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ON THE ERROR ESTIMATES FOR THE DIVERGENCE-FREE
WAVELET-BASED PROJECTION METHOD

SOULEYMANE KADRI HAROUNA∗ AND VALÉRIE PERRIER†

Abstract. We investigate the stability and convergence of the divergence-free wavelet-based pro-
jection method applied to the Navier-Stokes equations. Our analysis shows that the convergence
rates of velocity and pressure in the time discretization are of the same order, even when using a
second order scheme. This is in contrast to conventional methods, which typically suffer a loss of
a factor of 1/2 in the pressure approximation. Numerical experiments on benchmark flows validate
the theoretical results and highlight the efficiency of our approach.
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1. Introduction. The main challenges in developing a numerical method for ap-
proximating Navier-Stokes solutions arise from the incompressibility constraint that
couples velocity and pressure. Typically, to address this constraint, two different
spaces are used for the spatial discretization of the unknowns, with the aim of satis-
fying the Babouska-Brezzi inf-sup condition that stabilises the system [3]. However,
this approach increases the numerical cost of the resulting algorithms and requires
more memory storage.

The projection method initiated by Chorin and Temam [4, 9, 15] in the sixties
is an approach that decouples the computation of the velocity field and the pressure.
An intermediate non-incompressible velocity is computed and then projected onto
the divergence-free function space. The advantage is that each step of the method
requires only an elliptic problem solver. However, the projection method imposes
artificial boundary conditions on the pressure. This leads to a lack of precision and
accuracy in the time discretization and produces boundary oscillations, especially in
the pressure approximation. It is also known that classical error estimation for high
order schemes loses a factor of 1/2 in the pressure time discretization rate [8].

Recently, new constructions of divergence-free wavelet bases, satisfying physi-
cal boundary conditions [11, 14], have enabled the derivation of stable bases for the
Navier-Stokes solution space. By inverting the Gram matrix of such a basis, it becomes
possible to project onto the divergence function space without relying on non-physical
boundary conditions [4, 9, 15]. This approach was employed in [12], where the pro-
jection step was replaced by the Helmholtz-Hodge decomposition of the intermediate
velocity field. In this scenario, the resulting method closely resembles Gauge method
[16]. For the velocity approximation, the convergence of the method presented in [12]
has been proven using the one-order Euler scheme in time and numerically studied
for the two-order Crank-Nicholson scheme. However, regarding the pressure, there
has been no exploration of the convergence rate in the context of the divergence-free
wavelet-based projection method.

The aim of this study is to examine the time discretization error and the stability
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of the divergence-free wavelet-based projection method, particularly when employing a
time discretization scheme with a minimum order of two. Specifically, the analysis will
demonstrate that when using the L2 or H1 norm for error estimation, the convergence
rate of the proposed method in time discretization for the pressure is consistent with
that of the velocity field approximation. This stands in contrast to the conventional
projection method or the Gauge method [8, 16]. Consequently, the conjecture 5.1 of
[8] is addressed in the context of the divergence-free wavelet-based projection method.

The remainder of the paper is organized as follows. In Section 2, we revisit the
primary steps of the divergence-free wavelet-based projection method and introduce
the time discretization schemes that will be analyzed. Section 3 focuses on the numer-
ical error study and convergence rate estimation. Finally, Section 5 presents numerical
experiments aimed at validating the theoretical results from the preceding sections.

2. Divergence-free wavelets based projection method. Initiated by Chorin and
Temam [4, 9, 15], the projection method is an operator splitting method that re-
duces the numerical resolution of the Navier-Stokes equations to successive elliptic
problem resolutions. Due to its simplicity, it has gained widespread popularity, and
several improvements have been made to the initial algorithms. Broadly, there are
three types of projection method algorithms [8]: the pressure-correction method, the
velocity-correction method, and the consistent splitting method. The divergence-free
wavelet-based method falls under the category of consistent splitting methods. In this
section, we revisit its main steps, as outlined in [12], particularly when utilizing the
Crank-Nicholson scheme or the Gear scheme, both of which are second-order time
discretization schemes.

As we are dealing with an operator splitting method, our focus will be on the
linear equations. It is worth noting that the non-linear term can be discretized in a
manner that does not impact this error. Specifically, let Ω ⊂ Rd (d = 2 or d = 3)
be an open bounded set with a ”smooth” boundary ∂Ω. Without loss of generality,
we consider the unsteady incompressible Stokes equations in the primitive variables
formulation: 

∂tv − ν∆v +∇p = f , in Ω× [0, T ],

∇ · v = 0 in Ω× [0, T ],

v|∂Ω = 0 in [0, T ], v(0, x) = v0 in Ω,

(2.1)

where f is a source term and v0 is a divergence-free vector field. Both are assumed to
be sufficiently ”smooth” concerning their arguments. The unknowns in system (2.1)
are the velocity vector field v and the pressure scalar field p.

The time numerical discretization of (2.1) is obtained using finite difference meth-
ods. Then, given a time step δt > 0, we set v0(x) = v0(x) and denote by vn(x) the
approximation of v(x, nδt) for an integer n ≥ 1: vn(x) ≈ v(x, nδt). In the works of
the literature, the most common second-order schemes used to compute vn(x) are the
Crank-Nicholson scheme and the Gear scheme, which we have summarized as fallows:
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• Crank-Nicholson’s scheme:
vn+1−vn

δt − ν
2∆(vn+1 + vn) + 1

2∇(pn+1 + pn) = 1
2 (f

n+1 + fn),

∇ · vn = 0,

vn = 0 on ∂Ω.
(2.2)

• Gear scheme:
3vn+1−4vn+vn−1

2δt − ν∆vn+1 +∇pn+1 = fn+1,

∇ · vn = 0,

vn = 0 on ∂Ω.

(2.3)

Then, following [12], the divergence-free wavelet-based time discretization associated
with the Crank-Nicholson scheme (2.2) reads:

ṽn+1−vn

δt − ν
2∆(ṽn+1 + vn) = 1

2 (f
n+1 + fn),

vn+1 = Pdiv,0(ṽn+1).

(2.4)

Similarly, for the Gear scheme (2.3), we have:
3ṽn+1−4vn+vn−1

2δt − ν∆(ṽn+1) = fn+1,

vn+1 = Pdiv,0(ṽn+1).

(2.5)

In (2.4) and (2.5), Pdiv,0 refers to the orthogonal projector onto the divergence-free
function subspace of H1

0 (Ω)
d. The intermediate velocity ṽn+1 is defined as:

ṽn+1 = vn+1 +∇Φn+1, (2.6)

where Φn+1 is a regular scalar field defined on Ω that comes from the Helmholtz-Hodge
decomposition of ṽn+1.

Remark 2.1.
The numerical solutions of (2.2) and (2.3) and the solutions of (2.4) and (2.5) are
denoted here by vn+1 to simplify the notation and avoid redundancy. There’s no a
priori reason why they should be the same.

In view of (2.4) and (2.5), a major difficulty is to obtain consistency of the operator
splitting. To illustrate this point, let us replace ṽn+1 with its expression (2.6) in the
first equation of (2.4):

vn+1 − vn

δt
− ν

2
∆(vn+1 + vn) +∇

[
1

δt
Φn+1 − ν

2
∆Φn+1

]
=

1

2
(fn+1 + fn). (2.7)

It can then be observed that if the pressure satisfies the following relationship

1

2
(∇pn+1 +∇pn) = ∇

[
1

δt
Φn+1 − ν

2
∆Φn+1

]
. (2.8)
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Thus the formulations (2.4) and (2.5) are nothing more than a change of variables.
However, when using the elliptic problem solver to compute vn, the relation (2.8) is
not satisfied due to the lack of correct boundary conditions on the numerical pressure
pn and velocity vn. Furthermore, the assumption that the equality (2.8) is satisfied
is at the origin of the name of the consistent splitting method or change of variables
method, this is also the basis of the gauge method [16].

In the case of the divergence-free wavelet-based method, we argue that the relation
(2.8) holds, and this will be shown in the next upcoming section. Thus, at each time
step, one can define the pressure approximation using the auxiliary scalar field Φn+1.
More precisely, for the Crank-Nicholson scheme, the pressure approximation is defined
by

∇p̄n+1/2 =
1

2
(∇p̄n+1 +∇p̄n) = ∇

[
1

δt
Φn+1 − ν

2
∆Φn+1

]
, (2.9)

and similarly for the Gear system:

∇p̄n+1 = ∇
[

3

2δt
Φn+1 − ν∆Φn+1

]
. (2.10)

A key objective of this study is to demonstrate that the numerical pressure p̄n, de-
fined by (2.9) and (2.10), obtained by replacing ṽn+1 with (2.6) in (2.4) and (2.5)
respectively, approximates the exact pressure p(tn) with a time discretization rate
of approximately O(δt2). This aligns with the expected rate of discretization for
v(x, nδt) and ∇v(x, nδt) in the L2-norm, as provided by schemes (2.2) and (2.3).

3. Estimates on the time discretization error . Despite the large literature on the
projection method, even today, its major drawback is that the estimation of the time
discretization error on the pressure and velocity gradient is not optimal for schemes
of two order and higher. Although numerical experiments show the expected order in
certain situations [5, 8]. In this section we delve into the time discretization error of
the divergence-free wavelet-based schemes (2.4) and (2.5). To avoid redundancy, we
will concentrate on the Crank-Nicholson scheme (2.4). For the Gear scheme (2.5), we
will outline the crucial steps and corresponding estimates. Then, assuming the exact
solution (v, p) and the source term f to be ”smooth” enough, the numerical errors we
are interested in are:

en = v(tn)− vn and qn = p(tn)− pn, (3.1)

where vn is the solution of (2.2) or (2.3), without distinction. In this case, the Taylor
expansion of the solution around tn = nδt gives:

v(tn+1) = v(tn) + δt∂tv(t
n) +

δt2

2!
∂2t v(t

n) +
δt3

3!
∂3t v(t

n) +O(δt4),

and

∇p(tn+1) = ∇[p(tn) + δt∂tp(t
n) +

δt2

2!
∂2t p(t

n) +
δt3

3!
∂3t p(t

n) +O(δt4)],

and

f(tn+1) = f(tn) + δt∂tf(t
n) +

δt2

2!
∂2t f(t

n) +
δt3

3!
∂3t f(t

n) +O(δt4).
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Thus, replacing vn by v(tn) in (2.4), we get:

v(tn+1)− v(tn)

δt
− ν

2
∆[v(tn+1) + v(tn)] +

1

2

(
∇p(tn+1) +∇p(tn)

)
− 1

2

(
f(tn+1) + f(tn)

)
=

[∂tv(t
n)− ν∆v(tn) +∇p(tn)− f(tn)] +

δt

2
∂t[∂tv(t

n)− ν∆v(tn) +∇p(tn)− f(tn)] +

δt2

4
∂2t [∂tv(t

n)− ν∆v(tn) +∇p(tn)− f(tn)] = Rn(δt) +O(δt3), (3.2)

where:

Rn(δt) = −δt
2

12
∂3t v(t

n) = O(δt2).

Either by making the difference of (2.4) with (3.2), we deduce that:

en+1 − en

δt
− ν

2
∆[en+1 + en] +

1

2
(∇qn+1 +∇qn) = O(δt2), (3.3)

and

∇ · en = 0 and en = 0 on ∂Ω, ∀ n ≥ 0. (3.4)

Accordingly, the splitting errors are:

ẽn = v(tn)− ṽn = v(tn)− (vn +∇Φn) = en −∇Φn and q̄n = qn − p̄n, (3.5)

where p̄ is defined in (2.9) and (2.10), depending on the scheme considered. From
(3.3), we see that:

ẽn+1 − en

δt
− ν

2
∆[ẽn+1 + en] +

1

2

(
∇q̄n+1 +∇q̄n)

)
= O(δt2). (3.6)

It is important to note that this error is not divergence-free ∇· ẽn ̸= 0, but it satisfies
the Dirichlet homogeneous boundary condition as en.

Similarly, using the previous Taylors expansion terms, the troncation error and
the splitting error of the Gear scheme (2.3), denoted again by en and ẽn respectively,
satisfy:

3en+1 − 4en + en−1

2δt
− ν∆en+1 +∇qn+1 = O(δt2), (3.7)

and

3ẽn+1 − 4en + en−1

2δt
− ν∆ẽn+1 +∇q̄n+1 = O(δt2). (3.8)

To see the rate of decay of these errors with respect to the time step δt, we estimate
their L2 norm from equations (3.3) and (3.7).
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3.1. Time discretization error. The expected time discretization convergence rate
of the divergence-free wavelet-based methods (2.4) and (2.5) is in O(δt2). To the best
of our knowledge, when using numerical schemes (2.2) or (2.3), there are no works
that prove the convergence of the conventional projection method with a rate O(δt2)
in pressure and velocity gradient discretization, see [8] for the discussion. The aim of
this section is to study the rate of convergence of the schemes (2.4) and (2.5). We
will show that the method converges in O(δt2) in the approximation of the velocity
v, the velocity gradient ∇v and the pressure p.

First, we emphasize that the numerical schemes (2.4) and (2.5) are consistent
with the systems (2.2) and (2.3), respectively.

Lemma 3.1.
Let vn+1 be the solution of (2.2) or (2.3) and let v̄n+1 be the solution of (2.4) or
(2.5). Then, we have:

vn+1 = v̄n+1 = Pdiv,0(ṽn+1). (3.9)

Proof. We suppose that vn+1 ̸= Pdiv,0(ṽn+1) and denote the difference by:

un+1 = vn+1 − Pdiv,0(ṽn+1).

Then, if we make the subtraction of the first equation from (2.2) and (2.4), we get

un+1

δt
− ν

2
∆un+1 +

1

2
(∇pn+1 +∇pn) = 0. (3.10)

Since we have ∇ · un+1 = 0 and un+1
|∂Ω = 0, taking the inner product of (3.10) with

un+1, we obtain:

∥un+1∥2L2(Ω)d +
δtν

2
∥∇un+1∥2L2(Ω)d×d = 0. (3.11)

Hence

∥un+1∥2L2(Ω)d = 0 and ∥∇un+1∥2L2(Ω)d×d = 0, (3.12)

which means that vn+1 = Pdiv,0(ṽn+1) in the case of the Crank-Nicholson scheme
(2.4) and the relation (2.8) is satisfied for the corresponding divergence-free wavelet-
based method.

In the same way, using the same notation as before, we obtain the difference of
the first equations of the systems (2.3) and (2.5):

3un+1

2δt
− ν∆un+1 +∇pn+1 = 0. (3.13)

Again, taking the inner product of (3.13) with un+1 leads to:

3∥un+1∥2L2(Ω)d + 2δtν∥∇un+1∥2L2(Ω)d×d = 0. (3.14)

Thus:

∥un+1∥2L2(Ω)d = 0 and ∥∇un+1∥2L2(Ω)d×d = 0, (3.15)
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which means that we have vn+1 = Pdiv,0(ṽn+1) and the projection of the intermediate
velocity ṽn+1 is the solution of (2.5) in the case of Gear scheme.

The theorem below outlines our principal results concerning the convergence rate
of the time discretization error for the numerical schemes defined by (2.4) and (2.5):

Theorem 3.2.
Assuming that the solution (v, p) of (2.1) and the source term f are smooth enough
in space and time. Under the initialization assumptions

∥e0∥L2(Ω)d + ∥∇e0∥L2(Ω)d×d ≤ Cδt2, (3.16)

the solution vn of (2.4) satisfies:

∀ n ≥ 0, ∥vn − v(nδt)∥L2(Ω)d + ∥∇vn −∇v(nδt)∥L2(Ω)d ≤ Cδt2, (3.17)

and

∀ n ≥ 0, ∥p(tn+1/2)−p̄n+1/2∥L2(Ω)+∥∇p(tn+1/2)−∇p̄n+1/2∥H−1(Ω)d ≤ Cδt2, (3.18)

where p(tn+1/2) = 1
2

(
p(tn+1) + p(tn)

)
and p̄n+1/2 define in (2.9).

Moreover, if

∥e1∥L2(Ω)d + ∥∇e1∥L2(Ω)d×d ≤ Cδt2, (3.19)

the solution vn of (2.5) also satisfies:

∀ n ≥ 0, ∥vn − v(nδt)∥L2(Ω)d + ∥∇vn −∇v(nδt)∥L2(Ω)d ≤ Cδt2, (3.20)

and

∀ n ≥ 0, ∥p(tn)− p̄n∥L2(Ω) + ∥∇p(tn)−∇p̄n∥H−1(Ω)d ≤ Cδt2. (3.21)

Proof. Let us take en+1 + en as the test function in (3.3). A simple calculation
gives

∥en+1∥2L2(Ω)d − ∥en∥2L2(Ω)d +
νδt

2
∥∇(en+1 + en)∥2L2(Ω)d ≤ Cδt3∥en+1 + en∥L2(Ω)d ,

where C > 0 denotes a generic constant that changes from one equation to another.
To bound the term ∥∇(en+1+en)∥2L2(Ω)d in the previous equation, we use the Poincaré

and Young’s inequalities to get this:

∥en+1∥2L2(Ω)d − ∥en∥2L2(Ω)d +
νδt

4
∥∇(en+1 + en)∥2L2(Ω)d×d ≤ C

ν
δt5.

Doing an induction over n, we arrive at:

∥en∥2L2(Ω)d ≤ ∥e0∥2L2(Ω)d +
C

ν
δt4.

Based on the assumption made on the initial condition (3.16), the first error estimate,
in the L2 norm for the velocity, is then proven for the Crank-Nicholson scheme. To



8 S. Kadri-Harouna and V. Perrier

extend this to the gradient of the velocity field, a similar procedure is repeated. By
employing en+1 − en as the test function in (3.3), the following result is obtained:

∥en+1 − en∥2L2(Ω)d +
νδt

2
∥∇en+1∥2L2(Ω)d − νδt

2
∥∇en∥2L2(Ω)d ≤ Cδt3∥en+1 − en∥L2(Ω)d

≤ Cδt6 +
1

2
∥en+1 − en∥2L2(Ω)d .

If we remove the positive from the left side of the preceding inequality, we get

∥∇en+1∥2L2(Ω)d − ∥∇en∥2L2(Ω)d ≤ C

ν
δt5,

and an induction over n gives:

∥∇en∥2L2(Ω)d ≤ ∥∇e0∥2L2(Ω)d +
C

ν
δt4,

which gives the desired bound on the gradient.

To prove the pressure error estimate (3.1), we first set:

∇qn+1/2 = ∇[
p(tn+1) + p(tn)

2
− 1

δt
Φn+1 +

ν

2
∆Φn+1] = ∇pn+1/2 −∇p̄n+1/2,

where p̄n is defined in (2.9), and rewrite (3.6) as:

en+1 − en

δt
− ν

2
∆[en+1 + en] +∇qn+1/2 = Rn(δt) +O(δt3). (3.22)

What is rewritten in:

−ν
2
∆[en+1 + en] +∇qn+1/2 =

en − en+1

δt
+Rn(δt) +O(δt3) = f̄

n+1
. (3.23)

Since en+1 + en ∈ H1
0 (Ω)

d, the equation (3.22) can be seen as a non-homogeneous
Stokes problem for the unknowns en+1 + en and qn+1/2. Then classical stabilization
results for the Stokes problem [6, 15] allow to get:

∥en+1 + en∥H1(Ω)d + ∥qn+1/2∥L2(Ω) ≤ C∥f̄n+1∥H−1(Ω)d . (3.24)

Moreover, as Rn(δt) = O(δt2), from (3.22) we get:

∥∇qn+1/2∥H−1(Ω)d ≤ ∥e
n+1 − en

δt
∥H−1(Ω)d +

ν

2
∥∆[en+1 + en]∥H−1(Ω)d +O(δt2)

≤ ∥e
n+1 − en

δt
∥H−1(Ω)d +

ν

2
∥en+1 + en∥H1(Ω)d +O(δt2).(3.25)

In (3.25), the term ν
2∥e

n+1 + en∥H1(Ω)d is in O(δt2) according to (3.17). Thus, we
have:

∥∇qn+1/2∥H−1(Ω)d ≤ C∥e
n+1 − en

δt
∥L2(Ω)d +O(δt2). (3.26)

To prove that ∥e
n+1−en

δt ∥L2(Ω)d ≤ Cδt2, we will use the definition of Rn(δt):

Rn(δt) = −δt
2

12
∂3t v(t

n),
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and calculating the increments of Rn(δt), as done in [1], we have:

Rn(δt)−Rn−1(δt) = δRn(δt) = O(δt3).

Then, setting δen = en−en−1 and δqn+1/2 = qn+1/2− qn−1/2, from (3.22) we deduce
that:

δen+1 − δen

δt
− ν

2
∆[δen+1 + δen] +∇δqn+1/2 = δRn(δt) = O(δt3). (3.27)

Using δen+1+δen as the test function in (3.27), with the help of Poincaré and Young’s
inequalities we have:

∥δen+1∥2L2(Ω)d − ∥δen∥2L2(Ω)d +
νδt

4
∥∇(δen+1 + δen)∥2L2(Ω)d×d ≤ Cδt7.

Therefore, an induction over n gives:

∥δen+1∥2L2(Ω)d ≤ ∥δe1∥2L2(Ω)d + Cδt6.

If the initialization error satisfies the following condition

∥δe1∥2L2(Ω)d ≃ O(δt6), (3.28)

what we assumed in the sequel, we have then:

∥e
n+1 − en

δt
∥L2(Ω)d ≤ Cδt2, ∀n ≥ 1. (3.29)

From (3.29) and using Sobolev’s injection [6, 15], we have:

∥f̄n+1∥H−1(Ω)d ≤ C∥f̄n+1∥L2(Ω)d ≤ Cδt2. (3.30)

Combining (3.24), (3.26) and (3.30), we derive that:

∥qn+1/2∥L2(Ω) + ∥∇qn+1/2∥H−1(Ω)d ≤ Cδt2, (3.31)

which is the second statement of the theorem.

For the Gear scheme (2.3), to prove the error estimate (3.20), the key ingredient
is the following identity [1]:

2ak+1.(3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2

+ |ak+1 − 2ak + ak−1|2 − |ak|2 − |2ak − ak−1|2,

with ak ∈ R, k ≥ 0. Then, taking the inner product of (3.7) with 4δten+1 and using
the previous relation, we deduced that:

∥en+1∥2L2(Ω)d + ∥2en+1 − en∥2L2(Ω)d − ∥en∥2L2(Ω)d − ∥2en − en−1∥2L2(Ω)d ≤ C

ν
δt5,

and by induction we arrive at:

∥en∥2L2(Ω)d + ∥2en − en−1∥2L2(Ω)d ≤ ∥e0∥2L2(Ω)d + ∥2e1 − e0∥2L2(Ω)d +
C

ν
δt4.(3.32)
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On the other hand, with 2(3en+1−4en+en−1) as the test function in (3.7), we arrive
at:

∥∇en+1∥2L2(Ω)d×d + ∥∇(2en+1 − en)∥2L2(Ω)d×d − ∥∇en∥2L2(Ω)d×d − ∥∇(2en − en−1)∥2L2(Ω)d×d ≤ C

ν
δt5,

and an induction over n gives:

∥∇en∥2L2(Ω)d×d + ∥∇(2en − en−1)∥2L2(Ω)d×d ≤ ∥∇e0∥2L2(Ω)d×d + ∥∇(2e1 − e0)∥2L2(Ω)d×d +
C

ν
δt4.(3.33)

Combining (3.32) and (3.33) we get (3.20). The proof of the pressure error estimate
(3.21) is based on similar arguments to the proof of (3.18). Again, (3.7) is interpreted
as a Stokes problem for the unknown en+1 and qn+1, and the most difficult part is to
bound the error increments δen. To do this, it is sufficient to use 4δtδen+1 as the test
function in the equation satisfied by this increment, with the corresponding residual
term Rn(δt). This gives us

∥δen∥2L2(Ω)d + ∥2δen − δen−1)∥2L2(Ω)d ≤ ∥δe0∥2L2(Ω)d + ∥2δe1 − δe0)∥2L2(Ω)d + Cδt6,

which in turn gives:

∥en+1 − en∥2L2(Ω)d ≤ Cδt6 ⇒ ∥e
n+1 − en

δt
∥2L2(Ω)d ≤ Cδt4.

As for (3.31), using the previous estimates and stabilization results on the inhomoge-
neous Stokes problem [15], one can bound the error on qn+1 to obtain (3.21). This
concludes the proof.

The numerical stability of the divergence-free wavelet-based projection method
was proved in [12], when using an implicit Euler time discretization scheme. For the
two order time discretization schemes (2.4) and (2.5), we have:

Theorem 3.3.
Suppose the initial condition v0 ∈ H1

0 (Ω)
d and the source term f ∈ L2(0, T, L2(Ω)d).

Then there exists a positive constant C > 0 such that the numerical solution of (2.4)
satisfies:

∀ n ≥ 0, ∥vn∥L2(Ω)d + ∥∇vn∥L2(Ω)d ≤ C(Ω, T, ν,v0,f). (3.34)

Moreover, if v1 ∈ H1
0 (Ω)

d, the numerical solution of (2.5) satisfies:

∀ n ≥ 0, ∥vn∥L2(Ω)d + ∥∇vn∥L2(Ω)d ≤ C(Ω, T, ν,v0,v1,f). (3.35)

Proof. The proof of (3.34) and (3.35) uses steps and tricks similar to those of
Theorem 3.2: energy estimation, Poincaré and Young’s inequalities. To avoid redun-
dancy, we will summarize the most important steps in the case of the Gear scheme
(2.5). Then, we start by pointing out that the first equation of (2.5) is very close to
(3.7). To see this, it suffices to replace ṽn+1 by its expression ṽn+1 = vn+1 +∇Φn+1

in (2.5):

3vn+1 − 4vn + vn−1

2δt
− ν∆vn+1 +∇

(
3Φn+1

2δt
− ν∆Φn+1

)
= fn+1. (3.36)



On the error estimates for the divergence-free wavelet based projection method 11

Due to the divergence-free property of vn+1 and the boundary conditions that it
satisfies, integration by part with 4δtvn+1 as the test function in (3.36) allows to get:

∥vn+1∥2L2(Ω)d + ∥2vn+1 − vn∥2L2(Ω)d − ∥vn∥2L2(Ω)d − ∥2vn − vn−1∥2L2(Ω)d

+∥vn+1 − 2vn + vn−1∥2L2(Ω)d + 4νδt∥∇vn+1∥2L2(Ω)d×d ≤ 4δt∥fn+1∥L2(Ω)d∥vn+1∥L2(Ω)d .

Then, using Poincaré and Young’s inequalities and removing the positive term ∥vn+1−
2vn + vn−1∥2L2(Ω)d and the viscous term 2νδt∥∇vn+1∥2L2(Ω)d×d , we get:

∥vn+1∥2L2(Ω)d + ∥2vn+1 − vn∥2L2(Ω)d − ∥vn∥2L2(Ω)d − ∥2vn − vn−1∥2L2(Ω)d ≤ C

ν
δt∥fn+1∥2L2(Ω)d .

Making summation over n leads to:

∥vn∥2L2(Ω)d + ∥2vn − vn−1∥2L2(Ω)d ≤ ∥v0∥2L2(Ω)d + ∥2v1 − v0∥2L2(Ω)d +
C

ν
∥f∥2L2(0,T,L2(Ω)d).(3.37)

Likewise, integration by part with 2(3vn+1−4vn+vn−1) as the test function in (3.36)
gives:

∥∇vn+1∥2L2(Ω)d×d + ∥∇(2vn+1 − vn)∥2L2(Ω)d×d − ∥∇vn∥2L2(Ω)d×d − ∥∇(2vn − vn−1)∥2L2(Ω)d×d ≤ C

ν
δt∥fn+1∥2L2(Ω)d ,

and by induction we also have:

∥∇vn∥2L2(Ω)d×d + ∥∇(2vn − vn−1)∥2L2(Ω)d×d ≤ ∥∇v0∥2L2(Ω)d×d

+ ∥∇(2v1 − v0)∥2L2(Ω)d×d +
C

ν
∥f∥2L2(0,T,L2(Ω)d).(3.38)

From (3.37) and (3.38), the second claim of the theorem is proved.

The projection step in (2.4) and (2.5), involving the calculation of the Leray-Hopf
projector Pdiv,0, is executed by projecting onto the divergence-free basis. In practice,
this is done by inverting the Gram matrix associated with this basis. Details of such
a procedure are given in the next section.

4. Divergence-free wavelet basis Gram matrix inversion. To implement the pro-
posed method, we employed the wavelet-based Galerkin method for spatial discretiza-
tion [12]. The computation of the Leray-Hopf numerical projector, which involves pro-
jecting onto the divergence-free wavelet basis space, necessitates inverting the Gram
matrix of the divergence-free wavelet basis. In this step, we opted for matrix diago-
nalization instead of the gradient descent algorithm used in [11, 12]. The procedure
for the 2D and 3D wavelet bases is described below, and the generalization to higher
dimensions is straightforward.

Consider Ω ⊂ R2 to be the square Ω = [0, 1]2, and let Vd
j = (V d

j ⊗ V 0,d
j ) ×

(V 0,d
j ⊗V d

j ) be a multiresolution analysis of (H1
0 (Ω))

2 constructed from multiresolution

analysis of L2(0, 1) linked by differentiation and integration [11, 14], i.e.:

d

dx
V 1
j = V 0

j , with V d
j = V 1

j ∩H1
0 (0, 1) and V 0,d

j = V 0
j ∩H1

0 (0, 1).
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In this case, the wavelet ψd
j,k = ψd(2j .− k) associated with V d

j also satisfies a differ-
entiation relation:

(ψd
j,k)

′ = 2j+2(ψ0,d
j,k ),

where ψ0,d
j,k is the wavelet associated to V 0,d

j . See [11, 12, 14], a divergence-free wavelet

basis for Hdiv,0(Ω) = {u ∈ H1
0 (Ω)

2 : ∇ · u = 0} ⊂ {u = curl(Ψ) : Ψ ∈ H1
0 (Ω)} is

provided by taking the curl of scalar wavelets ψd
j1,k1

⊗ ψd
j2,k2

∈ H1
0 (Ω):

Ψdiv
j,k := curl[ψd

j1,k1
⊗ ψd

j2,k2
] =

 ψd
j1,k1

⊗ (ψd
j2,k2

)′

−(ψd
j1,k1

)′ ⊗ ψd
j2,k2

 .

Then, for vj ∈ H1
0 (Ω)

2, its projection onto Hdiv,0(Ω) is searched as:

Pdiv,0(vj) =
∑

|j|<j,k

ddivj,k Ψdiv
j,k,

where Pdiv,0 denotes the Leray-Hopf projector. Thus, the computation of the wavelet

coefficients
(
ddivj,k

)
is performed by solving a linear system:

Mdiv
(
ddivj,k

)
=

(
⟨vj ,Ψ

div
j,k⟩

)
, (4.1)

where Mdiv denotes the Gram matrix of the divergence-free wavelet basis
{
Ψdiv
j,k

}
.

The elements of Mdiv are computed analytically by solving eigenvalue problems [2]
and the computation of the right term ⟨vj ,Ψ

div
j,k⟩ of (4.1) is carried out using a

quadrature formula, as explained in [10, 13]. Typically, to solve the system (4.1),
iterative method is employed with an optimal diagonal preconditioner [11]. However,
as mentioned earlier, we will exploit the tensor structure of the tensor structure of the
basis to solve this system without using iterations. Specifically, let’s define the mass
and stiffness matrices of the one-dimensional wavelet basis:

Md = [⟨ψd
j,k, ψ

d
j′,k′⟩], Rd = [⟨(ψd

j,k)
′, (ψd

j′,k′)′⟩] and A0
d = [⟨ψ0,d

j,k , (ψ
d
j′,k′)′⟩].

Then, in terms of matrix equation, the system (4.1) is rewritten:

Md [ddivj,k] R
d +Rd [ddivj,k] M

d = Md [d1j,k] A
0
d − (A0

d)
T [d2j,k] M

d, (4.2)

where d1j,k and d2j,k represent the wavelet coefficients of the projection of vj =

(v1,j , v2,j) onto the wavelet basis of Vd
j :

v1,j =
∑

|j|<j,k

d1j,k ψd
j1,k1

⊗ ψ0,d
j2,k2

and v2,j =
∑

|j|<j,k

d2j,k ψ0,d
j1,k1

⊗ ψd
j2,k2

. (4.3)

Since the matrix Md is symmetric, positive and definite, we define M = (Md)−1Rd,
allowing us to rewrite the system (4.2) as:

[ddivj,k] M
T +M [ddivj,k] = [bj,k], (4.4)
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with

[bj,k] = [d1j,k] A
0
d(Md)−1 − (Md)−1(A0

d)
T [d2j,k]. (4.5)

Upon diagonalizing the matrix M as M = UDU−1, the system (4.4) becomes:

[ddivj,k] U
TDU−T + UDU−1 [ddivj,k] = [bj,k], with M = UDU−1. (4.6)

This still becomes:

[d̄divj,k]D +D[d̄divj,k] = [b̄j,k], (4.7)

where

[d̄divj,k] = U−1[ddivj,k]U
T and [b̄j,k] = U−1[bj,k]U

T .

By performing element-wise matrix division in (4.7), the coefficients [d̄divj,k] are ob-

tained as:

[d̄divj,k]m,n = [b̄j,k]m,n/ (Dn,n +Dm,m) . (4.8)

As the matrices Md and Rd are symmetric and positive definite, we always have:

Dn,n +Dm,m > 0, ∀ n, m.

This is a consequence of the well-known property of symmetric positive definite
matrices. Specifically, if A and B are two symmetric positive definite matrices, then
AB and BA share the same eigenvalues. Thus, taking U = BA1/2 and P = A1/2,
the same argument demonstrates that UP and PU have the same eigenvalues. By
definition, PU is a symmetric positive definite matrix. Therefore, the denominator in
(4.8) cannot vanish.

The method for resolving the system (4.4) easily extends to higher dimensions.
Similarly, we only need to diagonalize the Gram matrix of the one-dimensional wavelet
basis. For instance, in the case of three-dimensional space, defining [d̄divj,k] = (U−1⊗
U ⊗ U)[ddivj,k], the array system analogous to (4.7) is:

(I ⊗ I ⊗ D + I ⊗ I ⊗ D +D ⊗ I ⊗ I) [d̄divj,k] = [b̄j,k], (4.9)

where I is the identity matrix. Then, the coefficients [d̄divj,k] are given by:

[d̄divj,k]m,n,l = [b̄j,k]m,n,l/ (Dn,n +Dm,m +Dl,l) . (4.10)

It is worth noting that, except for the diagonalization of the Gram matrix of the one-
dimensional basis, the numerical cost of this approach is approximately O(N), and
its efficiency is tested in the next section.
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5. Numerical results. This section presents numerical results to verify the error
estimates of Theorem 3.2 and evaluate the efficiency of the projection step outlined
in Section 4. Initially, we assess the computational cost of the projection step when
matrix diagonalization is employed instead of a conjugate gradient algorithm [11] to
solve system (4.1). Subsequently, using manufactured solutions, we conduct numerical
simulations that confirm the convergence rate of schemes (2.4) and (2.5) is indeed
second-order for the time discretization error.

To measure the CPU time of the projection step and assess its efficiency, we
employed the initial condition of the Taylor-Green vortex in two spatial dimensions
as the analytical solution:

v(x, y, t) = e−2µt (− sin(2πx) cos(2πy); cos(2πx) sin(2πy)) , (5.1)

p(x, y, t) =
1

4π
e−4µt (sin(2πx) + cos(2πy)) .

The Taylor-Green vortex represents an unsteady flow of a decaying vortex, and it
shares the same closed-form solution as the incompressible Navier-Stokes equations
in Cartesian coordinates.

For the all experiment, the spatial computational domain is the square Ω = [0, 1]2

and we used the Daubechies orthogonal wavelet generator ψ1 with r = 4 vanishing mo-
ments to construct the multi-resolution analysis linked by differentiation/integration
necessary to construct the divergence-free wavelet basis [11, 14]. Table 5.1 shows the
computational time of the MATLAB code executed on a MacBook Pro 15 (2.6 GHz, 4-
core Intel Core i7 processor and 16 Go LPDDR3 SDRAM). We find that the proposed
method, when using matrix diagonalisation to solve (4.1), speeds up the projection
step by about five times. However, we note that the execution speed of the MAT-
LAB code depends on its optimisation, MATLAB prefers vectorized codes. Therefore,
these results should be analyzed carefully. Table 5.2 shows the L2 errors computed
at grid points. Again, the proposed method performs better than a conjugate gradi-
ent method, but the error increases slightly as the spatial resolution increases. We
think that, it is due to the diagonalisation algorithm, which loses accuracy for large
matrices.

Space resolution j 7 8 9 10
CG method 0.07999 0.32999 1.31000 8.45000

Proposed method 0.02999 0.07000 0.25000 1.36999
Improvement rate 2.6672 4.71414 5.240000 6.16792

Table 5.1
CPU time in second for the projection step in 2D.

The performance of the proposed schemes (2.4) and (2.5) was firstly examined
under periodic boundary conditions. Utilizing (5.1) as the exact Navier-Stokes solu-
tion, the source term is calculated such that f = ∂tv−ν∆v+(v ·∇)v+∇p, where the
viscosity is set to ν = 0.01. The simulation duration is fixed at T = 1, and we varied
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Space resolution j 7 8 9 10
L2-error-CG method 4.9357E-08 1.2532E-08 1.2104E-08 7.2741E-09

L2-error-Proposed method 6.6506E-12 2.6312E-11 1.0660E-10 4.1975E-10
Table 5.2

L2-error ∥v − P(v)∥L2 of the divergence-fee projection of solution (5.1).
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Figure 5.1. Plot of the L2-norm of the errors |v(., 1)− vN (.)| and |p(., 1)− pN (.)|, according
to the time step δt in loglog scale. For the exact solution (v, p) defined in (5.1) and final time
T = 1 = Nδt: Crank-Nicholson scheme (left) and Gear scheme (right), where ψ1 is the Daubechies
orthogonal wavelet generator with r = 4 vanishing moments.

the time step δt in line with the usual CFL condition to study temporal discretization
rate and accuracy. At each iteration, the non-linear term is computed at grid points
using a fourth-order finite difference method with δx = δy = 2−j per direction. We
recall that r = 4 represents the maximum order of polynomial reproduction of the
scaling function associated with ψ1.

For the Crank-Nicholson scheme (2.2), the term (v ·∇)v is approximated in time
by a two-order Adams-Bashforth scheme:

1

2
[(vn+1 · ∇)vn+1 + vn · ∇)vn] ≈ 3

2
(vn · ∇)vn − 1

2
vn−1 · ∇)vn−1,

and we used a two-order extrapolation scheme for the Gear system (2.3):

(vn+1 · ∇)vn+1 ≈ 2(vn · ∇)vn − (vn−1 · ∇)vn−1.

Figure 5.1 displays the L2-errors on the numerical solutions computed with schemes
(2.4) and (2.5). The numerical pressures p̄n+1/2 and p̄n+1 are computed by solving
Poisson equations where the source term corresponds to the divergence of equation
(2.9) and (2.10), respectively. For the two schemes, as observed in Figure 5.1, the
expected time discretization convergence rate in O(δt2), is achieved in both velocity
and pressure approximation. This confirms the theoretical error estimates of Theorem
3.2.

In the cas of homogeneous Dirichlet boundary conditions, as exact solution of
(2.1) we took:

v(x, y, t) = 2π sin(t)
(
sin2(2πx) sin(4πy);− sin(4πx) sin2(2πy)

)
. (5.2)

p(x, y, t) = sin(t) cos(2πx) sin(2πy).
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Figure 5.2. L2-norm and H1-norm of the errors |v(., 1)−vN (.)| and |p(., 1)−pN (.)| for (v, p)
defined in (5.2) and Nδt = T = 1 is the final time: Crank-Nicholson scheme (left) and Gear scheme
(right), where ψ1 is the Daubechies orthogonal generator with r = 4 vanishing moments.

Similarly, a source term f is added with viscosity ν = 0.0001. The nonlinear term is
still computed using a fourth-order finite difference method at grid points. For the
solution (5.2), we are unable to compare the L2-error on the pressure directly. Typ-
ically, to obtain p̄n+1/2 and p̄n+1, in the common approaches, an artificial boundary
condition is imposed in (2.9) and (2.10), which is not the case in our method. There-
fore, we compare the norm of the pressure gradient according to the time step δt and
in log-log scale, Figure 5.2 shows the plot of the L2-norm and H1-norm of the error
on the velocity, as well as the L2-norm of the error on the pressure gradient. Similar
to the periodic case, the dominant part of the curve has a slope s = 2, indicating that
the optimal convergence rate O(δt2) is achieved.

6. Conclusion. We studied the order and the convergence rate of the velocity and
the pressure time discretization in the case of the divergence-free wavelet based projec-
tion method for viscous fluid. Second-order numerical schemes have been studied and
it has been shown that the optimal order O(δt2) is reached, particularly on the pres-
sure and the velocity gradient approximation. This is not the case for example with
classical methods, where the splitting error does not allow for optimal convergence.
We have also shown that the use of matrix diagonalization speeds up the algorithm
of the projection onto the divergence-free wavelet basis and all this has been verified
and documented by numerical experiments. Since the method can be interpreted as a
change of variables and the projection step does not required the pressure, we believe
that the use of high order schemes (more than two), for the time discretization, does
not reduce the accuracy of the method. This question is one of the subject we’ll be
exploring next.
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