0.43 +/- 0.02
GAUSS 1000 8.85 +/- 0.03 0.34 +/- 0.03

JAC 1000 17.69 +/- 0.07 7.33 +/- 5.41
Langevin 1000 35.08 +/- 0.15 0.47 +/- 0.02

Table 3: Sliced Wasserstein (sW) and total elapsed time for the Gaussian Mixture toy problem with d = 10,
n = 32 and ϵ = 10−2 per algorithm and number of generation steps. Mean and std over 5 different seeds.
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Figure 8: Normalized sliced Wasserstein (sW) distance as a function of the number of observations n for
GAUSS, JAC and LANGEVIN with different levels of ϵ. Results are shown for the Gaussian example in
several dimensions m ∈ [2, 4, 8, 10, 16, 32]. Mean and std over 5 different seeds.
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Figure 9: Sliced Wassersteiin (sW) distance as a function of the number of observations n for the different
methods with different levels of ϵ. Results are shown for the Gaussian example in several dimensions
m ∈ [2, 4, 8, 10, 16, 32]. Mean and std over 5 different seeds.
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H Additional results for SBI benchmarks

H.1 Sliced Wasserstein (sW) distance)

Figure 10: Sliced Wasserstein (sW) as a function of Ntrain ∈ [103, 3.103, 104, 3.104] between the samples
obtained by each algorithm and the true tall posterior distribution p(θ | x⋆1,n) (for n ∈ [1, 8, 14, 22, 30]).
Mean and std over 25 different parameters θ⋆ ∼ λ(θ).

Figure 11: Sliced Wasserstein (sW) a function of n ∈ [1, 8, 14, 22, 30] between the samples obtained by each
algorithm and the true tall posterior distribution p(θ | x⋆1,n) (for Ntrain ∈ [103, 3.103, 104, 3.104]). Mean
and std over 25 different parameters θ⋆ ∼ λ(θ).
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H.2 Maximum Mean Discrepancy (MMD)

As a complementary result to the one reported with the sliced Wassersetin distance, the MMD metric high-
lights an interesting point: Figures 12 and 13 show a general trend of increasing MMD values for higher
n. This can be explained by the accumulation of approximation errors, as we sum over n evaluations of
the score model to obtained the tall posterior score conditioned on n observations. We refer the reader to
Appendix K, which investigates a possible solution to this issue: partially factorized score-based posterior
sampling algorithms, such as PF-NPSE proposed by (Geffner et al., 2023).

Figure 12: MMD as a function of Ntrain ∈ [103, 3.103, 104, 3.104] between the samples obtained by each
algorithm and the true tall posterior distribution p(θ | x⋆1,n) (for n ∈ [1, 8, 14, 22, 30]). Mean and std over
25 different parameters θ⋆ ∼ λ(θ).

Figure 13: MMD as a function of n ∈ [1, 8, 14, 22, 30] between the samples obtained by each algorithm and
the true tall posterior distribution p(θ | x⋆1,n) (for Ntrain ∈ [103, 3.103, 104, 3.104]). Mean and std over 25
different parameters θ⋆ ∼ λ(θ).
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H.3 Distance to the Dirac of the true parameters (MMD to Dirac)

Figure 14: MMD as a function ofNtrain ∈ [103, 3.103, 104, 3.104] between the marginals of the approximate
tall posterior distribution p(θ | x⋆1,n) and the Dirac of the true parameters θ⋆ used to simulate the observations
x⋆1,n (for n ∈ [1, 8, 14, 22, 30]). Mean and std over 25 different parameters θ⋆ ∼ λ(θ).

Figure 15: MMD as a function of n ∈ [1, 8, 14, 22, 30] between the marginals of the approximate tall
posterior p(θ | x⋆1,n) (for Ntrain ∈ [103, 3.103, 104, 3.104]) and the Dirac of the true parameters θ⋆ used to
simulate the observations x⋆1,n. Mean and std over 25 different parameters θ⋆ ∼ λ(θ).
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I Results for additional SBI Benchmark examples

To complete our empirical study, we added results for additional examples from the SBI benchmark (Lueck-
mann et al., 2021b): Gaussian Linear, GMM, GMM (uniform)10, B-GLM/ (raw)11 and Two
Moons. These new results allows us to compare the performance of our proposal on other challenging
situations, such as when scaling to highly structured (e.g. multimodal) posteriors and high-dimensional ob-
servation spaces. Note that these examples go a step further as compared to the experiments carried out by
Geffner et al. (2023), including non-Gaussian priors12. Figures 16 and 17 respectively report the sW and
MMD as a function of Ntrain.

Figure 16: Results for additional benchmark examples (sW as a function of Ntrain).

10same as GMM but with a Uniform prior.
11Bernoulli GLM with summary statics / high dimensional raw data.
12Note that this was already the case for SLCP with Uniform prior.
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Figure 17: Results for additional benchmark examples (MMD as a function of Ntrain).
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J Limitations of Langevin sampling

Sensibility to the quality of the score model. Our results in Section 4.1 analyze the robustness of the
different sampling algorithms and essentially show that the Langevin algorithm is very sensible to noisy
score networks.

Step-size choice. We found that different step sizes can generate very different results for a given score
model. We have added in Figure 18 a comparison between the original ULA (Unadjusted Langevin algo-
rithm) used in (Geffner et al., 2023) and an additional implementation with ”tamed” step sizes from (Brosse
et al., 2017), which is known to stabilize ULA. We can see that the same choice of hyper-parameters for
the ”Geffner setting” leads to different behaviour with increasing n. Namely, the learning rate in the ULA
algorithm seems to be to large (i.e. not enough steps are done) in settings with big n. We can see that
the stabilization tools from the tamed version yield a more stable ULA algorithm but that does not provide
a completely satisfying solution. Fundamentally, there exists a setting where the Langevin algorithm will
work (taking a small enough learning rate for a long enough time), but this setting is extremely dependent
of the problem at hand. This is precisely the strength of our algorithm when compared to ULA: we do not
need to sample several times for each marginal pt at each time step t. Note that unfortunately, the code
for (Geffner et al., 2023) is not available, so our results are based in a best-effort attempt to reproduce the
proposed algorithm.

Figure 18: Comparison between the LANGEVIN algorithm from (Geffner et al., 2023) (used in all our
experiments) and a more stable tamed ULA version with ”tamed” step size from (Brosse et al., 2017). The
plots show the sliced Wasserstein (sW) w.r.t. the true tall posterior p(θ | x⋆1:n) as a function of Ntrain ∈
{103, 3.103, 104, 3.104} and for n ∈ {1, 8, 14, 22, 30}.
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K Extensions: Classifier-free guidance and Partial Factorization

The implementation of both of these extension can be found in our Code repository13. Their performance
was investigated on the three benchmarks Lotka-Volterra, SLCP and SIR.

Classifier-free guidance (CFG). It is possible to implicitly learn the prior score via the classifier-free
guidance approach (Ho and Salimans, 2022), which essentially consists in randomly dropping the context
variables when training the posterior score model (e.g. 20% of the time). This is useful in cases where the
diffused prior score cannot be computed analytically. Figure 19 displays the sliced Wasserstein and MMD
as a function of Ntrain and compares the results obtained when using our proposition with the learned vs.
the analytical prior score (resp. GAUSS (CFG) vs. GAUSS). The results are highly accurate for the Log-
Normal priors of Lotka-Volterra and SIR, but less satisfying for the Uniform prior in SLCP. We think
that this is caused by the discontinuities of the Uniform distribution. In summary, it seems that (under some
smoothness assumptions) it is possible to learn the prior score via the classifier-free guidance approach.

(a) Sliced Wasserstein (sW).

(b) Maximum Mean Discreapancy (MMD).

Figure 19: Comparison between the results obtained with our algorithm when combined with the ana-
lytical prior score and the one learned via classifier-free guidance (resp. GAUSS and GAUSS (CFG)).
The plots show the sW and MMD w.r.t. the true tall posterior p(θ | x⋆1:n) as a function of Ntrain ∈
{103, 3.103, 104, 3.104} and for n ∈ {1, 8, 14, 22, 30}.

13https://github.com/JuliaLinhart/diffusions-for-sbi
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Partial factorization (PF-NPSE). In the same way as in (Geffner et al., 2023), our proposed algorithm
can naturally be extended to a partially factorized version. Specifically, it consists in approximating the tall
posterior by factorizing it over batches of context observations (instead of a single x). To do so, the score
model is modified to take as input context sets with variable sizes (between 1 and nmax). The given sampling
algorithm (e.g. GAUSS, LANGEVIN) is then modified to split the context observations x⋆1, . . . , x

⋆
n into

subsets of smaller size k < nmax < n, before passing them to the trained score model. This approach should
allow for a good trade-off between the accumulation of approximation errors due to multiple evaluations of
the score model (n/nmax times) and the increased simulation budget (×nmax). This approach should allow
for a good trade-off between the accumulation of approximation errors due to multiple evaluations of the
score model (n/nmax times) and the increased simulation budget (×nmax).

We investigated the performance of PF-NPSE on the SBI benchmarks (Lotka-Volterra, SIR and
SLCP). For each of the three examples we trained a PF-NPSE model targeting the score models for the
law of θ given x1:nmax

for nmax ∈ {1, 3, 6, 30}. Figure 20 displays the Sliced Wasserstein (sW) for n = 30
observations as a function of the Ntrain for samples obtained with the partially factorized LANGEVIN and
GAUSS samplers and for all nmax. The extreme case nmax = 1 corresponds to the original ”fully” factor-
ized version of the samplers. nmax = n = 30 correspond to the other extreme case with no factorization,
but maximum simulation budget. We can see that the optimal sW values lie in the middle of the spectrum
(i.e. for nmax = 3, 6), which corresponds to what was concluded in (Geffner et al., 2023). Note that the
performance of LANGEVIN is drastically improved for nmax > 1, while GAUSS all results are close. In any
case, the results suggests that a practitioner will gain in choosing (a small enough) nmax > 1.

Figure 20: Results obtained with the partially factorized LANGEVIN and GAUSS samplers to infer the
tall posterior conditioned on a total number of observations n = 30, for nmax = 1, 3, 6, 30. We report
the sliced Wasserstein (sW) and MMD w.r.t. the true tall posterior p(θ | x⋆1:n) as a function of Ntrain ∈
{103, 3.103, 104, 3.104}. The extreme case nmax = 1 corresponds to the original ”fully” factorized posterior
samplers. nmax = n = 30 correspond to the case with no factorization, but maximum simulation budget.
We can see that the optimal distance values lie in the middle of this spectrum (i.e. for nmax = 3, 6).
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