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New asymptotics for strong solutions of the strongly
stratified Boussinesq system without rotation and for large
ill-prepared initial data

Frédéric Charve*

Abstract

In our previous work dedicated to the strongly stratified Boussinesq system, we obtained
for the first time a limit system (when the froude number e goes to zero) that depends on the
thermal diffusivity v’ (other works obtained a limit system only depending on the visosity
v). To reach those richer asymptotics we had to consider an unusual initial data which is
the sum of a function depending on the full space variable and a function only depending
on the vertical coordinate, and we studied the convergence of the weak Leray-type solutions.
In the present article we extend these results to the strong Fujita-Kato-type solutions. In
this setting, and compared to the case of weak solutions, we obtain far better convergence
rates (in ¢) for ill-prepared initial data with very large oscillating part of size some negative
power of the small parameter €. The main difficulties come from the anisotropy induced by
the presence of x3-depending functions.

MSC: 35Q35, 356Q86, 356B40, 76D50, 76U05.
Keywords: Geophysical incompressible fluids, Strichartz estimates, Besov and Sobolev spaces.

1 Introduction

1.1 Geophysical fluids: Strongly stratified Boussinesq system

The strongly stratified Boussinesq system (without rotation) describes the motion of a geophysical
fluid submitted to the influence of the gravity through the vertical stratification of the density.
In the whole space, this model is written as follows:

0,.U. +v. - VU. — LU + 1BU. = 1(-V@..0),

dive. =0, (Se)
UElt:O = UO,E-
The unknowns are U. = (ve,0.) = (v},v2,v3,0.), where v. denotes the velocity of the fluid and

0. the scalar potential temperature (linked to the density, temperature and salinity), and ®.,
which is still called the geopotential, and can be decomposed as the sum of the pressure term and
another penalized gradient term that could be seen as an analoguous of the centrifugal force (we
refer to the introductions of [9] and [12] for a more precise presentation of the model).

The diffusion operator L takes into account two heat regularization effects and is defined by

LU. def (vAve, V' AD.),
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where v,/ > 0 respectively denote the kinematic viscosity and thermal diffusivity (both will be
called viscosities in the present article). The last term e~ !BU. only takes into account stratifica-
tion effects and B is defined as the following skewsymmetric matrix:

B d:ef

o O OO
o O OO
o O O
o= O o

—1

Remark 1.1 System (S.) is obtained from the Primitive system only considering the Froude
number (introduced by physicists to measure the importance of the stratification effect in the
motion). As the rotating fluids and Primitive systems, this model belongs to the family of
variations of the famous Navier-Stokes system showing better behaviour induced by the special
structure brought by their respective penalized terms as € goes to zero. We refer to [12] for
more details about the geophysical fluids models and a survey on results about the rotating fluids
system ([15, 16, 17, 20]) the Primitive system ([3, 4, 9, 11]) and System (S:) (see [29, 25, 28, 27]).

1.2 Notations

For an R3 or R*-valued vector field, we will write f* = (f!, 2) and will define f-V f = 2?21 fioif.
So that for instance we will indifferently write v, - VU, = U, - VU..
We will use the same notations as in [9, 10, 12]: for s € R and T > 0 we define the spaces:

Ej = Cr(H*(R*) N L3 (H*TH(R?)),
B3 = Cr(B3,(R)) N Ly (B3 1(R),
endowed with the following norms, where vy = min(v, ')):

def T
1%, = 11 e e 10 Jo NF(O%eradr,
T T

def

sy = g, +/ Sy 1F(7)]

B;,tZdT’

where H*(R?), H*(R%) and BSJ(R) respectively denote the inhomogeneous and homogeneous
Sobolev spaces of index s € R and the homogeneous Besov space of indices (s,2,1).

When T = oo we simply write £* or B and the corresponding norms are understood as taken
over Ry in time.

1.3 The limit system

The present article is the companion paper of [12] and focusses on the same question in the
context of strong solutions. Let us recall that in [12], we constructed and studied weak solutions
to System (S.) which converge, as € goes to zero, to a limit truly depending on v/ (this was not
the case in previous papers, see for instance [27]). More precisely, we explained for the first time
how we can formally obtain a limit described by the following two systems:

ol + " - Vit —vADT =~V 70,
div 50" = 0, (1.1)
oo = 03

and

(1.2)

8,55— 7 3251 0,
9|t:0 = 90)



where )
A== A0,0,(0 ). (1.3)
i,j=1

This suggested to consider initial data of the form:
Usjt—o(z) = Uy () + (0,0,0, 50,8(903)),

connected to the previous systems according to:

PyUlL (7)) — 0h(x), or equivalently PoUp . (z) — (98(x),0,0),
RS e—0 e—0 (1.4)
0o.e(z3) — Oo(x3),

e—=0

where the projector Py is related to the structure of the limit system and is described in the
following section.

Remark 1.2 Had we only considered U, ;—o(z) = Uo c(z) (it is a conventional initial data when

fo(23) = 0), the limit would be (3",0,0) (independant of /). The same phenomenon occurs
for the rotating fluids system: as explained in [15, 17] if the initial data is ug(z) instead of
uo(x) + @o(x1,x2) we only obtain that the limit is zero (instead of the unique solution of the
2D-Navier-Stokes system with three components and initial data g (z1,22)).

1.4 The Stratified/osc structure

The structure of the formal limit system suggested us to introduce the following operators:

Definition 1.1 (see [12]) For a R*-valued function, we introduce the following quantity, that we
will call its vorticity:

w(f) =01 —oaf".

From this we define the stratified and oscillating (or oscillatory) parts of f, respectively denoted
as fs and f,s., according to:

1
viawn) \ [ o
fs = 0 = " , (1.5)
0 0
and, denoting div 5, f" def OLfr 4 02 f2,
Vi Ay div £ Ol divaf

Os A7 ~di
fosc:f_fS: fi - ’ hf31Vhf ’ (16)

f f4

The following proposition gathers properties of the stratified /oscillating structure which is linked
to the spectral properties of the linearized system.

Proposition 1.1 [12] With the notations from (1.5) and (1.6), there exist two pseudodifferential
operators of order zero P and Q such that for any f,

fS:va and fosc:Pf-

These operators satisfy:



1. @ = Py and P = I; — Py (where the operators Py, are the spectral projectors defined in
Proposition 4.4).

2. For any s € R, we have ((Ia — P2) f|P2f) s . = 0= (Bf|P2f) gy )= (when defined).
3. (Id_PQ)f :f <:>P2f :O<:>w(f) =0.

4. (I —P)f =0 <= Pof = f — f3 = f4* =0 anddiv,f = 0 <= there exists a scalar
function ¢ such that f = (—02¢,019,0,0) = (Vi-¢,0,0). Such a vector field is obviously
divergence free (and horizontal divergence-free) and we will say that it is stratified. It also
satisfies f = (f",0,0).

If f is divergence-free, so is (I — Pa) f.
B]P)Qf =0 (in R4)
PoP = PPy = Py and Py(Iy — P) = (Iy — P)Py = 0 (in particular Py(Vq,0) = 0).

o NS> @

If f is a divergence-free vector field, then (we recall that we denote f -V f = Zle fio.f)
w(f -Vf)==03f-w(f)+01f 03f* = f - O3 f' + [ - w(f).
9. If f is a stratified vector field, then w(f -V f) = f-w(f).

Remark 1.3 1. As outlined in [12], the previous decomposition is close to the nicer case
v = v/ for the Primitive system, in the sense that we have Q = Py, and Py is orthogonal to
P35 and P, in the general case (but it is only when v = v/ that P3 and P4 are also orthogonal
projectors of norm 1).

2. For a R%-valued function f = (f!, f%) = f", we could introduce P} and fs = Phif =
V,J;A;lw(f) (but with a slight notational abuse, we may also denote fg = Pof and fos. =
f=fs= VA, div,f.

3. As outlined in [12], the previous decomposition leads to the notion of well-prepared or
ill-prepared initial data. We say that an initial data is well-prepared if it is stratified
in the sense of Point 4 from Proposition 1.1 (which means it has a zero oscillating part)
or has a small oscillating part. In other words the initial data already has the structure
of the limit system or is close to it. On the opposite, an ill-prepared initial data features
a large oscillating part (and in the present article, it will be large of size a negative power
of €). Historically for the Primitive or Rotating fluid systems, the first works consisted in
studying the system for well-prepared initial data (see for instance [18, 23]). Another case
where we are forced to consider well-prepared initial data is when the Rossby and Froude
number are equal and we cannot rely anymore on dispersive estimates (case F = 1, see

[14, 8])

Now we can completely precise the initial data and limit system that we will consider in this
article:

0 0
0 0
Ug|t:0($) = U075($) + 0 = U075,5($) + U07E,Osc($) + 0 (17)
50,5(333) 50,5(21”3)
And we will denote:
U(%,s U; h
V2 v2 v Ve
UO,E = gqe and UE = % — ( 95 ) = ’Ug
UO,& U € 0
90,6 96 :



1.5 Reformulation of the systems

The first step in [12] was to rewrite Systems (1.1) and (1.2) and merge them into a more practical
formulation: denoting as [P the orthogonal Leray projector onto divergence-free vectorfields, and

setting = (", 0, 5), we obtained that U satisfies:

6&7+I7-V(7—L(7+§3(7:_§_<Vga )

0
1.8
diveo =0, (18)
U|t:O = (535 07 90)
where G is defined by (7° has been introduced in (1.3)):
o7 MOIATIA? )
~ & | _ | 003A7IA" h o i
G=P| 7, = C oAt 2@(@ V0. (1.9)
0 0 "
Moreover, we emphasize that
w(G) =0 = divG and PG = 0, and roughly G ~ V(" @ o") ~ 3" - V,0". (1.10)

As precised in [12], studying the system satisfied by U, — U will not be possible, because of its
initial data which prevent the use of classical results:

(U = 0)jimo (@) = Ut.croue(@) + (BaU () — (), 0, 80,0 (w5) — Go(as)).

In order to properly justify the construction of weak solutions with such initial data, we needed
in [12] to rewrite System (S:) into a formulation where functions only depending on z3 do not
appear in the initial data anymore. Doing this moved these functions in the transport terms
which required an adaptation of the proof of the classical Leray theorem.

More precisely, in order to neutralize the xsz-only-dependent part, we simply defined the
following function:

0
= ~ K. — V3K =0
Z. = 8 . where K. solves { 2~ 28T (1.11)
- Ojt—0 = 0o, — bo-
K.
and finally set:
vl — vl — gt ot
dgf ~ > 3 _ 3 _
D. =U.-U-Z.= v = ve =U.—| O , (1.12)
0. — (0 + K.) 0. — 6. 0.

where the function gg def 0+ K < solves:

(1.13)

(%91 - 1/(93255 = 0,
9€|t:0 = 90,5-



The results from [12] were obtained studying the following system satisfied by D. = (V, H.):

D, - Vit
& D. — LD, + 1BD. = — | D, - VD, + 0 4. V,D. +é_<V(;]a>,
D2 - 950,
divV, =0,
Deji=0 = Uoe,osc + (Un.e,s — (03,0,0)) = U c.ose + (Ul g —T31,0,0). -
1.14

Before presenting the results for the weak solutions, we will recall in the next section what we
proved in [12] for the limit system.

1.6 Study of the limit system

Let us begin with System (1.2), which is only a one-dimensional heat equation (we refer for
example to [1], Section 3.4.1, Lemma 5.10 and Proposition 10.3, see also Definition 4.2).

Theorem 1.1 [12] Let s € R. For any 6, € H*(R) (respectively 6y € Bgﬁl(R)) there exists a
unique global solution 6 of (1.2) and for all t > 0, we have:

1812 e + V10 e < 200001 (1.15)
(respectively 01z, |+ /100l 52 < 1ol 55,) (1.16)

More generally for s € R and p,r € [1,00], there exists a constant C' > 0 such that if §y € B;T(R)
then for all ¢ € [1, o0

~ C
1611, .z <

Byt T (V)

1Bolls, (1.17)

Remark 1.4 Thanks to this result, the previously defined 5, K - and 55 are global and satisfy
similar estimates.

On the other hand, we observed in [12] that System (1.1) is very close to the quasi-geostrophic
system (see [3, 4]), and we easily adapted Theorem 1 from [9] and obtained the following theorem
that generalizes the results from [27] as we need less initial regularity:

Theorem 1.2 [12] Let § > 0 and o' € H21% a R2-valued vectorfield such that div o = 0.
Then System (1.1) has a unique global solution ?" € E=+% = E° N E2+% and there exists a
constant C' = Cs,, > 0 such that for all t > 0, we have:

15" 12 + ||V

~h 2 ~h3
2 s bos < ConlTI2 4 g max(L 500 )

h |12
1%,
< Cspmax(L, [T 340)2%,  (1.18)

Moreover, we can also bound the term G introduced in (1.12): for all s € [0, % + 4],

/ |G () o dr < Cs max(L, [T, 35)° " (1.19)
0

H3+0



1.7 Existence and convergence results for the weak solutions

We can now state the main results from [12]: first the analoguous of the Leray theorem for (1.14)
which provides global weak solutions for any € > 0:

Theorem 1.3 (Existence of Lemy weak solutions) For any § > 0 and Co > 1, let 0 € H=19(R3)
(with div , 0 = 0), 0. € B2 2(R) (for all € > 0) such that:

h
HH%+5(R3) S CO and Sup||90 E”B;%(R) S CO'

129
Thanks to Theorems 1.1 and 1.2, " and [9; globally exist (for all ¢ > 0) and respectively belong
to N E2%% and B~ 2.
Moreover there exists a constant Cy,,,» > 0 such that for any fixed ¢ > 0, if Uy . € L*(R3),
then there exists a weak global solution of (1.14) (D., q.) with D, € E® and q. € E'+L% (R, L?),
satisfying for all t > 0,

t
ID-(OI2: + vo / |V D.(7)|22dr
0

~ 241 2F
< (IUo.coselifz + 108 e s = T 32 + Cowar €5 F ) eCrnr®™ . (1.20)

The second result in [12] was the convergence result, that rigourously validates as a limit what
we formally obtained:

~ 1
Theorem 1.4 (Convergence) For any § > 0, Co > 1, 6p € B, {(R) , 0} € Hzto(R3)2 (W1th

div 4,08 = 0 or, equivalently, o' = Potl}) and any Uy € L? (d1vergence—free) and 90 c € 32 i (R)
(for all € > 0) with:

v 7 <C

11,3+5 oy < Co. 16l , S

supesg [|Uo.ellz2 < Co, and 5 ) < Co, (1.21)
h  _h

1Ug .5 — Vo llr2 = 0, Hé’oE - 0|| *E(R) = 0,

the global weak solution U, (constructed in Theorem 1.3) converges to (3", 0,6) (where 3" and 6
are the global solutions of Systems (1.1) and (1.2)) in the following sense: if D. = U, — (3", 0, 0.)
(where 0. is the global solution of (1.13)), then

e the stratified part D. ¢ = PoD, converges to zero: for all g €]2,6],

[ De sl 2

loc

®¢ L3, &) 530

o the oscillating part D. ,sc = (Ig — P2)D. converges to zero: for all ¢ €]2,6][, there exists
e1 = e1(v,v,q) > 0 and, for all t > 0, a constant D, = Dy 5,7 4.c, Such that for all
e €]0,e1],

def mm(— —-1,1- %)2

-1

K(a)
IDeosell2ze = 1Desosell 20,0, Lasy < Dye™0,  with  K(g) =

(1.22)



. . . K(q)
Moreover, when v = V', the previous estimates can be upgraded into ||D51056HL§LL1 < Dyesia

(now valid for all € > 0) and we can obtain global-in-time estimates with better convergence rate:
there exists a constant C' = C,, 5 ¢, > 0 such that, for any € > 0,

< Cets,

s,osc||~é - =1L >~
L3BY,+L'BY,

1D

1.8 Existence and convergence results for the strong solutions

Let us recall that our initial data is the one stated in (1.7):

0
0
Ua\t:O(‘T) = UO,E(-T) + 0 = UO,&,S(-T) + UO,a,osc(-T) +

0
0
0
0o, (x3) 0o, (x3)

We are now able to state the main results of the present article. First, the general existence result
which is the analoguous of the famous Fujita-Kato theorem (for £ > 0 fixed):

Theorem 1.5 (Eristence of local Fujita-Kato strong solutions) Let ¢ > 0, § €]0,1], 9% €

~ .1 L1
H3+O(R3) and fy. € By (R) N By (R) (for some fixed § > 0). For any Up. = Uges +
Uoe,osc € H%, there exists a unique local solution D, of (1.14) with lifespan T > 0 such that
1 . 1
for any T < T, D. € B2 = E% N E7}. Moreover, the following properties are true:

e Regularity propagation: if in addition Uy . € H* for some s € [0, %Jré] then for any T' < T7,
D. € E% N E3.

e Blow-up criterion: fOT: ||VD8(7)||2;dT < oo = T* = 0.
2

Remark 1.5 1. The proof of this theorem is postponed to Section 4.6.

2. We emphasize that we only state a local existence result, with an unsusual low frequency
assumption (Up . € L?N H%) which is needed to treat the additional term Dg’ - 030.. We
will only need the previous blow-up criterion to prove global existence in the main results
of the article.

3. The usual domain for the propagation of regularity is s €] — %, %[, in our case the constraint
comes from the regularity of G.

Let us now state a simplified version of the main result of the present article.

Theorem 1.6 (Global existence and convergence) For all v,v',Co > 0, § €]0, £], o)} € Hzto(R3)

~ .3 L1
and (for any € > 0) Up. = Upc.s + U c.ose € H?, 6,00 € By (R)N B2114+6(]R) such that for
some ag > 0,

~h 0, 3 1 <C

||’UO|| %Jrs( 5) < Co, || O” .2’{{( ) 2,’1411+5( ) 05 (1 3)
U h — 5]1 < Cpeo 0, — 60 . ’

” 0,e,S OHH—;+5 >~ 0 ) || 0,e O” .;1%( ) .;%+5( ) s—>0

there exist €y, K, 7, ¢,Dg,q > 0 such that if

1 _
1Uo,e,0scllLa + [[|D]2Uo,e,0scll e + HUO,E,OSCHHéfcs Lis < Cpe™ 7, (1.24)

NH =



then for any ¢ €]0, 9], there exists a unique global strong solution U, of (S.) which satisfies
U. - (3,0,0.) € E°NE2T5 and

1U: = (@",0,0:) || 2, = (re) < Doe™

1.9 Results for the classical Boussinesq system
We recall that in the companion paper [12] (dedicated to the weak Leray solutions), we emphasized

that System (S:) is related to the following well-known Boussinesq system:

v +v-Vo—vAv + Ii2p€3 =—-VP,
Op+v-Vp—1v'Ap=0, (1.25)
div v =0.

Let us introduce the following explicit stationnary (and stably vertically stratified) solution of
(1.25) (see other examples of explicit non-stationnary solutions in [12]):

0
AT B 0 Po(z) = Poe — K2po.cas +
e\T) = ﬁa(-r) = 0 ; e\T) = L0, — K P0,eT3

e _ _Z3_
P0,e 22,2

2
23

ot (1.26)

Then (V;, P.) solves (1.25) if, and only if, (U., ®.) solves (S¢), where we have denoted:

v v v 1 _
V. = ° ) = ¢ U. = © ~®,=P. — P.. 1.27
L R R R G e

As in [12], thanks to the change of variables from (1.27) the previous theorem can be rewritten
and provide:

e Global existence of strong solutions for the classical Boussinesq system (1.25) which are
perturbations of the previous explicit solution (VZ,p.) (see (1.26)) and corresponding to
non-conventional vertically stratified initial data.

e Asymptotic expansion (in €) of these solutions.
More precisely the previous theorem can be reformulated as follows:

Theorem 1.7 With the assumptions and notations from Theorem 1.6, for any € €]0,¢&¢], there
exists a unique strong global solution V. = (ve, p:) of (1.25) corresponding to the following initial
data (the last term is Uy . with a scaling on its last component):

0 8 U&E,S(‘g) + ’U(})L,s,osc(x)
Veli=o = 8 + 0 + V0,z,05¢ () ,
_ . n . [% ,a,osc(x)
pe—br )\ Bap s

where Ug ¢ osc Is 0f size e~7. Moreover, we have an asymptotic expansion of this solution V. when
€ goes to zero: there exist some K > 0 and a four-component function D, such that,

I Dellr2ry Lo o)) < Doc™,



and
o (t,z) + DI (t, z)
Ve(t, @) = Di(t,)
0. 4
Poe— 2= + ea(t’“;:f (t,z)

In other words, we have the following expansion:

0 0 ~ Ok

0 0 Uh(ta .Z') OE€K§

‘/E(t, .Z‘) gjO 0 + - 0 + 8 + O(EK)
P0,e — Egzz —OES;’ZES) O(EKil)

Remark 1.6 1. As in [12], we outline that the parameters py ., Py . and k are free, and we

can be choosen depending on e the way we wish, and choose for instance py. = poe~ 2,

k=etore s,
2. We refer to the recent article [2] about long-time asymptotics for solutions of the 2D inviscid

Boussinesq system (in a periodic strip) near a stably stratified Couette flow.

1.10 Precise statement of the main results

Asin [4,9, 10, 11] it is usual that we are not able to obtain convergence results without ”removing”
some waves. More precisely, due to the presence of the initial oscillating part and of G as an
independant of ¢ external force, any frontal approach with D, is blocked as we could only obtain
majorations by quantities independant of . We first define the following waves W, and WZ1,
taylored to ”eat” the blocking terms: if W, is the global solution of the following system

— 1 -G
{&Wa LW. + 1PBW. = G, 1.28)

Ws|t:0 - UO,E,OSC;

we also define its frequency truncation on the set C,_ g., denoted W2 = P, g W., where the
general set C, g is defined in (4.105), r. = ™ and R, = =M (the values of m, M will be specified
in the statements of the results) and the frequency truncation operator P,_ g, is defined in (4.107)
so that WZ obviously satisfies:

{atWET ~ LWL + LPBW! =P, 5,G, (1.29)

Ws|t:0 - PTE,RE UO,E,OSCv

We are now able to give a more precise statement of the main results of this article. We emphasize
that Up.(x) is only the conventional part of the initial data (see (1.7)):
0 0
0 0
Ua\tZO(-T) = UO,E(-T) + 0 = UO,&,S(-T) + UO,a,osc(-T) + 0

0o, (z3) go,a(ws)
Theorem 1.8 (Global existence and convergence, general case) For all v,v',Cy > 0, § €]0,1]
n €]0,3] with né < %, o} € H2H(R3) and (for any ¢ > 0) Uoe = Upes + Upcose € Hz,
- = ._3 .1
00,00, € By | (R)HBQJ“H(R) satistying (1.23) for some ag > 0, there exist g, Do > 0 (depending

on v, ,Cy,0,n) such that for any € €]0,eq], setting = #‘84(1 —n) and ¢ = 1—J2r(5> if we have

1 _
HUO,E,OSCHL‘I + |||D| 2 UO,s,osc”Lq + ||UO,€,OSC|| : < (COE V; (130)

1 .1
H2nH21S —

10



then there exists a unique global strong solution U, of (S.): the lifespan of D. (given by Theorem
1.5) satisfies T* = 400 and D. € E® N B2+, Moreover, if we define 6. = D, — W where WT

is defined in (1.29) for (m, M) 2 (55, -Lo), then
||5€||EvomE'%+n6 < ]D)O&?min(ao’ﬁ(l_n)’ﬁ)-

If in addition there exists ¢ > 0 such that

HUO,E,OSCHH%—CJHH%+J < C05777

then we have:

|Dell oz = U = @",0,62) | 2w < Doe™ (o sios 1=1)a00)

When v = ¢/ it is usual that some simplifications improve the results, as listed below.

Theorem 1.9 (Global existence and convergence, case v = V') Let Cy > 0, § €]0, %], e

) L~ s L1
H2(R3) and Uy e = U e,s + Uncosc € H2, 00,600, € B, (R) N Bzf—ké(R) satisfying (1.23) for
some o > 0.

1. There exist mg,eq > 0 such that if for some ¢ > 0 (as small as we want)
_s
HU075105CHH%*C5HH%+5 <mpe" 2,

then for any ¢ €)0,¢q], there exists a global solution of (S.) and D. € E'NEs.

2. If there exists a function m(e) " 0 such that for some ¢ > 0
E—

_s
HUO’E’OSCHH%*CJOH%*‘S < m(E)E 2,
then if we define 6. = D. — W, (with W, solving (1.28)), there exists Dy = Dy (v, Cp,d) > 0
such that: .
H(SEHE'UQE'% < Dy max (5a0;5§ ) m(E)) j) 0.
3. Finally, if for some ¢ > 0 and v €]0, 3[ we have

HUO,E,OSCHH%—CJHH%+J < C05777

then

i s _
H(SEHEUHE%JF%*V < Dogmm(ao,Z w)7

and for any k €]0,1[ (as close to 1 as we wish), there exists Dy = Dy (v, Co, 0, k) > 0 such
that:
||D5||L2Lao = ||U€ _ (5h7 0, 95)||L2L°<> < ]D)()Emin (ao,k(g,.y)).

The article is structured as follows: in the next section we prove Theorem 1.8, we first obtain
apriori estimates then explain the bootstrap method. Section 3 is devoted to the proof of Theorem
1.9, which features better results as v = /. We postponed to the appendix the proof of the
anisotropic Strichartz estimates (which require a technical result from [12]) and of Theorem
1.5 (which unusually relies on a priori estimates in inhomogeneous Sobolev spaces, which are a
particular case of the ones obtained Sections 2 and 3).

Remark 1.7 We emphasize that in this article we use the isotropic Strichartz estimates
that we proved in the companion paper [12] (they are recalled in Section 4.4), and we prove in
Section 4.5 the new anisotropic estimates, which are crucial to obtain convergence.
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2 Global existence and convergence of Strong solutions in
the general case: proof of Theorem 1.8
The aim of this section is to prove the global existence of strong solutions when the Froude

number ¢ is small enough, and the announced convergence rates in the general case (when we do
not assume that v = /).

Remark 2.1 We emphasize that strong solutions refers to strong solutions in the sense of Fujita
and Kato, the existence and uniqueness of which is stated in Theorem 1.5. This theorem is proved
in Section 4.6.

2.1 A priori estimates in the general case

Let us begin with the system satisfied by §. = D, — WZ1:

11
61558 — L65 + %PB(SE = Z Fi7

— (2.31)
Oe e|lt=0 — (Id PTE,RE)UOa osc T (UOE S 58,0,0),
where we define:
VY i ve), B P, vih,0,0), B -P@E"- Vi),
def ~Ps. - VWD), B —pwr.vs.), FY-pehv,wo),
def PWT - vih,0,0), Fs pwT. vwT), (2.32)
Fy dif —P(0,0,0,5§~83 0.), Fio™ —P(0,0,0,wT3 . 050.),
Fu ™ (1d - P, 5)G.

Most of these terms will be estimated thanks to the following usual Sobolev product laws as in
[9, 10, 11].

Proposition 2.1 There exists a constant C' > 0 such that for any si, sy < % with s; + s2 > 0
and any u € H* (R3), v € H*(R3), then uv € H*%2~3(R3) and we have:

00023 gy < Ol o) [

As in [12] the terms involving a product with 0. will require special attention: we will need
not only the following modified Sobolev product laws (that can be proved similarly as their
bidimensional counterpart from [15] or [21] involving products with functions depending on x},)
but also anisotropic Strichartz estimates (that we prove in the appendix).

Proposition 2.2 There exists a constant C > 0 such that for any s1, 52 < % with s1 + s9 > 0
and any u € H*'(R3), v € H*>(R), then wv € H**+5>~2 (R3) and we have:

0] ey gy < Ol s sy 0y

Remark 2.2 As in [9, 10, 11], we expect the previous external force terms to be small or ab-
sorbed:

e forie {1,2,3,9}, F; will be absorbed either by diffusion or thanks to Gronwall estimates,
e the first term in the initial data and Fy, are small thanks to frequency truncations,

e for other indices, F; will be split into a part absorbed thanks to diffusion, a part small thanks
to dispersion, and in most of the cases a part absorbed thanks to Gronwall estimates.

12



2.1.1 Estimates in H°®

Computing the innerproduct in H* (s will be later fixed as L or 3 1 4+ nd) of (2.31) with . we
obtain (recall that vy = min(v, v")):

DN | =
&.|Q‘

11
110- @117 +woll Vo) 17, < > (Fjle)
j=1

Using successively the classical Sobolev product laws for (s1,s2) € {(3,5), (s, 3),(1,5s — 3)}, we
obtain:

|(F1182) | < 1106 - Vel grems 10el gress < ClIOEN 2 V8N (2.33)
|(F210e) e | < 10e - V0" || e 10 s < Cll6e| . V0" -lHWellys
< 18||V5 5. + HVN’LII2 N6l (2:34)
|(F3182) | < 110" - Vibell o 0l gross < CIT" | g I Vaell o3 V8|
< CI" | Ve o3 VO HHs < C(IWIIZ 1|\V~h||2 )0l o g VO] o

1 1
< CIIIE, 1932

2 ~h|2 ~h |2 2
S 18||V5 1% S,Ilv 1%, 1 VOIS 3 19l - (2:35)

In the last estimate, we also used twice interpolation for Sobolev spaces, and the Young inequality
for (p,q) = (4,%). We will estimate the next three terms (involving Fy, F5 and Fg) reproducing
what we did in [11] (see Section (2.2)), thanks to the Sobolev injections:

|(F4182) ] < 110 - VW | 2ll6cll oo < ClOcN e VW N allel 2o < ClOe pra IVWE N 16| e

Thanks once more to interpolation (1 = (1 —a)s+ (s + 1) witha=1-s,and 2s = (1 —a/)s+
o/ (s +1) with o/ = s, we will precise later that s € {1, 2 +nd}), we obtain:

|(Falde) g

40 C
VW s Voell e < 151Vl + V—O||VW5TH%3||5E||2-S- (2.36)
Similarly (but interpolating through 2 = (1—a)s+a(s+1) witha = 2 —s and s € {3, 1 +nd}):

|(F5102) -

<NWE - Vo210 [l o < CIUWE (2o 10 8 1106 72

3 5 Yo
< CIWE o017 1V6: 1, < T5IVo:llZ. + - HWTHLaH5 5. (2:37)

Thanks to the Young inequality with (2

2)’

s’l s’

[(Fs02) e < IWE - IWE ol ae < ClNSger (IWT zollclyn®) IV s
1% C %5
< BNV + —— IWE I 1603 + CIVWE 2. (238)
Yo

The next terms can be estimated in an improved way compared to the methods from [11] as,
on one hand, ?" and G are more regular, and, on the other hand, we can "pay” on 9 what we

13



need for Uy osc. More precisely, thanks to Theorem 1.2, by interpolation, we have that for all
s € 0,424 6] and for all ¢ > 2,

- ~ 1
51, ez < Coymax(L, [54]30) 2,
and as%—i—&—i—% :%(:)q: %,Weobtainthat:
- ~ 5l
15 2 w23 < Conwmax(L 55100742 (2:30)

Now, thanks to the Sobolev injection H LR3) — L5(R3), interpolation, and using once more the
Young inequality with (2 2):

5157

1 o E _
|(Folde) gro | < 110" - VaW | 2lldcl oo < CIR 2 L IV 12 4 IV o6l "

< Lol (IV9"12 |\6a||1-*5) (WH% LIV 1s)

< 18HV5 el + ~h|| 7 10:05 + ClR" |3 IVWE 115 (2.40)
Vo
Remark 2.3 Observe that when s = 1 +nd with 5 €]0, 1], then 1=~ € [2, 25| and we can use
(2.39).
Similarly,
((Fr0e) o | < W2 V5" [ 2|82 [l gr2e < CIWE (o V"] 3 15615727 106 157

< Cllogyeen (199”17, Héslll-‘s) (HWH 2w o)

~h||1 1811 + CIVT™ |, 3 W IITe. (2.41)

1% 2
< — J-11%
< 1lIVOell. +

Vo

We easily obtain that:

|(Fu1182) ] < 1(7d = P 1 )Gl e 16 e

1 ~ 1 ~
< 1A= Prm )Gl + 1T = Pro g )Gl e 011, (2:42)

and we are left with the new terms involving 0, (z3). Let us begin with Fjg: introducing the
following anisotropic norms (with the classical adaptations for infinite exponents),

sz < WAl = ([ ([ 1amaattan) )", eas)

we have for some a € [0,1] (to be precised below):
|(Froldz) o | < W2 - O0el| 21 0c | g2 < CIWE N o2 1050 | gy 10 .7

< Cllocl3yen (10 IIHl(R)Hé [ )(neEn% )||WZ||L7;)

w18 3. + ClIEII:

< V6l + — 1l

(R)||WT||LOO 2. (2.44)

Vo

Remark 2.4 We emphasize that in [15], the anisotropic norms were of the form || f||pa» .
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As we aim for the best possible convergence rate, we will use below the Strichartz estimates for
HWETHLSLOO},LQ which will require us to estimate (thanks to (1.17)):

-] L1 <[|6c]] s1-a < —S—lfocl  soa

el oz oy = WOell e gy ) < () =) : O’EHB;I"’

) . S : (2.45)
19 2 1 gy < HGEHLSTQB;’I(R) SO ”90,8”3;;%.

~ L1
So, in addition to the assumption 6y . € B, {, we will need:
~ . % . 1_%
9075 S 32111 N 32114 .

As we wish to make the least assumptions possible on [9;, we will simply choose « so that the
previous Besov exponents are equal, that is o = ﬁ. With this choice the additional assumptions

~ ~ . 3
3
on 0 . reduce to Oy . € By * as:

_ c -
He&HL&Hl(R) < WHGO’EHB;%’ (2.46)
and
0 C ~ = ~ =S
|(F10ld) g7 | < EHV(SEHQ'S + TSS||95||I7'1'1?R)H55H2'5 + C||95||131‘2R)HWETH%30’,12. (2.47)
y :

0

The last term is bounded thanks to the modified Sobolev product laws from Proposition 2.2.
Introducing, for some S €0, %[ (which can be considered as small as we need, and will be precised
in Remark 2.6) (s1,82) = (% — 8,8 — 14 ), and roughly bounding the following homogeneous
Sobolev norm with an inhomogeneous one according to ||56||H%—5 < H‘SaHH%—B < 10cllms, we
obtain that when s > %:

[(Fol82) g | < 1162+ 9302 gres 18| e

< Olidell ;-5 1050c ro-rvn my 10l grovs < Clle o 1080 || o1 gy |19 | 11241

IN

1%0) C ~
ZHV(SEH%IS + V_OHQEH%ISJ&(R)H(SE”%IS' (2'48)

When s = %, we introduce (1,82 > 0 with 8 = (1 + f2 < 1 and use Proposition 2.2 with
(s1,52) = (3 — B2, —3 + B1 + Ba):
[(Fo102) ) < 1162 0B 3 s, 10l 3o,
< Ul 1958y 102 gm0 < UGl 10581 103

Yo 2 C 502 2
< DIV + I o g 012 (2:49)

Remark 2.5 As in [12], this term requires special attention and, in the present article, is dealt
thanks to the low frequency assumptions.
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Collecting (2.33) to (2.42), with (2.47) and (2.48), we obtain that for all ¢ < T,

2 5212, + OI\V55||2~S < Cl10e] 4 V35 + ||5 174

Yo 2
2dt 0 HHs+B(R) + ||V58HHS

¢ 2 1 ~h|2 ~h |2 T2 1 T4
+ N0l ((1+ V—gllv 1%, DIV + VW s + V—SI\WE Lo

~ 1 ~hy T T s
+ |Gl g + @(HVU s +1IWe H T+ 6. |H1(R))>
L00)

+ O A" g DIV s + 190 3 W[

11011 i

A =2t ||(1d Pror )Gl |- (2:50)

2.1.2 Estimates in L2

As explained in the previous section, dealing with Fy required additional low frequency assump-
tions, therefore we also need energy estimates in L?. Computing the innerproduct in L? of (2.31)
with §., we similarly obtain that:

11
110-(B)I17z + woll VA= ()17 < > (Filde)e

N —
&.|Q‘

The complete or horizontal divergence-free conditions imply that
(F116e) 2 = (F3]0c) 12 = (F5[0:)r2 = 0
The next three terms are dealt with similar arguments as previously:
|(F210e) 22| < 16 - V™[ 22ll0F | 2 < Cll0el| 6 V" | 2 [10c | 2
< Bl 19931022 < VI + VT 12 102132, (25)

|(Falde)rz| < 16 - VW | p2l10cll e < R IVOeNZ2 + S IIVWE[17s 11017 (252)
|(Folde)rz| < 0" - VoW |2 (10|22 < CIVWE [T + ClIE" 1%, 1106172

The next term is estimated differently (in order to minimize the assumptions on Up ¢ osc), thanks
to the Young inequality with indices (4,4, 2):

|(F7182) 2] < WX 2e [ V0" [ L2162 [l 2e < CIW |l ol VD" || 216 | 774
< CIWE Lo V0" 2161 221 VOe |72 < C||V5 172 (110 HEzHVﬁhlliz)(IIW"HEzIIWTIILG)

< —||V5 172+ — ||5 72 11V0" 172 + —|\V5h||L2IIWT|\L6 (2.53)

The following term also requires special attention, because if we use the same arguments as for
F5 46, we end-up with ||[WZ2'|| 2 s which, in the case v = V would require additionnal assumptions
on ||U0 c OSC|| . To avoid this, for r1,72 > 2 such that =~ + L =1 let us write:

|(Fs]0e) 2] < CIW L (IVWE |ra [18ell 2 < CIWI e + CIVWE (e ll0c]lZ2 (2:54)
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As we will see later, estimating |[WX'||2pr and [[VWT||p2pr in the case v = v/ will make us
deal with the norm of Up ¢ osc in the spaces H’' and H?? where:
3 1 1 3 1

3 1
— S 40— ) and op =3 — = +0a(5 - ),

1
o1 = —
2 T 2 T T2 T2

with 01 5 €]0,1]. Using % + % = %, we have o9 = %, and the fewest assumptions are made
when we choose:

(3+02)(1+01)
26+ 01 +063)

This function (of (61,62) € [0, 1]?) reaches its maximum 3 when 6; = 65 = 1 which corresponds
to (r1,r2) = (8, %) so that we finally get the estimates:

g1 = 09 =

|(F5102) 22| < CIWI[Zs + CIVWIE o 161172 (2.55)
Obviously

1 ~ 1~
|(Fuafde)|ze < SlI(Id = Pr r.)Gllz2 + gllGHLzII&II%z, (2.56)

and we are left with the last two terms, involving 58. The first one is bounded like in the proof of
Proposition 3.1 in [12] using the Minkowski and Young estimates (twice for (2,4)), the 1D-Sobolev

injection H7(R) < L*(R) and interpolation:

(Rl < [ </ |6s<:ch,:c3>|2|8355<x3>|dz3>d:chscnagénm(m [ 1D,
r2 \JR R2 H1(R)

~ 3 1 ~ 3 1
< C||96||H1(R) /}R2 10 (n, ')||z2(R)H68(‘Th’ ')Hfﬁp(R)di’?h < CHHEHHl(]R)|‘68|‘22(R3)Ha36€||z2(]R3)

~ 3 1 ) C ~ 4
< Olell i 101721V 72 < 1Vl Z2 + = 101 gy 10122 (2:57)
Yo

As for the H*-estimates, the last term will require adjustment in order to minimize the assump-
tions on .. For some o > 0 (to be precised later):

|(Frold)za| < [WT? - 3u0L| 1216 | 2 < CIWT || o 211050 | ey 162 .
< O (11852 1020122 ) (1805 oy IV N 2
A n2(l—a o «
< C1Bl s 192 172 + ClBEI gy W 1 iz (258)

As we aim for the best convergence rate, we will bound |[WZ2|, s, .2 which, similarly to (2.45),
v,h

will require a control on:

L
el ooy < L Wl g2

N o (2.59)
1015 sy < g el - -

The best choice is when both regularity indices are equal, that is when a = %, so that we finally
obtain:

~ 8 ~ 6
(Fiold2)zz] < Cl o 113 + CHON g W2 (2.60)

00,2 .
Lv,h
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Gathering (2.51) to (2.53), (2.55) to (2.57) and (2.60), we obtain that for all ¢ < T

N | =
Q.|g‘

) 1 —
119 172 + ||V68|\i2 < Cll6l|7 (V—O(WU"HZ% + VW 7s)

1 ~hy|2 T2 ~ L5, Rk
+ (1 + V_O)va ||L2 + HVWE ”L% + HCTVHL2 + _%Hes”;p(R) + ||95||I7-11(]R)

Yo
CHIVWTI7s + IV 2 lW X 1Fs + IW X 13 + 1162 ||H1(R)|\Wg|\iﬁz
+(Id = Pr g )Gl2 | (2:61)
2.1.3 Estimates in H®
We recall that for any s €]0,1] and any f € H*(R3),
1 o
LB+ 1) <2 U1+ U130 < U < IR+ WA (262)
Let us introduce
T.5 " sup {t € [0, T2/ ¥t € 0.4], 6:(t)]] 3 < 4”8 } (2.63)

As 0.(0) goes to zero when ¢ — 0 (we refer to (2.73) for details), we are sure that T, o > 0 if
e > 0 is small enough so that, gathering (2.50) and (2.61) we obtain that for all 8 €]0, 1] and all
t S TE,2)

d v
E(II&H%Z +110:0%.) + go(llwal\%z +VEl%) < Cors (18117 K () + T (2)) (2.64)
where

E(t) = (1+]0"]% )IIWhH2 +|\WhIIL2+HWhIII + Gl + Gl + VW 170

W + IWE 5 + VW2 o + 10l 7 - N CA [ H%HEI(R) + H%HZ;I(R)

(2.65)

and

J() = U+ 0" IVWI s + (VT g + VO ) W N2 + W NI

(1175, + 1911

Tt 1005 I IR (T = Pr )Gl + (1A = Py )Gl (266)

Thanks to the Gronwall lemma, and using once more (2.62), we obtain that for all ¢ < Ty o,

16O + 2 /|W5 N3t

t
S(WMW§+MNN%+waAJ(Woe'”thﬁ (2.67)
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Using Theorems 1.1 and 1.2 together with the assumptions on the initial data, we can bound J
and K as follows:

1

t
/K(t')dt'ﬁ(lﬂLIWII2 -A)IIWhH2 -l+|\WhllL2Lz+HV~h||1 ;
0 L H?2 H?2 S 3

+1Cllzgze + 1l g +IVWE W Eae + IWE Igpo +IWT IS+ IVWTIE, 5
L;SL

~ 8 ~ ~ 4 ~
—1s 2 3 :
+ |‘68|‘L57L43H1(R) + HGEHL%HsH%(]R) + 110 || % ) + 110 || g

H*(R)
< (24 C5,C2F )05, C2F 1 (05, CH )
~ _8 ~ 4 8
+Cur s ||90,€H 7.:?; + ”90,8”235#3 Y + HQO 6”3,1 + HQO s” " s
B2,14 (R) 2,1 B2 12( ) B2 14 ]R)

_2
VWL ps + IW lpgpe + WS 2+ IV,
LI e

T2
HITWIR, 5 (268)

< Do+ [|[VW |Gz + WS I Lage + HWETH;TESL
where Dy = Dy (v, ', Cy, 0, s). Similarly,

perrs IV Iz IWT B o

t
/0 TVt < (U4 5 ey IVWT 220 + (V5"
FIWE e + 1= Prr)Clliags + 1 (d = Pr g )Gy
~ 6 ~ 6
T—4s 7 T
+(|‘98||L,£77L45H1(R)+H98HL? 1 HW HL8L°°2

< (1d = Pr. )Gy o + H(fd—m,RE Gl e
+ Do (IVW e+ IWT IFage + IWT [Faps + IWT 12, 2) - (269)

Remark 2.6 Thanks to interpolation, the fact that H90 E|| _3 < Cy allowed us to

fwns, I ®

properly bound every norm involving 0., including the norm H9075||BS+B,1(R) for any f > 0 as
2,1

small as we need (s + 0 —1<s— % when 3 < i): we simply choose 8 €]0, i]

This leads to the following estimates (we recall that we will choose s = % + nd): there exists
Dy = Dy(v, /', Cy, d, s) such that for all ¢ < T o,

t
1) ~
||5a(t)||?qs+§/0 IV (¢) |-t < lll(fd—Prg,RE)Uo,a,osclizmgsﬂ(Id—Prs,RE)GIILmzmHs)

11085 = 5122z +Do (VW 1300 + IWT s + IWT g + IWE 12 2)]

X exp {Do(l W W + W2 I+ IWTNTE 4 IV, ) } (2.70)
t t

Remark 2.7 In the following sections, we will show that the first two terms from the right-
hand side are small thanks to frequency truncations (the third term being small thanks to the
assumptions), and we will use the Strichartz estimates from the appendix for all the other terms.
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2.2 Estimates for the frenquency truncations

The aim of this section is to prove the following result.

Proposition 2.3 There exists Cs,..c, > such that (we recall that s = % +nd):

1(7d = Pr . )Worone|Zaripe < Comucs (52<M6<1-">-v>+52<m6-M6<%+ﬂ>-v>). (2.71)

and
[(1d — PTE,RJGHL,}(LQHHS) < Csmwco (EMJ(lin) + 5%7M(%+6)) : (2.72)

Remark 2.8 In particular, the initial data satisfies
18:0)12,; < Csuc (Ezao o c2(ms0-n) =) +€2(m6—M6(%+77)—v))_ (2.73)

Proof: we use here the methods from [9] and as described in [12], contrary to the QG /oscillating
structure, here we have PyUy ¢ osc = 0 = PoG' which simplifies a little the computations.

DI, 1Dl

D
I(Zd = Pr. k. )Vo.c.oscll . < 2 (II(Id 2 l))UOE osell3ge + IX(Z- rOXG o Woe05¢ll7 ) :
g

R,

The first part is easily bounded thanks to Plancherel and the Bienaymé-Tchebychev estimates
(we recall that s = 1 + nd for some n €]0, 1[):

D
(1 =Xl <€ [ eI (0

e €12

2|¢] oe- 277) 14208 177 9 Cs
< 0/ . (?) 111271 Up e, 0s¢ (€) [P dE < WHUOEOSCH 1 (274)
[€1> 55 <

while the second one is dealt thanks to Lemma 4.2 introducing g = % €, 2[:

|D[, . |Dxl 5y |D[, . |Dxl
e U osc s — D\ el e - osc|| L2
I 0 el = D22 el
D D 1_1 1
<Rn6” (|R|)X(|2 h|)|D| UOEOSCHL2<Rn§(Rs(2T€)2)q 2|||D|§UO,€,OSC||LQ
€

sk 1
< CsR2 0| |D|* U eooscll o (2.75)
Similarly the L2-norms are bounded according to:
|D Cs

|
|(1d - X(R—E))Uo,a,osc|\%2 < WHUO,aoscHiI%Ma

(2.76)

DI, 1Dl

|| ( ) ( )UOEOSC||L2 < C6R§ 6||UOE osc”L%
2r
g
so that we can finally write that:

H(Id - ,PTE,RE)UO,E,OSCH%Z + H(Id - ,PTE,RE)UQE,OSCH?‘JS

1
< Csy (W”Umaoscll s + RV (IDI2 U0 e ose 70 + 1T, oscqu)) . 277)
€
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which proves the first point. The truncated external force is also split into:

~ |D| |D| | Dh|
1(7d = Pr.r )G e < 1(Td = x(-52)) Gl + X (X5 )Gl e
t RE 27’5
and the first term is estimated similarly as before:
|D| GCs, Cs.n.v.C
H(Id— (RE )GHLlHS < 17777) G HL,}H%” < Wa (2.78)

The second term is also bounded as in [9], in a simpler way than the corresponding part in the
initial data (we use specifically (1.10) and Sobolev injections):

DI\ 1Dnl\ ~ D] IDhI . -3
(G X5, )G e = IXCRo X (G )IDE Gllzire < RX(Re(2r.)%)3 2IIGHL1Lg
1ynotd L 5
S ORIV g < CRE™r / " (7)o | V" (7) | L2
2+5 h l
< CR¢g HVU ||L2L2 < CgV(CURE re. (2.79)
Similarly, the L2-norms are bounded as follows:
|D| ~ CS,U,C
1(1d =X () Gl < =4,
€ (2.80)
D Dyl ~ 11
(2 2ehy&) 1 < s REE,

R, 27,

so that

~ ~ 1
|(Id = Pr. 5 )Gll g+ 1(Td = Py 5)Cllnze < Comuco (W

€

+ RZ2 TE) , (2.81)
which ends the proof of the second point. H

2.3 Strichartz estimates

Thanks to the Strichartz estimates proved in the appendix, we are able to bound in (2.70) each
term featuring W72, as collected in the following proposition.

Proposition 2.4 There exists a constant Dy = Dy (v,v', Cy, d,n) > 0 such that for any 0 < € < &4
(e1 is defined in Proposition 4.4) and any t < T7 (we recall that s = £ 4+ né):

T RS L _ Ly (6M+Tm
VW llzzre < Dorgeza™ = Doeza ™ ( ),

WXl azs + W] L e < Doe 2 7= (6M+Tm),

Wl L2ps < ez 7= (6M+7m) (2.82)

(R)

HVWsT”LQL§ SDOEE*’Y*(GMJﬂm),

IWZ N gz < Bped—rm(ensmm)
’I‘

o

Proof: the result is a consequence of Propositions 4.5 and 4.7 (only for the last term). Choosing
(d,p,r,q) = (1,2,3,2) we can write that (thanks to Theorem 1.2, Lemma 4.2, Propositions 4.1,
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4.2, and 4.5) there exists a constant C' = C,,,» and a constant C(Co, v, d) > 0 such that:

hS

VW Nlzs S IVWE N2y, S IVWE ligay, < C

R 1 =~
=t (IPr..mUocosell i + 1Pre . Gl )

31
7’

R4 a1 1l 5 ~
<C %524 R (”PTE,REUO,E,OSCHH%M + ”PTE,REG”DH%H)

Te

9
7275
138

<C g2 (Coe™ + C(Co,v,0)). (2.83)

molh

r

Choosing (d,p,r,q) = (0,4,6,2) and using in addition the Bienaymé-Tchebychev estimates, we
obtain:

11
R2 1
W llpare < IVW llzage, <€ 7 etz (HPTE,REUO&%CHLQ + HPTE,REGHLILQ)
' T
" £
R€2 1 —% ~
<ol ew (7’5 IPr..2.Uo e oscl ;3 +|\PT€7REG||L1L2)
r 6
) 11
R82 L
< C=reT (Coe™" + C(Co, v, 8)) . (2.84)
re

Taking (d,p,r,q) € {(0,2,8,2),(1,2,%,2),(0, —2-,6,2)}, with the same arguments, we end-up
with (we recall that s = 1 + nd):

47

R RS 1 5
|wr ||L2LS < Cyur 5,00 7 g3z <Dp—r ——— 3 v,
e re (reRe)®
%76 RG
€ - 1
||VWTH s <Oy 5.C 55— € 32 ’YSID)O_EEE}Q V,
LZL sV7,0,00 EX) 7’7
Te €
Kl 6
Rs2 1 _ R 1
W <Cuvsco 12 ) SDo—}gEl? .
Ll S 16 TT—T](S 7,6
€

Remark 2.9 In all the previous estimates, the condition p < 1 g is obvious, except for the last

term, wich requires that nd < % 5 (we recall that we already ask n < < 2)

The anisotropic term is dealt with the same arguments but using Proposition 4.7 and for m = oo,
we obtain that:

6 6
T Re 1_ Re 1 1_
IWellpspoer < Covrseco—23€ " <Do—7—es™7. B
t~v,h 4 Te o4
Te Te

2.4 Bootstrap and convergence

We are now able to finish the bootstrap argument. Into (2.70) we inject, on one hand (2.71),
(2.72) (to deal with the first two terms from the right-hand side of (2.71)), and on the other hand
(2.82) (to show that the terms involving W2 are small thanks to Strichartz estimates), so that,
uniformly denoting from line to line as Dy a constant depending on (v, 1, Cy, d,7), we obtain that
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for all 0 < & < g7 (defined in Proposition 4.4) and all ¢ < T, 5 (defined in (2.63)),

t 4
16 () 13- + %/ V6. (t)| 3+ dt’ < exp {D0(1 F (L4 eB)E2+ (e% B + (6% E.) 12%)}
0

g200 4 2(MS(1=m)=7) 4 2(md—Ms(5+n)—=v) 4 M(1—n) | B —M(5+9)

1 3
£B £16
1

+

(reRe) i re

+D0(5% te o )Eg2 . (2.85)

where we have introduced the small quantity E. = e32 7= (6M+7m) " Thanks to Remark 2.9 we

have 4 < 1%26 < 12, and if we ask that:
il

1
337" (6M + 7m) > 0, (2.86)

then we are sure that if ¢ > 0 is small enough, E. < 1 and 1+ (1 + 38 )E2 + (5%E8)4 +
4
(5% EE) 1721 < 5, which implies that for all t < T 5:

t
I6c(6) e + 52 [ IVt < De™ <200 o 2(4150m=1) . 2 mi=atit o)
0

m

4 MO | B-MGEH) y od  A(FMom) | g (2.87)

If we observe that

then for all t <17 o,
t
HMW%+?/HW&W%M§meL
0

e . 1 1) m 1 ) 1
Using that ¢ €]0,1], n < 3, and asking that v < M%(l — 1), we obtain that:

] 3 m—5M 1
> mi (1 — _ = - == ).
N(g) > min (aO,M2(1 n), (m 2M)é, N 96>

Choosing M = % the previous estimates turns into:

mo 3 m 1 mo m
N > mi — (1 — — —.,— | > mi — (1 — — .
(5) Z I (QOa 12 ( 77)’ 4m55 365 96) Z Iin (CYOa 12 ( 77)) 36)

With these choices for M and v, we also have

1 97 1
< — M <—m< — 2.
m_259:>6 +7m+7_12m_32:>( 86),
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So that, choosing (m, M,v) = (ﬁ, ﬁ, ﬁ(l —n)),ifnd < % and n < %, we finally obtain that
for all t < T o,

t
H(Sa(t)”%—]S + %/ HV&;(t/)H%{sdt' S DOEQmm(amﬁ(l—ﬂ)vm)_
0

Assuming that T o> < T, if ¢ > 0 is so small that D052mi“(a°’ﬁ(1_")’ﬁ) < (£%)? then the

previous estimates implies that in particular ||0: (7% 2)|/#s < §& which contradicts the definition

of T, 5 (see (2.63)). We have proved by contradiction that 7., = T and from the previous
estimates,

T
/“nmuw@wﬂ<m
0

which entails, by the usual blow-up criterion, that T = co. Moreover we have obtained that for
allt > 0,

t
Huwgw+?/waw%W#smﬁmWﬁWﬂmﬁ,
0
which implies (thanks to Proposition 4.1 and Lemma 4.1) that
1 1
I5clizae < ClIGLL g < CIVEIL IV,
< C|IVLll 140 < Do (oosiss (1=msss) - (2.89)
t

To finish the proof we use once more the Strichartz estimates from Proposition 4.5 with (d, p,r, q) =
(0, 27 CX)? 1)’

R’?

N ~
”WETHL%LDO < ||W&:T||L$BgOJ < CT;;ES (H,Pm,REUO,E,OSCHB%1 + ”PTE,REG”LlBgJ)
Te
R 1 -4 5
<C i E8Te HUO,&OSCHBQ%’1 + H/PTE,REGHDBEI

Te

R7 1 1

= C_SEES (||U0,87080||2-
T H

£

~ 1
UO,E,OSC||;%+65 + ||GH2

~ 1
$—cs GHle%+c5)

15 —es
RI . - Ly —(TM+8m)
<Do—ges(e77+1) <Does™7 ™. (2.90)

€
With the previous choices for (m, M, ),
1 1 1 7.1 555
——y—=—(TM+8m)> - —(=+8+2)— = —
5 77 (TMA48m) 2 5= (35 48+ 5)555 = Ga16
so that we end-up with
1Us = (2,0,00) | 2 = [ Dell 2z = 10 = W[ 2

555

< DO(Emin(ao,ﬁ(l—ﬂ)vggﬁ) +ewis) < QDOEmiH(aoaﬁ(l—ﬁ),ﬁ), (2.91)

and the proof of Theorem 1.8 is complete. B

3 Proof of Theorem 1.9

As usual, in the particular case v = v/, we can take advantage of simplifications: the computation
of the eigenvalues for the linearized system does not require anymore truncations in frequency,
and the projectors Ps and P, become orthogonal.
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3.1 A priori estimates

Let us consider 0. = D. — W, where W, solves (1.28):

10
00 — Lo + LPBS. = G,
pat (3.92)
56\15:0 = (U(SI,&S - :l;ha 07 0)5
where:
VPG V), G PG V,0,0), Gy —P@E"- V4.,
def —P(6. - VW) Gs ™ —pw. . vs.), G¢™ —p@"-v,W.), (393)
def ~“P(W. - V3",0,0), Gs™ —pw..vw.),
def P(0,0,0, 53 850.), Gio " —P(0,0,0, W3 - 950.).

Following the same steps as in the general case, we obtain that for all ¢ < T, o (where T 5 is the
same as in (2.63)),

6.+ 5 [ 193

1Ute,s = 0" 2. + Do (IVWellZapa + IWelFgpo + IWellZapa + IWel . z)]
_2
X exp {ID)O(l FIVIWel s + IWellbyo + W5+ IV, ) } (3.94)
h t

3.2 Strichartz estimates

We will prove in this section the following result:

Proposition 3.1 There exists a constant Dy = Dy (v, Cy, d,n) > 0 such that for any t > 0,

s
INWellzzps + IWellpaze < Do (1T, 0scll ;3 —es 345 + 1)
W]l . < Doet=m> (”UOEOSCH S-espphes T 1)7

Ll s
EigHWEHLfLS + ||VW ” g+ 5 HW ||L8L°° 2 < DOE% (||UO,€,OSC||H%—CJOH%+§ + 1)

(3.95)

L2L3

Proof: using Proposition 4.7 with (d,p,r,¢,0) = (1,2,3,2, 6) we obtain (with the same argu-

ments as in the general case) that there exists C' = C(l/ d) > 0 such that for any t > 0,

5 ~
”VWEHLfLi" < HVVVEHLfBg2 < ”VWEHZ%BQZ < Cez (HUO,E,OSCHH%M + ”GH

LIH%”)

3
114+ C(Co, v, 5)) < Doe? ([Uo e oscll ;35,45 +1)- (3.96)

HE A%

5
< Ce# (|Uo.eoone

This choice for 0 requires that § < %, and the condition p < 0(1;‘:2)
second and third estimates are obtained similarly, applying the same proposition successively for
(d,p,r,q,0) = (0,4,6,2,35) and (0 T S,6,2,3(1 —n)d) (and does not require any additionnal

assumption as we already have § < & L),

is trivially satisfied. The
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With (d,p,7,¢,0) = (0,2,8,2,1) (we took § = 1 as the Sobolev index is o1 = %) we obtain

that s
||WEHL§LS < DOEE(”UO,s,osanéfca +5 Jrl)a

which gives the fourth estimates. The Fifth estimates is obtained choosing (d,p,r,q,0) =

(1,2, %, 2,1). As it involves anisotropic spaces, we use Proposition 4.8 with (d, p, m,8) = (0, 8, o0, 1),

Theorem 1.2, and obtain, combining the arguments from (2.90) with interpolation, that:

G )

oL
NH 2

1
”WE”L?LZT;IZ < Cpes (”Uo,s,osc”B

1 1 1 ~ 1 ~ 1
< Cueb (W0l y oslUocoscl? s +IGIE, 0 LIGIE, )
1
S CVES (|‘U0’E’OSCHH%7”§HH%+5 + C((Co, v, 5)) . (397)
1

3.3 Results when s = 3
When we only assume that there exists ¢, mg > 0 such that:

)
2 )

HUO,E,OSCHHéfctSmH%JrJ < mgpe"

gathering the Strichartz estimates from the previous section into (3.94) entails that for any ¢t < T 5
(in the present case n = 0),

2 v [ N / D0{1+(m0+8g)2 (1+8§75)+2(m0+53)4}
10012, + 5 [ 19012 < Due
X [520‘“ + (mo + 53)2 (1 teiod 4 5%75)} . (3.98)
If we choose €, mg > 0 so small that (we recall that § < %):

(mo + 53)2(1 + 55*5) +2(mo+e2)* <1,
Dge?Po {52% + (mo + 5%)2(1 +et60 4 5%_6)} < (é)%

then we prove as in the general case that T, » = T} = oo. If in addition mg is replaced by some
m(e) — 0, we obtain that when € > 0 is small enough:
E—

)
ot < Domax (20,5 m(e)).

19ell 53 = N0

3.4 Precise convergence rates
With the following stronger assumption,
HUO,s,oscHHéfcamH%+a < (COE_Wv
the Strichartz estimates from Proposition 3.1 now become when we introduce 79 > 0 so that

v = 2(1 — 219) (we also recall that § < 2):

5
IVWellp2rs + IWellpage < Dog2~7 = Doe™?,

|We|| < Dpe=M35=7 = Dyeo—3)3,

Ltlfs L6

57%“W€”L%LS + HVWEH 4+ 571716 ||W€HL§L3°£L2 < ]D)OETIG*’Y = DOE%(%*5)+U05 < D0€’705.

8
L2L3
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Gathering these estimates in (3.94) we have that for any ¢t < 7. > (here s = 1 + nd and as in the

general case 1—35 > 4),

! 2106 4no s 4(ng—2)s
1. O12 + 2 [ (V6. ()|Zedt! < Dyelo{1r2emm +etom4et0 780}
2 0

« |:€20¢0 + 527705 (2 . Ei + 5%):| . (399)

Now, as we need 7 < min(2no,3) (with 7y €]0,1), we can simply choose n = 1y (now s =
L+ m06=1%+3—7)and as ¢ €]0, 1] then

t
18Ol + 5 | V() 3t < Doe™ [200 4 4e217] < Dye? min(omd),
2 0

Once more this allows us to prove that 7, » = T = oo and as the previous estimates is now valid
for any ¢t > 0 we obtain that:
min ;100
19ell e = 18l 3 s = 11 103 ngs < D™ (0,
As in the general case, using Proposition 4.1 and Lemma 4.1, we have (we recall that v = g(172770)
with i) G]O, %D

2R

%*noéll L2 3 tm00

1
I6cl20 < Ol 5 < CIVaLIE,

3
2
2,

< C||Vs.|| < Dpe™in(@omd) — g emin(eo,3-7) - (3.100)

L2H2T00
All that remains is then to use Proposition 4.6 with (d,p,r,q) = (0,2,00,1) and obtain that for
any 0 € [0,1], and t > 0

, _
IWellzzoo < IWell o, < IWellzpo | < Cone’ (on,e,osc|B§1+g + ”GbB;;%) - (3101

As in [10] and [11], applying Lemma 4.1 with (a, 8) = (4(1 — a), 4(1 + b)) for a,b > 0 (and b
small as we will see in what follows), there exists a constant C' = C'(a, b, ) > 0 such that for any

function we have: ,

||f||B2%1+g < C”fHEJrgufa) Hf|‘§+%(l+b)'

Trying to use the assumptions we will choose a, b so that

(501 —a), 5 (1)) = (~cb,0),

which is realized when 6 = 12_4?1) (this is possible as we already ask § < £) and a =1+ ¢(1+b) so
that we obtain:

14+c(14b)
(T+0)(1+c)

b
(1+b)(1+c)
‘UO,E,OSC| H%Jﬂ;

1Wocoscll ;3+5 < CresllUocoscll 170
2.1

< Crye,61Uo,e,05cl < Chescoe T (3.102)

i =

Similarly, we obtain that

HG||LIBZ%1+g <G,y 345 < Copco-
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Gathering the previous estimates into (3.101),

s s 1 ) b
S Y S(5—142 _ 52no—17%
IWell 20 < Coco5.06 200 7 = Cly ey 0562 (T8 1H21) = O ¢, 562107 T50).

210 (1—k)

Tons(izky Ve finally get

When some k €]0,1[ is given (as close to 1 as we wish), choosing b =

that:

IWellpzr0 < Cucosmoke™™°.

Combining this with (3.100), we finally obtain that

1Us = (2,0,00) || 20 = | Dellpzroe = 10 = W[ L2
t t t

< Doe™ 000 4 O, ey 5.0, 1" < Dpe™P 0k (3,103)

which concludes the proof of the theorem. B

4 Appendix

4.1 Notations, Sobolev spaces and Littlewood-Paley decomposition

As in [9, 10, 12], this section roughly presents the spaces and norms that we will use. For a
complete presentation of the Sobolev spaces and the Littlewood-Paley decomposition, we refer to
[1]. Let us just recall that if ¢ : Ry — R a smooth function supported in the ball [0, %], equal to
1 in a neighborhood of [0, 3] and nonincreasing over R. If we set ¢(r) = ¢(r/2) — ¢(r), then ¢
is compactly supported in the set C = [%, %] and we define the homogeneous dyadic blocks: for
all j € Z,

Aju = o277 |D|)u = 27n(27.) xu, with h(z) = F 1 (e(l€]))-

We recall that k(D)u(§) = k(§)u(€) and we can define the homogeneous Besov norms and spaces:

Definition 4.1 For s € R and 1 < p,r < oo, we set

HUHB; = < E 2”5||Alu||2p) if r<oo and HUHB; = supQZSHAluHLp.
5T 500 l
LEZ

The homogeneous Besov space B;T is the subset of tempered distributions such that lim;_, _ . ||S;jul|p~ =

0 and |[u] . is finite (where Sju= > Aju=¢(27|D|)u).
' 1<j—1

Let us first mention the following lemma:
Proposition 4.1 ([1] Chapter 2) The following continuous injections hold:
For any p > 1, 33,1 — LP,

For any p € [2,00[, BY, — LP,
Foranype€ [1,2], BY, < LP.

Sometimes it is more convenient to work in a slight modification of the classical L¥ B;T Spaces: the
Chemin-Lerner time-space Besov spaces. As explained in the following definition, the integration
in time is performed before the summation with respect to the frequency decomposition index:
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Definition 4.2 [1] For s,t € R and a,b, ¢ € [1, 0], we define the following norm

lullzes;, = || (2 185uleper)

1°(z)

The space E‘;Bg . is defined as the set of tempered distributions u such that lim;_,_ ., Sju = 0 in

)

L0, L¥(RY) and 75, < oc.
We refer once more to [1] (Section 2.6.3) for more details and will only recall the following
proposition:

Proposition 4.2 For all a,b,c € [1,00] and s € R:

ifa<e, VYueliB., |ullgap, < lulligs;,

ifa>ec, Vue LBy, |ulgeg > llulligs; -

Let us end with the following lemma whose proof is close to Lemma 5 from [7] (see also Section
2.11 in [1)):

Lemma 4.1 For any a, 3 > 0 there exists a constant Cn 3 > 0 such that for any u € Hs=on
H**P then u € B and:

B
a+p3
[s—o

||| =7 (4.104)

HuHB;1 < Copllul Fst8
4.2 Truncations

In this section we define a particular truncation operator introduced in [12] that we will also
abundantly use in the present article: let x € C3°(R,R) taking values into [0, 1] and such that:

supp x C [—1,1],
x = 1 near [—3, 3].
Given 0 < r < R we will denote by C, g the following set (where & = (5, &3) and &, = (£1,&2)):
Crr=1{¢cR? [¢<Rand|&| >} (4.105)

Defining f, r(§) = X(%)(l — x(%)), we have:

su C Cr.R,

pp fr.r CCrr (4.106)
frrrR=1on C2r,§-

Let us define the following frequency truncation operator on C, g (F ! denotes the inverse Fourier

transform and |D|* the classical derivation (non-local pseudo differential) operator: |D|*f =

~

FHIE1 £(€))-):

P = fra(Du = (21 - y( 2y,
= P (@) = 7 (x(Bh (1 - v Bthyace), @0m
Thanks to (4.106), we have:
fgng(D)fnR(D)u = fryR(D)u. (4108)

In what follows we will use these objects, as in [6, 9, 12], choosing in particular r. = ™ and
R. = e M where m and M are precised in the proofs of the main results. Let us first recall the
following anisotropic Bernstein-type result (more details in [22, 3, 9, 12]):
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Lemma 4.2 There exists a constant C' > 0 such that for all function f, « > 0,1 <q¢<p <0
and all 0 < r < R, we have

(2D (22ehy f 1o < C(Rr2) a5 ||y (L2L)y (L2
DIy g fllLr < CRY||Pr.rfllLo.

D) fllza < C(Rr2)a =5 | f| o

(4.109)

Let us end this section with the following proposition which adapts Lemma 2.3 from [1]. We refer
to the last section of [12] for the proof.

Proposition 4.3 [12] Let 0 < r < R be fixed. There exists a constant C' such that for any
p € [1,00], t > 0 and any function u we have:

~ R3
Supp u C Cr g = ||etAu||Lp < C—467%T2||u||m.
r

4.3 Eigenelements of the linearized system

The linearized system of (S;) is written as follows (with fo, Ferr being divergence-free, the second
form is obtained using the Leray orthogonal projector P on divergence-free vectorfields):

atff(LiiB)f:Feztv -
— {atf ~ (L= iPB)f = Fea, (4.110)

lef = 0, B
Jit=0 = fo- Jit=0 = fo-

Applying the Fourier transform turns the equation into (as in [3, 27]):

~

Oef(€) —B(E,€) F(€) = Femt (L, €),

where
2, 2 §1&3
—v(§ +&5) 2313 v€183 RTE
— vt e+ ) vk fﬁ;
V€1£3 V€2€3 —l/(é-% + 63) - 2|§|22
0 0 ! —v[¢?
£

We refer to [12] for details about the following proposition gathering the properties needed to
obtain the Strichartz estimates.

_ 1
Proposition 4.4 Ifv # v/, forallm, M > 0 with3M+m < 1, foralle < g1 = (%) e

if r. = &™ and R. = =™ (that is such that |v — V'|eR? < r.\/2), then for all ¢ € C,_ gr., the

matrix B(¢,e) = L — %IP’B is diagonalizable and its eigenvalues satisty:

)

Mg, €) =

A2(e,€) = *VISIZ

Aa(e, &) = — L (¢ +z‘§|g|‘ ieD(e, €), (4.111)
Aa(g,€) = As(e, €
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where D(e,§) satisfies for all £ € CTE’RE (with k € {1,2}):

|m

ID(,€) < (v =) 251 C < Colv — V2R = Gy — v )Re= (MM,

K

|0, D(g,&)| < (v — V/)Qi\/— ||5§h|‘ <Co(v—v )2155 =Co(v — 1/)267(5M+2m),
106, D(e,€)| < (v — v 2L < (v — w22 = Gy (v — /) Zem(MHm),

Moreover, if we denote by Py(e,§) the projectors onto the k-th eigenvector (we refer to the
appendix from [12] for details), and by Pyf = Pi(e,D)f = F~! (’Pk(s,f)(f(f))), then Py = Q

(defined in Proposition 1.1) and for any divergence-free R*-valued vectorfield f, we have:

Pof = (VA 'w(f),0,0),  with w(f) =1 f> — daf’,

(4.112)
1Pofllge < N g < N fllge,  for any s € R.
and
(Lo —Po)f = (Val, div i ff, £2, £3),  with div, f* = 01 f' + 0 2, (4113)
(s = P2)fll g7+ < | fllgjer  for any s € R. '
Finally for k = 3,4,
BuPr Fl e < VB Prfl e = VI HONP i e (4.114)

If v = V/, there is no need anymore of a frequency truncation or an expansion for the last two
eigenvalues (no e either is necessary), and the Py (k € {2,3,4}) are orthogonal so for any
divergence-free R*-valued vectorfield f, we have:

IPefll e < Ifll s, for any s € R.

4.4 Isotropic Strichartz estimates

We list in this section the following Strichartz estimates that we proved in [12]: namely Propo-
sitions 5.4 and 5.6. We state the first one a little differently compared to [12] because we wish
to estimate f in the case when its Po-part is zero (that is f = Psf + Py f). We recall that the
operator P,._ g, is defined in Section 4.2 and that we chose (1., R.) = (¢™,e~M).

Proposition 4.5 ([12], v # V') For any d € R, r > 2, ¢ > 1 and p € [1, —] there exists a

constant Cy,,. > 0 such that for any ¢ €]0,e1] (where 1 = (V2/|v —V/'|) 1’“”‘“””) and any f
solving (4.110) with initial data fo and external force F.,; such that div fo = div Fepy = 0 and
w(fO) = w(Fezt) =0, then,

|||D|d7)7’saR£f||Z€B£,q

Cor R
T )00 BT

1l1-2
D (1P foll g, + I1Pren Featll g )+ (4115)

When v = v/, usual simplifications allow better results: we have L = vA and System (4.110)
becomes:

(4.116)

atf - (VA - lPB)f - Feztv
f\t:o = fO-

31



Proposition 4.6 ([12], v = /) For any d € R, r 2 2, ¢ 2 1,0 € [0,1] and p € [1, 555 )]

there exists a constant C' = C), ;.9 > 0 such that for any f solving (4.116) for initial data fo and
external force Fey such that div fo = div Fepr = 0 and w(fp) = w(Feyt) = 0, then,

Coro  0(_2
|||D|df||Zfng = %54(1 ) (HfOHB;’lq + ||Femt|\zggg;) : (4.117)
’ vr T » 5

4.5 Anisotropic Strichartz estimates

As observed in [15], dealing with functions only depending on x3 requires special versions of the
Strichartz estimates: the space in 2 now becomes of the form L’ (anisotropic integrability in )
as introduced in (2.43). We emphasize that, as described in Remark 2.4, the vertical/horizontal
integrations are swapped compared to [15].

The aim of this section is to state and prove the following anisotropic results:

Proposition 4.7 (v # /) For any m > 2, p € [1, %5, there exists a constant Cy,, > 0 such

that for any € €]0,e1] (where e1 = (vV/2/|v — V') "=C¥*™) ) and any f solving (4.110) with initial
data fo and external force F.,; such that div fo = div Feyy = 0 and w(fo) = w(Fewtr) = 0, then

||P’I“E,Raf||L?LZ?;l2

Cp,m Rgiﬁ l(l_l)
v+ ) T1-2) B12 z_z ¢ " (HP"'£7R5fOHL2 + HPTE,RsFethLlLQ)a (4.118)
vV 1% -8 m r 2 P m

€

<

As usual, when v = v/ we can improve the previous result:

Proposition 4.8 (v = /) For any d € R, m > 2, 0 € [0,1] and p € [1, ﬁ], there exists

a constant C), ¢ such that for any f solving (4.116) for initial data fo and external force Feyy
such that div fo = div Fepr = 0 and w(fo) = w(Feze) = 0, then

Cpmo  6(1_2
DIl > < =2 e 8730 (| foll gz + [ Featllzy poe ) » (4.119)
tHy h v 8(1 m) 2.q tDP2y

4.5.1 Proof of the anisotropic Strichartz estimates when v # 1/

The proof of Proposition 4.7 is inspired by the one from [15] but, as in [12], will require impor-
tant adaptations. As usual we first assume F.,; = 0 (and the inhomogeneous case is obtained
reproducing the arguments on the Duhamel term). Starting close to what we did in [12], we will
skip details and point out what is new. Let A be the following set:

def
{¥ € C®Re xBAR),  [Wll o, 172 casyy < 13-

As div fo = div Fepr = 0 and w(fy) = w(Fert) = 0, we have f = P3f 4+ P4f so we can reduce
to study Psf (having in mind the norm of projectors Ps 4 given in Proposition 4.4). Thanks to
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Plancherel and (4.107), using the arguments from [12] (section 5.3.2)

||P37>TE,REf||Lme 2 = sup/ / P3P, r. f(t,2)(t, z)dzdt
PpeA R3

_Cswp / /]R3 _ u+V P +it \5\ _ZtED(87£)‘F(P37)T5,R5fO) (g)f%f,QRE (f)@(t, E)dfdt

bEA
< C|PsPr, r. follL2

1
o0 o0 V+V’ ’ _— 2
X sup [/ / ILeotb(t, ) pmalle™ s CHOAPre o bt ) | pmadtdt’| ,  (4.120)
veA LJo  Jo vsh v,k

where for some g:

(Lesg) () = / i €™ H R (LIPSl —i(t=t)eD(e.6) <2']§' )(1- <'5h'> (&)dg. (4.121)
]RS

As in [12], it is not possible to directly use the smoothing effect of the heat flow from Lemma 2.3
n [1] (Section 2.1.2), and we use Proposition 4.3 which is an adaptation for the set C, g (defined
n (4.105)). The fact that in the present article, the spaces are anisotropic does not change the
result as the bounds are obtained through convolution estimates, so that we obtain:

V+V/ , - R3 71/«#1// ’ T2
e (bt )AP%QRJ/}@/,_)HL%Q < Cr_‘fe T (t+t) 5||7/’(t/")”Lf?f' (4.122)

€

lle
The other term will require the Riesz-Thorin theorem, and thanks to [12] we already have:
_vtv! 2
I Leterll g2 p22 < Coe™ 10 (t+re (4.123)

Obtaining a bound for || Le ;¢ ||L1 2 will require us (as in [15]) to rewrite this operator. Let

us first introduce the horizontal and vertlcal Fourier transforms: for a function g depending on
x = (xp,23) € R3,

]:hg(ghax?)) déf / eiixh{hg(xhax?))d‘rha and ]:’Ug(‘rhaéé) d;f / eiiIS{Sg(‘Thax?))d:EB-
R2 R

Of course, F = Fy o F, = F, o F, and we easily obtain that, if we introduce:

. v+uv/ ’ ct—t’ [Epl ’
Ia bt (Eha 553) (27_‘_) / emgfge— t (t+t )\fﬁ-ﬁ-z%—é’r—z(t—t )eD(a,g)X(%)( (|€h| d€3,
R € Te

(4.124)
then (also denoting as JF, the vertical Fourier transform of a function depending on (&, x3)):

(Letrg) ()
- / el e / it~ (IS B it-teniee) S8y g <'§h| )3(€)des | e
R2 - 2R,

:/ eiontn </ 58 oy (I p,0) (6, €3) "vahg(éhvfi%)dfi%) )
R2 R

=C eizh'gh (]:,U)il (]: ( et t’)(é-ha €3) ]:U]:hg(gha 63))d§h
=C | enén (Ie,t,t’ (&ns23) *a5 (Fng)(Ens $3))d§h
RQ

= CF (Tep 6. 23) 0y (Fag)(Eo 1)) (4.125)
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Thanks to (2.43), the Plancherel, Minkowski and Young estimates, and to Remark 1.1 from [22],

ILetergll o2 = ClIF, (Ia,t,t' (&> 73) *25 (Fng)(Ens iﬂs)) o2
1
2

= Csup ([ 17 (T 6n ) 50, (Frg) 50 P )

xr3€ER

2

— C sup ( [ Lot (Enan) <fhg><£h,x3>|2dsh)

r3€ER

<o(.

< Ol Mo ) 1 Fng € Ml sy

=

2
Ia,t,t’ (fh,.’L'3) *pg (]:hg)(ghaxii)HLoo(]R )df)

L2(R2)
< I 4w . .
= CH g,t,t (é-h) )HLQO (R§h7Lm(Rm3)) ||]:hg(£h) )HLQ (R§h7Ll(Rm3))
S C||Is,t7t/ ||Lao(R§h XRIB) ||fhg(§h; .)HLI (Ra:3 L2(]R§ )) S C”Ig,t,t/ ||L°° ||g(1'h7 ')HLl (]R 5 L2(R2 ))
9 h T3 T,

< Ol l=llgll e, (4.126)

which implies that
|| I/E,t,t’ ||L1’2 o2 S CHIE,t,t’ ||Loc . (4127)
v, h v, h

Thanks to (4.124), we immediately see that:
Hespll = < CoRee™ 56 (4107, (4.128)

In order to obtain a finer estimate, we will adapt the proof of Proposition 5.4 from [12]: as
Ic v (&n, —xg) = Ic 1.0 (Ep, x3) we can assume that xz > 0. Moreover for any ¢, ¢,

t—t
||Ia,t,t'||Lw(R3) = sup ||Ia,t,t'(§h, 953)”,

(&n,r3)ERS €
so that we will bound:

/

Feaw 6, ) = () [ e SEHORE SO 060 (B (1 (s,
R 2R, Te
(4.129)
where function a is the same as in [12]:
a(€) Yy &+ @
€l
If we also introduce the same operator L:
1 . .
1T Elage) (f(§) +1ia(§)0e, f(£)) ift >
Lf= ‘51 (4.130)

m (f(&) — ia(&)@ng(é)) else ,

with

£316n]
€[3

a(§) = —0ga(§) = —(z3 - ),
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then, performing an integration by parts, we obtain

t—t

Ie,t,t/ (§h7 $3)

= / a9 (1 X(@))tg (e” - (t+t')|§|2i(tt')eD(s,E)X(ﬂ)> dés.  (4.131)
R Te 2R8

As the computation is the same as in [12], we do not give details and only jump to the following
bound:

, v (gt )2
I'c (e—"t”(t+t’)52—i(t—t/)aD(a,£)X(%)> | < C’o¥ < 1 + M) , (4.132)
€

Y] D)
1+t€ta2 T? Te

and

t—t

| Kt (Ens r3)]

it sV (2R)P=ER]? 1 1
< Col1 - x(lf—”)!e*?—ﬂm m/ s ( lo
g

— (= + M) dey. a.133)
@R 62 L+ a2 \r? Ts)

We bounded a similar term in [12] (in the present article there is no horizontal integration) but will

give a few details. Tt is easy to bound the second term using that |a| = (%) o (%)% la| <
1 (t;—t’)fé (1+=L0?):
VRGP |y 1/t—t\ "2
/_\/m 1+ =42 ( )
The first integral is split into two halves and the first half is easily bounded using the change of

1
: _ (t=t'\? _re .
variable z = ( = ) 16R§§3'

/O ! 3 </0 ! dé <C<t/)§R§
T t—¢ o US3 > T 22 U3 =0 — .
@R 1+ e —VERTGTE 1+ S i € Te

The most difficult part is to correctly bound the second half of the integral. In [12] we did it
thanks to the following technical result:

Proposition 4.9 ([12] Proposition 6.1) There exists a constant Cy > 0 such that for any o > 0,
Rz%aandaﬂﬂz(),

V3
VvV R2—a?2 7
dl‘ R 1
IR déf/ < C, min(1,077). 4.134
a.5() 0 1+ o(fal@)—B)2 = “a¥ in(l,07%) ( )

Moreover, the exponent —i is optimal in the sense that there exist co, 09 > 0 such that for any

RZ%aandUZUO,

e
[N

sup Ioliﬁ(a) > oo faz.

BER L
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This implies there exists a constant Cy > 0 such that

/\/<2R5>2—|5h|2 1

t—t RY t—t' _1
_ 12R. 3 : 1
0 1+ =202 488 = Ijg, a5 € )s C’or? i <1’ ( € ) > 7

which finally leads to:

R7 . [—j% v’ (g 7 [—ji vt (g2
leselon <0 min (1,50 om0t S
,t 5 :

T2 2 [t —t |i

Using this together with (4.123) and (4.127), we obtain thanks to the Riesz-Thorin theorem that
for any r € [2, 00]:

1—2

R7 5% " vy’ 2

||La,t,t'9”me2 < CO £ — e~ 32 (t+t")r2 Hg”Lﬁ??
v, h 7‘82 |t—t/|4 v, h

Gathering this estimates together with (4.122), and thanks to (4.114), we can properly bound
(4.120) and obtain that:

1B, e
v, h

+34+501—

1
R: hE
TR [/ / |t_t,| (1_l)dtdt . (4.135)

where h(t) = e*%”gﬂdﬂt, .)||Lm;zz. The rest of the proof is identical to [12] (end of Section
5.3.2) so we directly write the bound:

< Col|Pr..r. fol 2 sup

677
C, R ™
HP3/PTEaR£f||LfLZL’h2 < 11777” _ €

1_1n_2 13 , 2 _ 7
(V+l/)p s(1 m)rgz"'p m

12
58(1 m)”PTsaREfOHLQ’

where Cp ., = Co [16(% -1 =2)]” which concludes the proof. W

4.5.2 Proof of the anisotropic Strichartz estimates when v =1/

As in the previous section, we are reduced to study P3f in the case F,,; = 0, but when v = v/
additionnal simplifications arise (described in Proposition 4.4):

e The projectors P3 4 become mutually orthogonal (we recall that in the general case they
are orthogonal to P2) and their norms become 1,

e Frequency truncations are not needed anymore for the eigenvalues (and projectors) in the
case k € {3,4}, and we can consider P, f (instead of PyP,_ r_f in the previous part).

Nevertheless, to prove Proposition 4.8, we will begin as in [9, 11] by frequency localization (we
refer to Section A2 from [9] for the notations related to the Besov spaces, and more generally
to [1] for a complete presentation of the Littlewood-Paley theory). Introducing the complete

truncation operator Aju = (27| D|)u and its horizontal counterpart Afu = o(27%|Dy|)u
. j+1 . .
P2 fllppme < Y IP3ARA fll pyme,
k=—o0
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and

|PsALA; f||Lmez = sup/ / PsARA; f(t, 2)¢(t, v)dxdt
R3

< C|[PsALA; foll 2

=

ek [/ / 1L28 o0t Y s lleB 0201 (279 D))oy (27 M DRDE, |y pddt'|
(4.136)
where ¢; is a function (with values in [0, 1]) supported in the set C" = [cg, Co] (say (co,Co) =

(2,3)) and equal to 1 close to C = [2, 3] (introduced in the first section of the appendix), and for
some g we define the analoguous of the operator L. ;. from the previous section:

(Lkg) (@) = [ et SO0t g 2 H Dl (4137

The heat term is estimated without resorting to Proposition 4.3 thanks to the following fact:
introducing hq(zp) = .7,:1501(|§h|), for any p, ¢ € [1,00] and any function g we have:

IARA, Sl zes

= |ARA; fan, x3)| ey | dog = [ (2R (28]]) a A5 F (o 23) [0 g2y ds
R R? R ( h)
= 1 Ll(]be) . 7 3 Lq(]R ) 3= 1l 71 (R2 ' i P .
< [ (Ilhall 1A, f (., zs)l "y = b @) 185 fll7ra,  (4.138)
R v,

so that (as explained in the previous section, obtaining an anisotropic version of Lemma 2.3 from
[1] is easy as the proof involves convolutions) there exists a constant C' > 0 such that (co = 3/5
as recalled above):

le= 201 277D @7 F DR (', Yl 2 < Nle2 D201 27| DNBE, ) 2
< Qe $UHR2 gt Mpme. (4.139)
With a view to use the Riesz-Thorin theorem, similarly as in the previous section we have:

ILZE Nl 2e L pee < Coe 80HF )62 (4.140)

Introducing

. i 57 B
P, (€, w3) = (2m)! / it 5 (HOITHST R O 0y (2R [6, e, (4.141)
R

and reproducing the arguments from the previous section leads to

(L2 09) @) = CFT (I (€ ws) oy (Fag)(Ens ),

and
ik k
V2 vl e < MK gl

so that (thanks to (4.141)):

. . v 26275
IZZ5 ol 12 e < 2, e < Co2lem 302, (4.142)
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Next, performing the change of variable &3 = 2773, we can write that

I‘?t t’(2 77h7503) - 2]1 7 (77h72 :C3)

where

ik ; v 92 (4! it | )

Ig’ft, (nha 1"3) = (271-)*1 / eng-"]3€7222J(t+t )|77|2+1t ‘T’i (|77|)901( ]7k|77h|)d773, (4143)

v R
which entails that
. Tk
128 oo = 20127 oo (4.144)

In IE +.1/» the frequencies are now truncated as follows: ¢ < || < Cp and o271 < || < Co2k—4,

so that we can reproduce the arguments from the previous section (see also [12]) to the vertical
rescale Ig’t o (Mhs t_Tt/xg) with (7., R.) replaced by (Co, c92¥~7) and obtain that (also using (4.142))
for all |nn| > co2¥7 and w3,

t | <C VCE—Imnl? =% (t+t") 52
r3)| < 0/ — T
T 1+ S a(n)?

so that (we recall that in the present case |n| > ¢o, which is better than in the previous section)
with the same steps as in the previous part (see also Section 5.3.2 and Proposition 6.1 from [12],
which is recalled in the present article as Proposition 4.9), for every 6 € [0, 1]

t—
Tik
|Igt t (77ha

4 1
(<1+| 3)+ ol + 1)) dns,

o , 225 1
” ot t’||L°° < 002J70.16_1(t+t/)°322j min <1, |t€7>

(co2k=7)% ik
7 . g
< co2j(fio_)ue—i<t+t'>czz2ﬂ | et 3 )
co2F=I)=2 t—1t'|=

Remark 4.1 As in the previous section the most difficult is to correctly bound the following
integral, which is done using Proposition 4.9:

VC3=Imml? 1 ¢ 007 . 4 1
_ 7)%m1n 1,( ) .

7 dés = —)<C :
0 1+ g2 Tl =) " (co2" €

Gathering the previous bound for ||Ig’t || with (4.140), thanks to the Riesz-Thorin theorem
we finally obtain that with m > 2 and for any 6 € [0, 1],

) 1=
Cv(iy22% [ ojetaik) €1
2 (e, s < =55 (wm k)ﬁ> Ol
Plugging this into (4.136), we obtain

IPsARA; fll pp 2

< CO|\1P>3A]—f0|\L22(j+%<j*’“>)<%*#>s% —w) sup / / — ) gtat |, (4.146)
veA |t—t’| (1**>
with h(t) = e~ %027t ||y(t, ) HLm 2. Using once more the Hardy-Littlewood theorem, and intro-

ducing k1, 3 > 1 defined as follows (the condition on p comes from here)

1 0 2 1 1 0 2
—=1-=-(1-— —=-——-(1-—
k1 8( m)’ and B 8( m)’
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we obtain that:

1
2 h(t)h(t) T’
[/O /O mdtdt/ < CHhHLh(R) <C /0 e~ 1027 Bt H’l/)”LﬁLT,;zZv

and

. C . , ,
IBSALA Fl oy < — 20 ByA ol aes (- 202 (4 B G-0) (h-F)-3
tHy h

1 [ 2
pr—s(1=5)

< B ByA, fo e d 0B 2 B GRG0 (i E A 0m0) - (g1a)
yp 8V T m

Now, all that remains is to sum for & < j + 1, which is possible if and only if m > 2, and:

. C . ,
1P fll e < B8 |B3A, fol| 2 $0- 227 (3= —F+50-),
tLun VE_g(l_H)

Multiplying by 27¢ and summing over j € Z, we conclude the proof. B

4.6 Proof of theorem 1.5

Let us fix some € > 0. We will use the Friedrich’s scheme introduced in [12]. If D = (V*, H),
projecting over divergence-free vectorfields with the Leray projector P, this system is written as
follows (for n € N, J,, is the Fourier truncation operator on the ball centered at zero and with
radius n):

Dn . Vgt
8D — LD + LPBJ, DI = —J,P | D2 - VDI + 0 + 3. VLD | + J,.G,
D3 . 90,
D2y = Jn (Uoeosc + (Uoe,s = (35,0,0))) = Jn (Uoe,osc + (Uge s = 05,0,0)) -
(4.148)
In order to neutralize the constant term C:', let us introduce the following Stokes-type system:

vQ ~
OE. —LE. +1BE. = — c G,
! Tz < 0 ) - (4.149)

E&|t:0 = UO,E,osc + (U&E,S - :ng 0, 0)

It is easy to prove that if E.(0) € H* for some s € [0, 1+ 0], there exists a unique global solution
satisfying for all ¢ > 0:

t t ~
B0+ [ IVEE.dr < (B0, + [ 166 dr ) F 180 (w150
0 0

Now, we introduce E} = J, E. and F!* = D? — E? which satisfy FE"‘t:O =0 and:
(Er + F) - Vol
0 +0" - Vi(EL + F?)

1
OF" — LE" + —PBJ,F" = —J,P B
c (Em3 4+ F™3) . 950,

+F-VE'+F'-VE" 4+ E'-VF' + E'- VE!

)

(4.151)
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Reproducing the arguments from Section 2.1 we obtain that
d C ~ 2.~ 4
IFE e + ol V72 < V—OIIFE"H%z (IIVEEIIE; +IVE" %, +V5||9s||,31(R)>

+C 1B 12

HY(R)

1 — 1., ~ 4
V—OIIEEIIE% (IVE72 + [IV2"[[72) + (1 + V—Ollvhl\iI%)IIVEslliz + 10|17

(4.152)

andif%§s<%+g (for some 3 > 0)
prll % + 0l F2 5. < 2CIF2 | 3 IVER . + ||F [ A [ + - IVE 1%
+ £|\F"||2- (1+ i|\5h|\2 DIV |12, + (1 + ||E 12 OIVE®
vy € NH* Vg 3 i3 s

— el (

2 IV ) + [ ||VEE|;%+||E3||;%B|ea|zs+g(m]. (4.153)

If we define

Tgn’l = sup{t > 0, vt e [Oat]a HFen(tl)HH% < :_g},

then we have T/! > (0 (we recall that F(0) = 0) and thanks to the previous estimates with
= 1, Theorem 1.2 and (4.150), there exists a constant I = D(Co, d,v, 1/, HUO,a,oscHHé) for all
t< T,

IEZ @2, + 2 / IVE ()2 yd

< Do [wmigp+||vah|igL2+||VEa|;H%+||W|2 P

L2H1+B

(4.154)

All these quantities are independant of n and converge to zero as ¢ goes to zero, so if we define
> 0 such that the right-hand side is bounded by ( ) for all t < T2, then with the same

arguments as in the previous bootstrap, we obtain that Tt > T2 > 0 for all n, and for all
t< T2

t
12Oy + % [ IVER IR, ydr < D (Co.60nt/ U el )

which allows to prove (with classical arguments) existence of a strong solution as described in
Theorem 1.5.

The propagation of the regularity and the blow-up criterion are proved through classical ideas
thanks to the following estimates (which are proved with the very same arguments): for all
s€ 0,44 6] and t € [0,T/],

t
Vo ~ ~
ID(t) 17 + 3/0 IVD:(T) e dr < |1Uo,c,05cllFre + U c.s — Tl + HGHL,}HS}

L1
LS°H?2

C 2 ~h |2 h )2
P {IIVDEIIL%%HVU =, . al (1+% ALl
t t t

2 _ 4 ~
YHrg 10:03,  +6-]1?
o EHL' . Il E”LgH%+B

el

x e . (4.155)

which ends the proof of Theorem 1.5. B
Aknowledgement : The author wishes to thank the anonymous referees for useful sugges-
tions.
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