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New asymptotics for strong solutions of the strongly
stratified Boussinesq system without rotation and for large
ill-prepared initial data

Frédéric Charve*

Abstract

In our previous work dedicated to the strongly stratified Boussinesq system, we obtained
for the first time a limit system (when the froude number € goes to zero) that depends on the
thermal diffusivity v’ (other works obtained a limit system only depending on the visosity
v). To reach those richer asymptotics we had to consider an unusual initial data which is the
sum of a function depending on the full space variable and a function only depending on the
vertical coordinate, and we studied the convergence of the weak Leray-type solutions. In the
present article we extend these results to the strong Fujita-Kato-type solutions. We obtain
far better convergence rates (in €) for ill-prepared initial data with very large oscillating part
of size some negative power of the small parameter e. The main difficulties come from the
anisotropy induced by the presence of x3-depending functions.

MSC: 35Q35, 35Q86, 35B40, 76D50, 76U05.
Keywords: Geophysical incompressible fluids, Strichartz estimates, Besov and Sobolev spaces.

1 Introduction

1.1 Geophysical fluids: Strongly stratified Boussinesq system

The strongly stratified Boussinesq system (without rotation) describes the motion of a geophysical
fluid submitted to the influence of the gravity through the vertical stratification of the density.
In the whole space, this model is written as follows:

8:U. + v. - VU. — LU, + LBU. = L(-V@,,0),

dive. =0, (Se)
Us|t=0 = UO,e-
The unknowns are U. = (v, 0.) = (v},v2,v3,0.), where v. denotes the velocity of the fluid and

0. the scalar potential temperature (linked to the density, temperature and salinity), and ®.,
which is still called the geopotential, and can be decomposed as the sum of the pressure term and
another penalized gradient term that could be seen as an analoguous of the centrifugal force (we
refer to the introductions of [7] and [10] for a more precise presentation of the model).

The diffusion operator L takes into account two heat regularization effects and is defined by

LU, d:ef (vAv., V' AB,),
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where v,1' > 0 respectively denote the kinematic viscosity and thermal diffusivity (both will be
called viscosities in the present article). The last term e~ *BU. only takes into account stratifica-
tion effects and B is defined as the following skewsymmetric matrix:

o O O O
o O
o OO

-1

Remark 1.1 System (S.) is obtained from the Primitive system only considering the Froude
number (introduced by physicists to measure the importance of the stratification effect in the
motion). As the rotating fluids and primitive systems, this model belongs to the family of
variations of the famous Navier-Stokes system showing better behaviour induced by the special
structure brought by their respective penalized terms as € goes to zero. We refer to [10] for
more details about the geophysical fluids models and a survey on results about the rotating fluids
system ([13, 14, 15, 17]) the Primitive system ([2, 3, 7, 9]) and System (S¢) (see [26, 22, 25, 24]).

1.2 Notations

For an R? or R*-valued vector field, we will write f* = (1, f2) and will define f-Vf = S2_ '8, f.
So that for instance we will indifferently write v. - VU, = U, - VU..
We will use the same notations as in [7, 8, 10]: for s € R and T' > 0 we define the spaces:

I = Co (O (RY) N L3 (17 (BY),
B = Cr(B3,(R)) N Ly (B3 *(R)),
endowed with the following norms, where vy = min(v, v')):

def T
QE'% = Hf”i%oHs +VO f() ||f(T)H§'{s+1dT’

def T
B: — ||f||L%°B§,1 + v/ fo 1f(7)]

/]
/]

B;ﬁz dT,

where H*(R3), H? (R3) and B;l(R) respectively denote the inhomogeneous and homogeneous
Sobolev spaces of index s € R and the homogeneous Besov space of indices (s,2,1).

When T = oo we simply write £ or B and the corresponding norms are understood as taken
over Ry in time.

1.3 The limit system

The present article is the companion paper of [10] and focusses on the same question in the
context of strong solutions. Let us recall that in [10], we constructed and studied weak solutions
to System (S.) which converge, as € goes to zero, to a limit truly depending on v/ (this was not
the case in previous papers, see for instance [24]). More precisely, we explained for the first time
how we can formally obtain a limit described by the following two systems:

BT + T - Vot — vAT" = —V, 70,
div 0" = 0, (1.1)

~ho _ >h
Ul = Vg

and

6 — 1020 —
{ate V020 = 0, 12

§|t:O = 505



where )
A== ) A0,0,). (1.3)
i,j=1

This suggests to consider initial data of the form:
Usji=o(2) = Uoc (@) + (0,0,0, 00,0 (x3)),

connected to the previous systems according to:

PoUL (z) — 0P (x), or equivalently PoUp . (z) — (9h(x),0,0),
_ ’ e—0 e—=0 (14)
0o.e(3) — Oo(3),

e—=0

where the projector Py is related to the structure of the limit system and is described in the
following section.

1.4 The Stratified/osc structure

The structure of the formal limit system suggested us to introduce the following operators:

Definition 1.1 (see [10]) For a R*-valued function, we introduce the following quantity, that we
will call its vorticity:

w(f) =0nf*—daf"

From this we define the stratified and oscillating (or oscillatory) parts of f, respectively denoted
as fs and f,s., according to:

_ —00, w(f)
1 1 28p
Vh Ah w(f) alAglw(f)

0 0
and, denoting div 5, f" def O1f' + 022,

VA div g £ Oy divaf!
Oy A7 divy,
fosc:fffS: fi = 2 hfSIV}f (16)
f f4

The following proposition gathers properties of the stratified/oscillating structure which is linked
to the spectral properties of the linearized system.

Proposition 1.1 [10] With the notations from (1.5) and (1.6), there exist two pseudodifferential
operators of order zero P and Q such that for any f,

fS:Qf7 and fosc:Pf'
These operators satisfy:

1. @ = Py and P = Iy — Py (where the operators Py, are the spectral projectors defined in
Proposition 4.4).

2. For any s € R, we have ((Ia — P2) f[P2f) o e = 0= (Bf[P2f) . . (when defined).

3 (Ig—P)f=f<=Pf =0<=w(f)=0.



4. (I —Py)f =0 <= Pof = f < f3 = f* =0anddiv,f = 0 <= there exists a scalar
function ¢ such that f = (—d2¢,0164,0,0) = (Vit$,0,0). Such a vector field is obviously
divergence free (and horizontal divergence-free) and we will say that it is stratified. It also
satisfies f = (f",0,0).

5. If f is divergence-free, so is (I; — Pa) f.

6. BPof =0 (in RY).

7. PoP = PPy = Py and Po(Iy — P) = (Iy — P)P2 = 0 (in particular P2(Vg,0) = 0).

8. If f is a divergence-free vector field, then (we recall that we denote f -V f = Zle fio.f)

W(f V) ==03f - w(f) +0uf° - 05f* = 0af® 05 f' + f - w(f).

9. If f is a stratified vector field, then w(f -V f) = f-w(f).

Remark 1.2 1. As outlined in [10], the previous decomposition is close to the nicer case
v =/ for the Primitive system, in the sense that we have Q = Py, and Py is orthogonal to
P3 and P4 in the general case (but it is only when v = v’ that P3 and P4 are also orthogonal
projectors of norm 1).

2. For a R%-valued function f = (f', f?) = f", we could introduce P} and fs = Phf =
V#Aglw(f) (but with a slight notational abuse, we may also denote fg = Pof and fosc =

f=fs=VpA; tdiv,f.

Now we can completely precise the initial data and limit system that we will consider in this
article:

0 0
0 0
USlt:O(x) = UO,&(:'C) + 0 = UO,E,S(‘T) + UO,E,OSC(‘T) + 0 (17)
50,5(953) 50,5(%)
And we will denote:
vé,e vel h
V2 v2 ) Ve
Upe = 9e and U, = s | = ( c ) = 3
UO,& Vg 95 2]
90,5 05 :

1.5 Reformulation of the systems

The first step in [10] was to rewrite Systems (1.1) and (1.2) and merge them into a more practical
formulation: denoting as IP the orthogonal Leray projector onto divergence-free vectorfields, and

setting = ("0, 5), we obtained that U satisfies:
- o~ o~ ~ ~ ~ va
U +U-VU-LU+1BU=-G-| ' |,
’ (18)
dive =0, '

ij\t:O = (,ﬁ(’)la Oa 50)



where G is defined by (7° has been introduced in (1.3)):

70 OOFATIAT
- ~0 2A—1A—1 .
a=p| " | = 328_38A3A§h S 0" - V). (1.9)
0 0 =1

Moreover, we emphasize that
w(é) =0 =divG and P,G = 0, and roughly G ~ V(3" @ 7") ~ 0" - V,,0". (1.10)

As precised in [10], studying the system satisfied by U, — U will not be possible, because of its
initial data which prevent the use of classical results:

(Ue = U)ji=o(@) = Ubc,ose(@) + (P2Ug(x) = T (2), 0, 00,c (3) — o (3))-

In order to properly justify the construction of weak solutions with such initial data, we needed
in [10] to rewrite System (S;) into a formulation where functions only depending on z3 do not
appear in the initial data anymore. Doing this moved these functions in the transport terms
which required an adaptation of the proof of the classical Leray theorem.

More precisely, in order to neutralize the xs3-only-dependent part, we simply defined the
following function:

0
= ~ K. — V3K, =0
Z. = 8 . where K. solves { 2~ 28T (1.11)
I [t=0 = to.c — bo.
K.
and finally set:
vh — h vl — ot ot
dif ~ > 3 _ 3 _
D.=U.-U-Z.= v = ve =U, — 9 , (1.12)
6. — (0 +K.) 0. — 0. .

where the function 55 def 0+ K < solves:

S
{Qtef V030 =0, (1.13)

06|t:0 = 9075-

The results from [10] were obtained studying the following system satisfied by D. = (Vz, H.):

D. V" o
0D = LD + :BD. = — | D= - VD + 0 +3" - V3D, +G—< 0q>
Dg'a?)ga

divV, =0,
Ds|t:0 = UO,E,osc + (UO,E,S - (,17(})17 07 0)) = UO,E,osc + (U&E’S - ’6(})17 07 0)
(1.14)
Before presenting the results for the weak solutions, we will recall in the next section what we
proved in [10] for the limit system.



1.6 Study of the limit system

Let us begin with System (1.2), which is only a one-dimensional heat equation (we refer for
example to [1], Section 3.4.1, Lemma 5.10 and Proposition 10.3, see also Definition 4.2).

Theorem 1.1 [10] Let s € R. For any b0 € H*(R) (respectively b0 € Bgl(R)) there exists a
unique global solution 6§ of (1.2) and for all t > 0, we have:

161l + V101172 gora < 20007 (1.15)

2
LeoHs

(respectively ||9HZ;>CB-;J + V/”GHL}B;Jf < |60} 35,1') (1.16)

More generally for s € R and p,r € [1, 00|, there exists a constant C' > 0 such that ifgo S B;}T(R)
then for all g € [1, 00]

~ C  ~

101, . ov2 < —=lbollp: - (1.17)
LB, .1 (y/)q T

Remark 1.3 Thanks to this result, the previously defined g, IN(E and 55 are global and satisfy

similar estimates.

On the other hand, we observed in [10] that System (1.1) is very close to the quasi-geostrophic
system (see [2, 3]), and we easily adapted Theorem 1 from [7] and obtained the following theorem
that generalizes the results from [24] as we need less initial regularity:

Theorem 1.2 [10] Let § > 0 and 3} € H=1% a R2-valued vectorfield such that div ol = 0.
Then System (1.1) has a unique global solution " € Ext9 = EON E219 and there exists a
constant C' = C;,, > 0 such that for all t > 0, we have:

h||2

1
2 s +VIVEIE, sy < CoulBIP, o max(L, I )

1 1
< 05,11 maX(1> ||U(}) ”H%+6)2+5 ) (1'18)

Moreover, we can also bound the term G introduced in (1.12): for all s € [0, 1494,

/ IG ()| gedr < Csp max(L, [53]],,305)7 " (1.19)
0

H3+0

1.7 Existence and convergence results for the weak solutions

We can now state the main results from [10]: first the analoguous of the Leray theorem for (1.14)
which provides global weak solutions for any € > 0:

Theorem 1.3 (Ezistence of Leray weak solutions) Let § > 0, Co > 1, o € H2H(R3), 5075 €
L1
B, ¢ (R) (for all € > 0) with:

~h ~
1 <C d 6 .1 <C
I35 14 45(gey S Co and - suplBocll -3 ) < Co

Thanks to Theorems 1.1 and 1.2, 7" and 55 globally exist (for all € > 0) and respectively belong
to EON B2+ and B3,



Moreover there exists a constant Cy,,,» > 0 such that for any fixed ¢ > 0, if Uy . € L*(R?),
then there exists a weak global solution of (1.14) (D.,q.) with D, € E® and q. € E'+L3 (R, L?),
satisfying for all t > 0,

t
ID- (D122 + vo / |V D.(7)|22dr
0

~ 241 2+
< (”UO,E,OSC”%Q + ||U(§L,5’S - U(})l”%Z + Cé,u,u’(c() 5) eC(;‘yyl,/(CO . (120)

The second result in [10] was the convergence result, that rigourously validates as a limit what
we formally obtained:
~ .1
Theorem 1.4 (Convergence) Assume that § > 0, Co > 1, 0y € By 7 oh e Hzt0 (with
~ .1
div oy = 0 or equivalently 0ff = Po0{;) and, for all e > 0, that Uy . € L?, 0y . € B, £ (R) with:

of ) <C
HU(/L)L”H%Jrs(Rg) < Cy, H OHB;% > 0,
suPe> [Uo.ellz2 < Co, and  { SUp> [[0o,c B2 (R) < Co, (1.21)
2,1
h _ ~h - - ,
1Uge,s = Wolle2 =20, 160.c — GOHB‘%GR) — 0.

The global weak solution U, converges to (d",0, 5) (where " and 0 are the global solutions of
Systems (1.1) and (1.2)) in the following sense: if D. = U. — (v",0,0,) (where 0. is the global
solution of (1.13)), then

e the stratified part PoD. = D, g converges to zero: for all g €]2,6],

1De sllzz, g, —2 0,

e the oscillating part (Ig — P3)D. = Dy s converges to zero: for all ¢ €]2,6], there exists
g1 = e1(v,v/,q) > 0 and, for all t > 0, a constant Dy = Dy 5,,,7.cy,q Such that for all

e €]0,¢e4],

: 6 2\2
@ ‘ der Min(2 —1,1—2)
1Dz oscllp2pe < Dic'e, with  K(q) T
q

(1.22)

. . . K(q)
Moreover, when v = v/, the previous estimates can be upgraded into ||D5,OSCHL3LQ < Dye5aa

(now valid for all e > 0) and we can obtain global-in-time estimates with better convergence rate:
there exists a constant C' = C, 5¢c, > 0 such that, for any € > 0,

< Ceis

eosellz g, 2rg, <

1D

1.8 Existence and convergence results for the strong solutions

We are now able to state the main results of the present article. First, the general existence result
which is the analoguous of the famous Fujita-Kato theorem (for & > 0 fixed):



Theorem 1.5 (Eristence of local Fujita-Kato strong solutions) Let ¢ > 0, § €]0,1], 2% €
H%+5(R3) and 50)5 c B;%(R) N B 2“3 (R) (for some fixed 8 > 0). For any Uy, = Upe,s +
Uo,e,0sc € H%, there exists a unique local solution D, of (1.14) with lifespan T > 0 such that
for any T < T}, D, € Eé = E% N ET% Moreover, the following properties are true:

e Regularity propagation: if in addition Uy . € H* for some s € [0, 3 +0] then for any T < T7,
D. € E9 N E3..

e Blow-up criterion: fOT: ||VD€(’T)H§{ld’T < oo =T =o0.
2

Remark 1.4 1. The proof of this theorem is postponed to Section 4.6.

2. We emphasize that we only state a local existence result, with an unsusual low frequency
. 1 . . ..
assumption (Uy. € L? N H2 ) which is needed to treat the additional term D3 - 950.. We
will only need the previous blow-up criterion to prove global existence in the main results
of the article.
3. The usual domain for the propagation of regularity is s €] — %, %[, in our case the constraint

comes from the regularity of G.

Let us now state a simplified version of the main result of the present article.

Theorem 1.6 (Global existence and convergence) For all v, 1/ ,Co >0, 5 6]0 31,04 € Hz2H(R3)

and (for any € > 0) Up e = Upe,s + Upc0sc € Hz 00 c € 32 1 (R) N BQ’1 (R) such that for some
ag >0,

~h
17135 gy < Co 011 gy 145y < €
10—l e <Cozo, 0 =0 0 (1.23)
06,8 ~ Vollgg+s = 205, 160,c — OHB;% )ﬂBQ%H(R) 0
there exist g, K, 7, ¢,Dg,q > 0 such that if
l —
”UO,E’OSC”L‘I + |||D|2U0’6,OSC||L‘1 + HUO’E,OSCHH%fchmH%H <Coe™7, (1'24)

then for any ¢ €]0,¢&¢], there exists a unique global strong solution U, of (S.) which satisfies
U. - (3,0,0.) € E°NE27% and

|U. = (3,0,6:)|| 21 < Doe’

Asin [3, 7, 8, 9] it is usual that we are not able to obtain convergence results without ”removing”
some waves. More precisely, due to the presence of the initial oscillating part and of G as an
independant of ¢ external force, any frontal approach with D, is blocked as we could only obtain
majorations by quantities independant of . We first define the following waves W, and WZ1
Taylored to "eat” the blocking terms: if W, is the global solution of the following system

_ 1 -G
{atws LW. + LPBW. = G, (1.25)

Wa|t:0 = UO,E,DSCJ

we also define its frequency truncation on the set C,_ g_, denoted WX = P, g W, where the
general set C,.  is defined in (4.102), r. = ™ and R. = ¢~ (the values of m, M will be specified



in the statements of the results) and the frequency truncation operator P,_ g_ is defined in (4.104)
so that WZ obviously satisfies:

{atWET — WX + 1PBW! =P, 5.G, (1.26)

Ws|t:0 = PTE,RE UO,E,osca
We are now able to give a more precise statement of the main results of this article.
Theorem 1.7 (Global existence and convergence, general case) For all v,1v',Cy > 0, § €]0,1]
n €]0,4] with né < %, oh € Hzt9(R3) and (for any & > 0) Up. = Upes + Upcose € H?,
- .3 .1
fo.e € By 1 (R)N szfM(R) satisfying (1.23) for some ag > 0, there exist 9, Dg > 0 (depending

on v, ,Cy,0,n) such that for any € €]0,¢eq], setting = ﬁ(l —n) and ¢ = 1%_5, if we have

1 _
1U0,¢,0sclla + I1D12Uo,e,0scllLa + [|[Uo,e0sel < Coe™7, (1.27)

H2AREH
then there exists a unique global strong solution U, of (S¢): the lifespan of D, (given by Theorem
1.5) satisfies T* = +o0 and D, € E°N Ez+1% Moreover, if we define 0. = D, — WZI where WX

is defined in (1.26) for (m, M) =4 (525, 1027), then

i 0 _(1_ _1
||55||EvoﬁE%+ms < Dogmm(ao,?,wg(l ) 5357)

If in addition there exists ¢ > 0 such that

||U0,a,osc|| S (COE_’Ya

H%—céﬂH%i»zi
then we have:

IDe|lp2re = ||Uz — (3,0, 0.)|| p2re < Doe™n(@0:5ios (1= 5353)

When v = v/ it is usual that some simplifications improve the results, as listed below.

Theorem 1.8 (Global existence and convergence, case v = ') Let Co > 0, 6 €]0, %], e

~ ._3 L1
Hzt9(R3) and Uy = Upes + Upcose € H2, O € B, (R)N B27f+6(R) satisfying (1.23) for
some aqg > 0.

1. There exist mg,eq > 0 such that if for some ¢ > 0 (as small as we want)

_9
HUO,s,oscHHéfcémH%+5 < mge” 2,

then for any e €]0, ], there exists a global solution of (S;) and D, € E'NE3.

2. If there exists a function m(e) = 0 such that for some ¢ > 0
E—r

”UO,E’OSCH = < m(g)g_%7

H3-nE3+S
then if we define . = D. — W, (with W, solving (1.25)), there exists Dy = Dy (v, Cy,d) > 0
such that:

[0 || 1 < D max (€a°,6g,m(s)) — 0.

E°NE2 e—0



3. Finally, if for some ¢ > 0 and v €]0, $[ we have

||UO,£,osc|| < (COE_’Ya

HéfcamH%Jﬂs >~
then

i 5
||65||E'00E%+%—»y < Dpe™in(@o,3-7)

and for any k €]0,1[ (as close to 1 as we wish), there exists Dy = Dy (v, Co, d, k) > 0 such
that:
- - s_
1Dl = U — (7,0,8.)|| 21 < Doe™n (a0:k(E—),

The article is structured as follows: in the next section we prove Theorem 1.7, we first obtain
apriori estimates then explain the bootstrap method. Section 3 is devoted to the proof of Theorem
1.8, which features better results as v = /. We postponed to the appendix the proof of the
anisotropic Strichartz estimates (which require a technical result from [10]) and of Theorem
1.5 (which unusually relies on a priori estimates in inhomogeneous Sobolev spaces, which are a
particular case of the ones obtained Sections 2 and 3).

2 Global existence and convergence of Strong solutions in
the general case: proof of Theorem 1.7

The aim of this section is to prove the global existence of strong solutions when the Froude
number ¢ is small enough, and the announced convergence rates in the general case (when we do
not assume that v = v/).

2.1 A priori estimates in the general case

Let us begin with the system satisfied by 6. = D, — WZ1:

11

6t58 — L(55 + %PB(SE = ZFM

£ (2.28)
65\t:0 - (Id - 737“571%5)(]076,050 + (U&E,S - ﬁh,0,0),
where we define:
VPG Ve, B PG -vih,0,0), B P@E"- V),
def —P(5. - va) Y _pwr. v5 ), Fo™ —p@h.v,wD),
def P(WT - Vi,0,0), Fs -pwT.vwT), (2.29)
Fy dif —P(0,0,0,4% - 8395), Fio ™ —P(0,0,0,wT3 . 850.),
™ (1d - P, 5)G.

Most of these terms will be estimated thanks to the following usual Sobolev product laws as in
[7, 8, 9].

Proposition 2.1 There exists a constant C' > 0 such that for any si,S2 < % with s1 + so > 0
and any u € H*'(R3), v € H*>(R3), then uv € H*'*52~2(R3) and we have:

||uv||HS1+Sz*§(]R3) = CHu”Hgl(]R:;)Hv||H§2(R3)

10



As in [10] the terms involving a product with 6. will require special attention: we will need
not only the following modified Sobolev product laws (that can be proved similarly as their
bidimensional counterpart from [13] or [18] involving products with functions depending on )
but also anisotropic Strichartz estimates (that we prove in the appendix).

Proposition 2.2 There exists a constant C' > 0 such that for any si,ss < % with s1 + 892 > 0
and any u € H* (R3), v € H**(R), then wv € H**+%>~3(R3) and we have:

||UU||H51+527% (R3) < Cllul| g (R3) ||U||HS2(R)-

2.1.1 Estimates in H*

Computing the innerproduct in H* (s will be later fixed as 1 or 1 +n6) of (2.28) with 4. we

obtain (recall that o = min(v,v")):

1d 11
5 8O + Vo O, < S (Flo) .
j=1

Using successively the classical Sobolev product laws for (s, s2) € {(3,5),(s,3), (1,5 — )}, we

obtain:
|(F1]0c) gz

<0 - Vol e 10e | o < Ol 3 1V (2.30)

|(F210e) e | < 102 - V0" || rama el prosr < Ol VD" ] 3 IV

1
2

< D512, + SRR 16R,. (2.31)
12 H?2

=18 He
|(F3182) o] < 110" - Vabell gama 8ell gross < CIT" g I VRl o3 V6
1 SO
< ClTM g1 1V0el oy V0l e < CUMIZ  IVE I OO ey 1V

1 L 1 3 140 C ~] ~]
< CITN2 L IV L 10:05, 19015, < 2290, + 1012 4 9" 2 4 1001 (2:32)
0

R ¥

In the last estimate, we also used twice interpolation for Sobolev spaces, and the Young inequality
for (p,q) = (4, %) We will estimate the next three terms (involving Fy, Fs and Fg) reproducing
what we did in [9] (see Section (2.2)), thanks to the Sobolev injections:

|(Fil62) o] < 110 - VW | 2llcll oo < ClOcll 2o VW [ all6el oo < ClOel pra IVWE [ a1 ] g

Thanks once more to interpolation (1 = (1—a)s+a(s+1) witha=1—s,and 2s = (1—a/)s+
o/ (s + 1) with o/ = s, we will precise later that s € {5, 3 +76}), we obtain:

140 C

((Falde) o < Ol VW Mol VOl e < IVl + IV IE 10 (2:33)

Similarly (but interpolating through 2 = (1—a)s+a(s+1) with o = 3 —s and s € {3, 3 +1d}):
(E5162) gre | < IWE - Vol 210l grae < CIWE Nl zol10c ] 3 1021 e

1 3 v C
< CIW o017 1V 7y < T IVOllZ + S5 IWE Lo ol (234)
0

11



Thanks to the Young inequality with (%, %_s, 2),

|(F8|§E)Hs

< |wr-vwr ||L2H55HH25 < CllSMggear (IW ol ) I9W T s

C =
— W15
0

2|V 3. +

L+ C|VWE2.. (2.35)

*18

The next terms can be estimated in an improved way compared to the methods from [9] as, on
one hand, v" and G are more regular, and, on the other hand, we can ”pay” on 0 what we
need for Uy osc. More precisely, thanks to Theorem 1.2, by interpolation, we have that for all
s € [O,%Jré] and for all g > 2,

~h L
5, o2 < o maax(L, [T, p0)
andas%—l—&—i—%:%(:)q: %,Weobtainthat:
- ~ a
0" 0y 125 g3 < Cowmax(L [5G 1.5)" 20 (2.36)

Now, thanks to the Sobolev injection HI(R3) — L5(R3), interpolation, and using once more the
Young inequality with (2 2):

)1 s?

1 ST _
|(Fslde) gro | < 10" - VaW 210 grae < CUR" 2L IVO" 12 L IV (22 102"

Fs+1
1 _ L
< Cllol3pes (IVT" 12 4 0135 ) (15712, VWV 15

1% 2
< = 3
< Vol +

_1
O 0 + Cl g VW [2s. (2:37)

Yo
Remark 2.1 Observe that when s = 1 +nd with n €]0, 1], then = € [2, {25] and we can use
(2.36).
Similarly,

|(F710e) g7 | < W - V|| 2ll6c | grae < CUW I e VD" ] 3 100720

el frs+1

§C||5s||§'{s+1 IV 12 107" ) (V12 4 IWZ e
H?2 H?2

2|V 3. +

1
<15 - vhll;‘f 8ell3y. + CIVT" | 3 IWE |26 (2:38)
0

We easily obtain that:

|(Fu1[8) . < [1(1d = Pr. 1. )Gl

Ocll g7s
1 ~ 1
< ldd=Pr r )Gl o + SIUTd = Pr R 7)Gl -

8%, (2:39)

and we are left with the new terms involving gs(xg). Let us begin with Fig: introducing the
following anisotropic norms (with the classical adaptations for infinite exponents),

11225 " WA loripll ey = ([ ([ 17amaaitan) am )" o)
R R2

12



we have for some a € [0, 1] (to be precised below):

[(Fiold) | < IWE - 0502 2 162/l rae < CUWE | 1050 2 ey 1057 10 3
< Clocl3y.n (10 ||H1(R)||5 [ ) (081550 oy IV 2
o
< VIR, + — Ol 18- By + CUBLI % oy IWT 2 s (241)

Vo
Remark 2.2 We emphasize that in [13], the anisotropic norms were of the form || f||pa.» .

As we aim for the best possible convergence rate, we will use below the Strichartz estimates for
HWETHLSLOQ},z which will require us to estimate (thanks to (1.17)):

0. <1621 i <_—C 0 ‘e
161l 1= S < N16e]l 21z BL® S e || OeHBZI“’

(2.42)
1. L e S < 6. I, 50 L@ = Wll OaII B

~ L1
So, in addition to the assumption . € B, {, we will need:
9075 S B271 N B271 .

As we wish to make the least assumptions possible on 58, we will simply choose a so that the
previous Besov exponents are equal, that is o = ﬁ. With this choice the additional assumptions

~ ~ c o3
o3
on f . reduce to 0y . € B, * as:

~ c -~
HGEHL7§4S H1(R) < WHGO,E”B;:%7 (2.43)
and
8 ~ _6_
(Fuolse) ] < LI 4~ (LT I8 + OB W s (240)
. ,

The last term is bounded thanks to the modified Sobolev product laws from Proposition 2.2.
Introducing, for some 8 €]0, [ (which can be considered as small as we need, and will be precised
in Remark 2.4) (s1,82) = ( — B,8 — 14 ), and roughly bounding the following homogeneous
Sobolev norm with an inhomogeneous one according to ||65||H%_ﬁ < H<55||H%_ﬁ < |I0cls, we

obtain that when s > %:

|(Fold2) gre | < 1102 - D30z | gro—1 10 | o
< OO - 19502 ro 145y 18l grovs < C10c a2+ | 902 ||H~—1+B rll0cll =+
Vo
< IVl + - ||9 5 ) 197 (2:45)
When s = %, we introduce B1,82 > 0 with 8 = 1 + 2 < 1 and use Proposition 2.2 with

(s1,82) = (% — Ba, —% + B1 + Bo):

|(Fol62) ;3| < 1162 0502 aa, 1021150,
< Ul g0 10502y 10 g 102 30 < N ||H2||age [P (A
Vo 2 02 2
< 2V + V—OnegnH%w(R l6]2 4. (2.46)

13



Remark 2.3 As in [10], this term requires special attention and, in the present article, is dealt
thanks to the low frequency assumptions.

Collecting (2.30) to (2.39), with (2.44) and (2.45), we obtain that for all t < T,
1d

- 2 Yo 2 < N 2 g 2
50 + UL, < OISl 98I, + S 1ol

0ol ) + 2 3

c 2 1 ~h |2 ~h |2 T2 1 T4
o0l ((1+ VT]QIIU 15, DIV s + VW s + 73HW5 Iz

= 1 ~h TS == 5
+wmms+?AWWW@;+m€zﬁ+os;®0
vy

+C LA+ R DIV s + V0" |, 3 W (176

(2.47)

~ _6_ 1 ~
0 G IWE IR s+ 51T = Pr )Gl

2.1.2 Estimates in L?

As explained in the previous section, dealing with Fy required additional low frequency assump-
tions, therefore we also need energy estimates in L?. Computing the innerproduct in L? of (2.28)
with 0., we similarly obtain that:

1d

11
5o IO + w0l V6 (0) 32 < SO (Fil5)e.
j=1

The complete or horizontal divergence-free conditions imply that
(F1|0c) 2 = (F3|0c) 2 = (F5lde)r2 =0
The next three terms are dealt with similar arguments as previously:
(Flde) 2| < [16e - VO[22 (16222 < Cl0c| 2o VD" || o102 | 2

~ 1%} C ~
< CloN i IV [y llocllze < V072 + ;OIIVthIi.I% 182]1725 (2:48)

(Faloe) 2| < 110 - VW | 2|8l 2 < B2 IVO:]F2 + S IVWE (171106172

(2.49)
[(Fol0) 2| < [[0" - VaWl |12 10cll 2 < CIIVW ([T + Cl[0" (|3, 110172

The next term is estimated differently (in order to minimize the assumptions on U ¢ osc), thanks
to the Young inequality with indices (4,4, 2):

|(Fr]82) 2] < WX lo [V L2162 120 < CIWE (26l VO" || 2106 | 1

1 1 1 1 1 1
< CIW 261 V8" [ 22 181172 1V8: N1 22 < ClUVOEN 22 (10172 1V" 1 22) (V8" |22 W || 2e)

1Z0) C ~ 1 ~
< g IVoellz: + ;OllésllizHVvhlliz + S IVO |2 WXl (2.50)

The following term also requires special attention, because if we use the same arguments as for
Fs 46, we end-up with ||WZ|| 1216 which, in the case v = v/, would require additionnal assumptions
on ||U0757036||H%' To avoid this, for r1,7r9 > 2 such that % + % = %, let us write:

|(Fs[de) 2| < CIIWE

: |

VW

|6l < CIWE

: |

im +CIVW]|

162125 (2.51)

2
L2

LTl L2

14



As we will see later, estimating ||[WZX|| 2z~ and |[VWZI|| 21~ in the case v = v/ will make us
deal with the norm of Up ¢ osc in the spaces H?* and H?? where:

3
01 5 7"1+ 1(2 7“1) an op] 5 + 0o )s
with 6 5 €]0,1]. Using % + % = %, we have o9 = %, and the fewest assumptions are made

when we choose:
(3+62)(1+6y)

2(6 4061 +602)

This function (of (61,602) € [0,1]?) reaches its maximum 3 when #; = 6 = 1 which corresponds
to (r1,72) = (8, %) so that we finally get the estimates:

01 = 09 =

|(Fs]02) 22| < CIWI s + CIVWIE 5 1617 (2.52)

Obviously
1 ~ 1 ~
|(Fu110) 2 < 5lI(Td = P r)Gllz + S1G w2 1017z, (2.53)

and we are left with the last two terms, involving 55. The first one is bounded like in the proof of
Proposition 3.1 in [10] using the Minkowski and Young estimates (twice for (3,4)), the 1D-Sobolev

injection H3 (R) < L*(R) and interpolation:

(Flsze < [ ([ 16:Gona)Ploadian)es ) don < Clowliage) [ 1D,y o don
R2 R R2

H1(R)

~ 3 1 ~ 3 1
SO0l gy | N0e(@ny M 72y 102 (@hs 1 gy @ < CllOel 1y 106 [ 72 (s 1930611 72 s
® Jon ®) ®) ®) (®3) (29)
c

q 3 3 Yo 2
< Cll0ell grr(ry 10 172 Ve[ 72 < §||V<5s||L2 +3
)

~ 4
1810 g 10:132- (2.54)

As for the Hs-estimates, the last term will require adjustment in order to minimize the assump-
tions on .. For some o > 0 (to be precised later):

|(Fuol62) 2] < WX - 050z | 21|22 < CUWZ | 2 1058z | 2oy 19 2
< C (10N oz ) (180 gy IV )
> 2(l—« > 12a
< CJ0 N3 N0 + CONI% o W 2o (2:55)

H(R) LS

As we aim for the best convergence rate, we will bound ||WET||L8LOC},2 which, similarly to (2.42),

will require a control on:

1011 20— 1y < EHQO’EHB; o 256)
~ C ~ .
HQEHLSTQHl(R) < (y,)% HGO,EHB;ﬁ'

The best choice is when both regularity indices are equal, that is when o = %, so that we finally

obtain:

~ 8 ~ 6
|(F10lde) 2] < CHeaHgl(R)ll(klliz + Cl0cll 7y g W]

- (2.57)

2 2
00,2 -
Lok
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Gathering (2.48) to (2.50), (2.52) to (2.54) and (2.57), we obtain that for all ¢ < T.*:

1d Vo 1 ~
2 1% 172+ — ||V5a||2L2 < C||6L(|7- <V0(||Wh||2; + VWX |7s)
+(1+ )HVﬂhlle + VW s + IGllz= + 7 |I6’a||Hl(]R + 116 IIHl(R>
v
CUIVWEZs + V0" [ L2 WX 126 + (W |35 + 16 IIIMR IIWTIILoo >
+l(Id =Py, 5,)GlL2 | (258)
2.1.3 Estimates in H*
We recall that for any s €]0,1] and any f € H*(R3),
1 _
§(||f||2L2 A1) <227 AT + 1A 1% < NFNe < AT + 11F 1. (2.59)
Let us introduce
T dif * / / Vo
Lo sup (e € 0,721/ 0 € 0,0, 1600 < 1 (2.60)

As 6.(0) goes to zero when ¢ — 0 (we refer to (2.70) for details), we are sure that T, o > 0 if
e > 0 is small enough so that, gathering (2.47) and (2.58) we obtain that for all 8 €]0, 1[ and all
t S Ts,Qa

d v
18N + 162120 + 2 OVAN s + IVEI2) < Conrs (103K +T@), (261)
where
K({t)=(01+ thH2 )IIV'ﬁhH2 + V" I7. + HWhll1 G2 + 1G] o + IVWE |35

+ W76 + IIWETH TV s + 16211 7.7 - ot 1621y + HHEHEI](R) + H9e\|,§1(R)
(2.62)

and
J(t) = A+ R DIVWENZs + (V"] + IV |2 [WEIZs + IWE NI

(10157, + 1611

Tty 10l e IWT 2 s+ (1 = Pr g )Gllze + (1d = Pr )Gl (2:63)

Thanks to the Gronwall lemma, and using once more (2.59), we obtain that for all ¢t < T} o,

5o+ 2 [ 190

t
< (Hwniﬁ5a<o>2-s+0w«s / J(t')dt’) et Jo KT (2.64)
0
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Using Theorems 1.1 and 1.2 together with the assumptions on the initial data, we can bound J
and K as follows:

/ K < (U4 72 IVF I,y + 195 e+ 198

B

.1
— 1
t H>2

UGy e + Gl g + IVWE 220 + IWE [ o + IWT ||f;sm VW,
~ % ~ 9 ~ 4

—1s . 3 ?

+ HeaHLﬁm(R) 0N ey W0y 16 173 e

1 1
< (24 G5, CoT¥)C5, T 4+ (C5,CoT )T
8
+ HHO 6| 7_g
(R) B214(R)

2
VW L2 ps + Wl o +||W5T||;§ L TIvw, i
t

T+ Mol gy + 10l

4
3
B im By,

+Curs <||9o A7,

Hole

L2L3

+vwl?

Ty (269)

< Do+ |V HsTHzL?L3 3 ||”5T||i§L6 - W 1_152
‘ Ll s
where Dy = Dy (v, v/, Cy, §, ). Similarly,

t
/0 J(#)dt < (L4 110" | o g DIVWI N1 + IV oy + IV 2z 22) W 124 16

L2H2
+ WX 2 ps + 1(1d = Pro m)Gll s 2 + | (Id = Pre 5 )Gl 1 g1
rRikess Rk T2
FWONT S el Ty IV s e
Lt — SHl(]R) Lt7 HI(R) t v, h
<{Ud =Py g )GllLirz + [[(Id = Pr. r. )Gl 11 g5
+ Do (IVWZ Iy + IWE 120+ IWE 3o+ IWE 2 2] - (2:66)

Remark 2.4 Thanks to interpolation, the fact that ||00 8H < Cy allowed us to

Twrns; 4*5(1&)
properly bound every norm involving 0., including the norm H9075|

ot B_1 for any 8 > 0 as
By 1" (R)
small as we need (s + 8 —1<s— % when 3 < %): we simply choose /3 €]0, ﬂ

This leads to the following estimates (we recall that we will choose s = % + nd): there exists
Dy = Dy(v, 1/, Cy, d, s) such that for all ¢ < T 5,

14 t ~
16l + 2 / V8¢ %.dt’ < [n(fdPre,m)Uo,s,oscimsHl(IdPTE,RJGHLHLWﬂ

#1085 = T + Do (IVWT 12 po + IWT 12 + W I3 e + IW T2 2)]

2
xexp{mo(unvwﬂﬁﬂﬁ||W§|‘zgm+||WZ||;;25L VW2, g )}, (2.67)

and all that remains is then to bound the frequency truncations and use the Strichartz estimates
for all the other terms.
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2.2 Estimates for the frenquency truncations

The aim of this section is to prove the following result.

Proposition 2.3 There exists Cs,..c, > such that:
1(Zd =Py, ) Voonellar e < Comanc (EQ(MW-@-W) + 52<m6-m<%+v>-w>) L (268)

and
[(Id = Pr.,r. )Gl L1 (L2nme) < Comuco (€ ( Mo(=n) 4 B -MQ3 H)) , (2.69)

Remark 2.5 In particular, the initial data satisfies
16:(0)I1%, 3 < Comunc (Ezag L 2(ms0-m-) +52(m5_m<;+n>-7))_ (2.70)

Proof: we use here the methods from [7] and as described in [10], contrary to the QG /oscillating
structure, here we have PyUj ¢ osc = 0 = PoG which simplifies a little the computations.

D) DI, |Dil
(7 = Pr ool <2 (10 = XCE) Ul + IR V0l )
€

The first part is easily bounded thanks to Plancherel and the Bienaymé-Tchebychev estimates
(we recall that s = £ 4 né for some 7 €]0,1[):

D
(1 x(2) U el < € / 2 U erone(€) P

€

<C )" 17200 e ()2E <~ U el s (2:71)
> |§|Z% RE 0,e,0sc >~ R25(1 m) 0,e,0scl| 1+5, .

while the second one is dealt thanks to Lemma 4.2 introducing g = % €, 2[:

DI, 1Dl |DI\ Dl

- U osc s — D +n6 U osc
XX, ) Wocosell e = NP (XS o oselln
D D 1_1 1
< RP|Ix <'R'>x<' h'>|D| Une.osellze < RY(Re(2r2)*) s~ * || DI* Vo c oscll o

e 1
< GRS RID B Vo oncllia (272)
Similarly the L2-norms are bounded according to:
| D] 2 Cs

H( (Ri))UO,E,OSCHLﬂ < W”U(J,aoscni{%wv
154

(2.73)

DI, Dl

s
H ( ) (T)UO,E,OSCHLQ < CJR&g TSHUO,E,OSCHL‘U
so that we can finally write that:

||(Id - ’PTS,RE)UO,&OSCH%Q + ||(Id - PTE’RE)UO@OSCH?'IS

1 1
< 05777 (R25(1—77)||U0,6,OSC”;§+6 + Rg(1+2n)r55(|||D|2U0,€,OSC||%4 + |U07E,OSC|%4)> ’ (2~74)
€

18



which proves the first point. The truncated external force is also split into:

D]

- D Dl ~
1Ud~Pr )8y < 1(1d X2l + (D

Xy

and the first term is estimated similarly as before:

DI\ & Csm Convc
R ))GHLHF = 5(1 n)H ”L}H%“ < wa (2.75)

€

1(7d = x(

The second term is also bounded as in [7], in a simpler way than the corresponding part in the
initial data (we use specifically (1.10) and Sobolev injections):

-

D[, |Du| = D[, |Dy . T
2D = IR Gluse < Re(Re(2r ) THG

1 1 1 2
< CRZTTOrE| . v, <CR:"r2 /\rh HL6||wh(T)||L2dT

Lin?
245 4 h z
< CRZ"'r3 ||V’U ||L2L2 < CJV(CORg re. (2.76)

Similarly, the L?-norms are bounded as follows:

ID|\\ ~ Csu.cq
[(1d = x(57))Gllpipe < —2=2,

R. RIT
Dy,
-

~ 1 1
)GllLize < CsucoRETE,
€

(2.77)
D]

R.

X (=)x(

so that

- - 1
I(Id = Pr. 5. )Gl L1 gge + 1(Zd = Pr. r)Gllrir2 < Comuco (R‘S(l”)
€

TR, é) . (2.78)
which ends the proof of the second point. H

2.3 Strichartz estimates

Thanks to the Strichartz estimates proved in the appendix, we are able to bound in (2.67) each
term featuring WZ', as collected in the following proposition.

Proposition 2.4 There exists a constant Dy = Dy (v, ', Cy,d,m) > 0 such that for any t < T-:

. _ 5 _ 1 1
e VW pzps + e 9 [[W | pao + €776 (reRe)® WS | L2 ps

FVWT|| , s e |VWT

3 1
1218 eIl (W | s o2
Lt " Le ’
R6 1 1
< Dor—;gﬁﬂ = Dyeaz 7~ (EM+Tm) (9 79)

€

Proof: the result is a consequence of Propositions 4.5 and 4.7 (only for the last term). Choosing
(d,p,7m,q) = (1,2,3,2) we can write that (thanks to Theorem 1.2, Lemma 4.2, Propositions 4.1,

19



4.2, and 4.5) there exists a constant C = C, ,» and a constant C(Co, v, ) > 0 such that:

R
VW Iz e < IVWE |2y, < IVW lIpapg, <€

6

524 <||’PT€1R€UO7E7OSC||H1 + ||PT67REG||L1H1)

|
[UFS

L =
<C %1 ex R (”PTE,REUO € OSCH 3+ + ”,PTE,REGHDH%M)
r
3 -
Rz 1 _
< C——¢2 (Coe 7 + C(Co,v,0)) . (2.80)
red

Choosing (d,p,r,q) = (0,4,6,2) and using in addition the Bienaymé-Tchebychev estimates, we

obtain:

R&
5

35
6

-

1
”WETHLfLﬁ < ”VWZHZ§332 <C g1z (HPTg,R UOeosc||L2 + “PTE,R G||L1L2)
’ T
N €
3

R 1/ 1 ~
<0 e (7"8 : ||’P7’51R5UO,€’OSC||H% + ||PTE,REG||L1L2)

35
7l
Re%l 1
< CO—5e12 (Coe™ + C(Co,v,08)) . (2.81)
re

Taking (d,p,r,q) € {(0,2,8,2),(1,2, %,2)7 (0, %876,2)}, with the same arguments, we end-up
with (we recall that s = 1 + né):

RE 3 R6 1 3
33 e 3 _
||W ||L2L8<Cuu’5(co 57 €32 7§D0—771532 7,
’/‘58 Te (’I"ERE)S
385
RS 4 — RS 3
”vwsTH 2 <Cuusco—3—€32 T < Dyg—=e3277,
L2rh ED 7
Te €
Kkl 6
R i
| Scl/u/é(co 1o 812 7<D07€ 277
6 50, FE
Te €

term, wich requires that nd < 1 5 (we recall that we already ask n < < 2)

The anisotropic term is dealt with the same arguments but using Proposition 4.7 and for m = oo,
we obtain that:

RS RS 1 .
T 1_
||W€ ||L§Loo,2 S CV,V’,(?,CO 55 58 - < ]D)Offgs RO |
v,h x ’]"
Te € 7"

2.4 Bootstrap and convergence

We are now able to finish the bootstrap argument. Gathering the results from the previous
two sections into (2.67), uniformly denoting from line to line as Dy a constant depending on
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(v,v',Cy,d,n), we obtain that for all ¢ < T, o (where T} 5 is defined in (2.60)),

t
H&um;4l;/|W@ammdﬂgem{mdl+u+eémﬁ+@%Eg4 @%E)lﬁﬂ}
0

g200 4 2(MS(A—m)=7y) 4 2(md—Ms(5+m)—v) 4 Mé(1—n) | B —M(3+9)

c® £16
_— )E2
(TeRs)i r%

+D%éﬁ+£%+ (2.82)

where we have introduced the small quantity E. = £32 7~ (6M+7m) - Thanks to Remark 2.6 we
have 4 < = 2 1575 < 12, and if we ask that:

1
53—~ (6M +7m) >0, (2.83)

then we are sure that if ¢ > 0 is small enough, E. < 1 and 1 + (1 + e38)E2 + (5%E6)4 +
4
(5% EE) 17210 < 5, which implies that for all t < T o:

t
I6c(6) e + %2 [ IVB et < Doe™ |20 o 2(450m=1) o 2mi-atit o)
0

4 eMo(=n) | B-M(3+8) 4 d 4 Ei(%JrM—m) 4 et6—3

Tl (2.84)
If we observe that
114 pf— > L 1
{422 1mLﬂw = m<radm-M< (2.83)
6~ 2 = 8’ 3 12
then for all ¢ < T o,
t
14
10O + %5 [ 1080t < Dy,
where
def . 1 1) m 1 1) 1
N(e) & M&(1 —n) —~,mé — M6(= — M=l —1),— = M(=+ =), —
© “ min (ao, (1 =) = 7,mb = M3(5 +n) =7, M5 (1 =), &~ M5 +5), o
(2.85)

Using that § €]0,1], n < 3, and asking that v < M$(1 — n), we obtain that:

1
29

(1 - 77)7 (m - 7M)67

1)
(E) min <a0, 5 6 y 9%

3 m—>5M 1
5 .

Choosing M = 7 the previous estimates turns into:

mé 3 1 mé m
N(g) > mi 1-— 6, —,— | > mi —(1 — — .
(€ > min (a0, T30~ ) Job. g5 5 ) > min (a0, T30 - ). 55
With these choices for M and -, we also have

1 97 1
< s 6M 4T << = — (2.83
= 959 HTm 4y < pm < o5 = (283),
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So that, choosing (m, M,v) = (flg, ﬁ, 31‘%(1 —n)),ifnd < % and n < %, we finally obtain that
for all t < T o,

t
||5€(t)||§—15+%/ Hvae(t/)”?_lsdt/SDOEQmin(QOaﬁ(l—n)vgsﬁ).
0

Assuming that T, o < T, if ¢ > 0 is so small that Doezmin@"’ﬁ(l_")’ﬁ) < (#%)? then the

previous estimates implies that in particular [|0c (7% 2)||zs < g& which contradicts the definition

of T. 2 (see (2.60)). We have proved by contradiction that T, o = T and from the previous
estimates,

T
/ IV6(¢) [3.dt’ < oo,
0

which entails, by the usual blow-up criterion, that T = co. Moreover we have obtained that for
allt >0,

t
1Y% H ) _ 1
||65(t)|‘2%+n5 + 20/0 Hvée(t/)||i1%+n5dt/ SDOEQmIH(QO)glos(l 77))9324)7

which implies (thanks to Proposition 4.1 and Lemma 4.1) that

1 1
”(ss”L,?LOO < C”(;sHLfB < CHv‘Ss”ng%,g”V(gsnng%Jﬂs

3
2
2,
<OV, 4o < Doemn(oostis1-mrcd) - (2.56)

t

To finish the proof we use once more the Strichartz estimates from Proposition 4.5 with (d, p, r, q¢) =
(07 27 0, 1)7

R7 . ~
”VVsT”LfLOo < ”WeT”LfBgO L <C ﬁgs (”,PTE’REUO’&OSCHBgl + ”,PTE’REG”LIB&)
, re : ,
R, s 3
< C—gpesre [Uo,e,0scll .1+ [|Pre,r. Gl Lk
re B3, LB,

R 1 1 ~ 1 ~ 1
< ogeb (Wo.ciosell? 3 sllUcosel? 4 oy +IGIZ 4 JIGHE, L)

7
< DOR—gs%(aﬂ +1) < Dpes 1~ (TM+8m) (9 87)
r

g

With the previous choices for (m, M, ),

1 1 1 7.1 555
N (TM > (— i W
s 0 (M A+8m) 22— (5 +8+5)555 = Gare’
so that we end-up with
U — (5,0»5e)||L$Loo = IDellp2poe = [16e = W |21

555

< Dy (im0 a1 wdzm) 4 o355 < aDpemin(eoais A-mwdz) - (2.88)

and the proof of Theorem 1.7 is complete. B

3 Proof of Theorem 1.8

As usual, in the particular case v = v/, we can take advantage of simplifications: the computation
of the eigenvalues for the linearized system does not require anymore truncations in frequency,
and the projectors P53 and P4 become orthogonal.
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3.1 A priori estimates

Let us consider 0. = D, — W, where W solves (1.25):

10
90 — Lo + 1PBs. = ;G (3.80)
bejoo = (UL 5 — 7,0.0)
where:
LY ps, - ve), Gy PG Vi, 0,0), Gy —P@E" V0.,
Y e v, Gy —P(WL Vo), Ge Y @ v,
Y _pw. vt 0,0), Gs Y —paw. . v, (3.90)
0 ™ _P(0,0,0,0% - 950.), G ™ —P(0,0,0,W3 - 850.).

Following the same steps as in the general case, we obtain that for all ¢ < T, o (where T 5 is the
same as in (2.60)),

16013 + / V6. (#) 3. dt

1U8e.5 = 0" 2arsre + Do (IVWelfa s + IWellhg o + IWela o + Wl ) ]
_2
x exp Do (1+ [VWel2pe + IWelldope + Wl ™5 +IVWLIE, ¢ ) b0 (39D)
Lt175L6 L7L3

3.2 Strichartz estimates

We will prove in this section the following result:

Proposition 3.1 There exists a constant Dy = Do (v, Cy, d,n) > 0 such that for any t > 0,

S
||VW€HL2L3 + ”W HL“LG < Dye> (”UOE osc” 5~ eSAf5+e + 1)»
”W ” < ]DOE(1 M2 (”UOE osc” 1-cs 3+ + 1)7

leﬁ NH

e HIWell s + I9Well 5+ T I Well g2 < Do ([Un.eielly—cop s +1):

(3.92)

L2L3

Proof: using Proposition 4.7 with (d,p,r,¢,6) = (1,2,3,2, %), we obtain (with the same argu-
ments as in the general case) that there exists C = C(v, ) > 0 such that for any ¢ > 0,

5 ~
”VWEHL%N < HVWEHLfng < ||VWE||Z§B??,2 < Cez (”UOS OSC||H2+6 + HGHUH%M)

s S
< Ce= (”UO,E,OSCHH%—CJOH%-H; + C(CO; v, 5)) < ]D)Oi":2 (”UO,e,osc”H%—can%+a + 1)- (3-93)

This choice for 8 requires that § < = , and the condition p < is trivially satisfied. The

9(1 2)
second and third estimates are obtalned similarly, applying the same proposition successively for
(d,p,r,q,0) = (0,4,6,2,39) and (0, = 8,6,2,3(1 —1n)d) (and does not require any additionnal
assumption as we already have ¢ < 1).
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With (d,p,r,q,0) = (0,2,8,2,1) (we took 6 = 1 as the Sobolev index is o1 = %) we obtain
that

3
”WEHLfLS < DpeTs (”UO,e,OSCHH%—ca st 1),

.1
nH2"
which gives the fourth estimates. The Fifth estimates is obtained choosing (d,p,r,¢,0)

(1,2, %, 2,1). Asit involves anisotropic spaces, we use Proposition 4.8 with (d, p, m, 8) = (0,8, o0, 1),

Theorem 1.2, and obtain, combining the arguments from (2.87) with interpolation, that:

, _
IWeligug < et (Woconlly +1G1,,,3 )
1 1 1 ~ 1 ~ 1
< Cue¥ (Wocoscl?  sllUocioscl® ) ooy + IGIE, 4 IGIE, )
1y + O(Co, v, 5)) . (3.94)

.1 ..
H2 °°nH2

1
< C,es (HU078,OSCH

3.3 Results when s = %

When we only assume that there exists ¢, mg > 0 such that:
_s
2

HUO,e,oscHH%—czan%+a <mpe" 2,

gathering the Strichartz estimates from the previous section into (3.91) entails that for any ¢ < T, o
(in the present case n = 0),

9 v [t o , Do{1+(mo+s%)2(1+s%*5>+2(mo+e%)4}
15012, +5 | 1980012,y < Do

X [520‘0 + (mo + s%)z (1 +elo0 4 5%4)} . (3.95)

If we choose &, mg > 0 so small that (we recall that § < §):

then we prove as in the general case that T, o = T = oo. If in addition mg is replaced by some
m(e) = 0, we obtain that when € > 0 is small enough:
E—r

s
”55”E% = Hég”E“mE% < Do max (6a°,52,m(5)).

3.4 Precise convergence rates

With the following stronger assumption,

||UO,a,osc|| < (COE_’Ya

=1 1
Hf—céﬂH§+5 =

the Strichartz estimates from Proposition 3.1 now become when we introduce 79 > 0 so that
v = 2(1— 2n9) (we also recall that § < 1):

IVWellpzps + [[WellLazs < Dge s~ = Dge™?,

Wl 2 < Dpel=m3=7 = Dyelo=2)9,

L= Ls

_1
e s ||Wellpzps + VW]

1 1 101
— 16 6 = 5(5—0)+ned n0d
9% +e ISHWaHL?L;"j;f < Dgete ™7 = Dyez's < Dge°.
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Gathering these estimates in (3.91) we have that for any ¢ < T, » (here s = 2 4+ ¢ and as in the
general case ;= > 4),

t 2108 4ng s 4(ng—4)s
|mm@ﬁéfnwwwawsmﬁ””km“mﬁm2}
0
X |:€2a0 + 62770(S (2 + 6% + 5%>:| . (396)

Now, as we need 1 < min(2no, 3) (with 5o €]0,3), we can simply choose n = 79 (now s =
L 4+m06=23+2—~) and as ¢ €]0, 1] then

t
16-()]1%. + g / V8 (') ||3.dt’ < DgePPo [200 4 4e2M00] < g2 min(@o.mod),
0

Once more this allows us to prove that T, » = T = oo and as the previous estimates is now valid
for any ¢t > 0 we obtain that:

min(ao,n09)
ponpiinos < Do :

[10ell s = 0]l = |16l

E3+m00

As in the general case, using Proposition 4.1 and Lemma 4.1, we have (we recall that v = g(l—2no)
with 79 €]0, 3[)

1
8-z~ < CION, g <CIVEAE 19612
t

2% L2H L4ngs
min(ao,n0d) _ min(ao,§—7)
Larhnos < Do = Doe 5= (3.97)

< C|[vé|

All that remains is then to use Proposition 4.6 with (d,p,r,q) = (0,2, 00, 1) and obtain that for
any 0 € [0,1], and ¢t > 0

, N
|Wmﬂm§qu%Jswwg%Js&w4@%wmﬁﬂ+meﬁg.<w&

As in [8] and [9], applying Lemma 4.1 with (o, 8) = (4(1—a), 2(1+)) for a,b > 0 (and b small as
we will see in what follows), there exists a constant C' = C(a, b, ) > 0 such that for any function
we have:

[rale phrd S ClIfll “*ﬂ 810l “*ﬁ RIS

Trying to use the assumptions we will choose a, b so that

0 0

(51 —a), 5(1+0)) = (—cd,d),
2 2

which is realized when 6 =

that we obtain:

1+b (this is possible as we already ask § < 1) and a = 1+ ¢(1 +b) so

14c(14b)

% g S Cb c 5||U0 15 osc” (11-1:)‘(:;-%-0) ||UO € osc” (.1Y’2§1+C)
B3,

||U06 osc”

S Cb,c,(;”UO,s,osc” < Cb,c,67C0577~ (399)

Héﬂ; >

Similarly, we obtain that

IIGII <Gl < Co0.o

kb

1 1
B2tz Lig2™e
21
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Gathering the previous estimates into (3.98),

0 S(_1__ s P
”WE”LfLOO < Cu,(Cg,J,bEQ(lH?) R CU,C0,57b€2(1+b 1+2n0) _ CV,(Cg,zi,bsz(QnD 1+b).

210 (1—k)

Tans(ioky Ve finally get

When some k €]0,1[ is given (as close to 1 as we wish), choosing b =
that:

IWell 2o < Cocorsimohe™™.

Combining this with (3.97), we finally obtain that

U — (5,0,95)||L3Loo = HDEHLfLOO = [|é: — WsTHLfLoo

< Dosmin(ag,ng& + CV,C0,571707k€kn05 < Dogmin(ao,kngé)7 (3100)

which concludes the proof of the theorem. W

4 Appendix

4.1 Notations, Sobolev spaces and Littlewood-Paley decomposition

As in [7, 8, 10], this section roughly presents the spaces and norms that we will use. For a
complete presentation of the Sobolev spaces and the Littlewood-Paley decomposition, we refer to
[1]. Let us just recall that if ¢ : R, — R a smooth function supported in the ball [0, %]7 equal to
1 in a neighborhood of [0, 4] and nonincreasing over R. If we set ¢(r) = ¢(r/2) — ¢(r), then ¢
is compactly supported in the set C = [%, %] and we define the homogeneous dyadic blocks: for
all j € Z,

Aju = (277 |D))u = 21"n(27.) xu, with h(z) = F*(p(¢]))-

We recall that k(D)u(§) = k(§)u(€) and we can define the homogeneous Besov norms and spaces:

Definition 4.1 For se R and 1 < p,r < oo, we set

1

Bs, = (ZTZSHAWHTL,,) if r<oo and |ul

lez

[[ul

pe = sup 2| Al Lo
P, 1

The homogeneous Besov space B;T is the subset of tempered distributions such that lim;_, HSju”Loo =
0 and ||ul| ;5. is finite (where S;u = Z A = ¢(277|D|)u).
o

1<j—1
Let us first mention the following lemma:
Proposition 4.1 ([I] Chapter 2) The following continuous injections hold:
For any p > 1, Bg)l — LP,

For any p € [2, 00|, 32,2 — LP,
For any p € [1,2], Bg,p — LP.

Sometimes it is more convenient to work in a slight modification of the classical LY B;,T Spaces: the
Chemin-Lerner time-space Besov spaces. As explained in the following definition, the integration
in time is performed before the summation with respect to the frequency decomposition index:
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Definition 4.2 [1] For s,t € R and a,b, c € [1,00], we define the following norm

lullzg sy, = || (2" 185ulzean)

1(z)

The space EfB;C is defined as the set of tempered distributions u such that lim;_, ., Sju =0 in
L2([0, 1], L (R?) and [jullz, 5, < oo.

We refer once more to [1] (Section 2.6.3) for more details and will only recall the following
proposition:

Proposition 4.2 For all a,b,c € [1,00] and s € R:

ifa<e Vue LBy, |ulgp <llulpes;

faze VueLiB. |ulgs, = lulgs;

Let us end with the following lemma whose proof is close to Lemma 5 from [6] (see also Section
2.11 in [1]):

Lemma 4.1 For any a, 3 > 0 there exists a constant Cy, 3 > 0 such that for any u € H*~% N

H**P | then u € BSJ and:

B
atB

a8
277 lul (4.101)

lullp; , < Capllul st

4.2 Truncations

In this section we define a particular truncation operator introduced in [10] that we will also
abundantly use in the present article: let x € C5°(R,R) taking values into [0, 1] and such that:

{Supp x C [-1,1],

X = 1 near [—3, 1].

Given 0 < r < R we will denote by C, g the following set (where & = (&p,&3) and &, = (£1,&2)):
Crr={(€R? ¢ <Rand|&|>r). (4.102)

Defining f, r(§) = X('%)(l — X(%)), we have:

{Supp fr,R C CT,R)

4.103
frr=1onCy, 1. ( )

Let us define the following frequency truncation operator on C,. g (F ! denotes the inverse Fourier
transform and |D|* the classical derivation (non-local pseudo differential) operator: |D|*f =

FLElF(€)).):

P = fra(Du=x(2 (1 (22,

= 7 (Fun@©) = 7 (xS o - x(2]

SL))ie), (4.104)
Thanks to (4.103), we have:

f528(D) frr(D)u = fr.r(D)u. (4.105)
In what follows we will use these objects, as in [5, 7, 10], choosing in particular r. = €™ and
R. = e M where m and M are precised in the proofs of the main results. Let us first recall the
following anisotropic Bernstein-type result (more details in [19, 2, 7, 10]):
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Lemma 4.2 There exists a constant C' > 0 such that for all function f,« > 0,1 <¢q¢<p <0
and all 0 < r < R, we have

IXUBY (22l £l 1o < C(RP2) 575 I (DX (22 fll e < C(RI2) 57| f]| s

[|1D|*Prrflle < CR¥|PrrflLe-

(4.106)

Let us end this section with the following proposition which adapts Lemma 2.3 from [1]. We refer
to the last section of [10] for the proof.

Proposition 4.3 [10] Let 0 < r < R be fixed. There exists a constant C' such that for any
p € [1,00], t > 0 and any function u we have:

R R?
Supp u C Cr g = ||etAu||Lp < OT‘T67%T2HUHLP'

4.3 Eigenelements of the linearized system

The linearized system of (S;) is written as follows (with fy, Fe.t being divergence-free, the second
form is obtained using the Leray orthogonal projector P on divergence-free vectorfields):

8tf - (L - %B)f = Fexty _

divf =0, P L Al PB)f = Feat, (4.107)
_ fit=0 = fo-

f|t:0 - fO-

Applying the Fourier transform turns the equation into (as in [2, 24]):

~ ~

Oef(€) —B(E,€) F(€) = Femt(t,€),

where
2 ¢2 §1&3
—v(&5 +&5) vé1&o vé1€3 RE
1 vEiEs  —u(ElHE) bt iﬁi
IB%(&E):L—EIP’BZ £4+€2
Z31S v€a8s v +8) - 1£|€|22
0 0 é —/|¢)?

We refer to [10] for details about the following proposition gathering the properties needed to
obtain the Strichartz estimates.

R
Proposition 4.4 Ifv £ 1/, forallm, M > 0 with3M +m < 1, foralle < ¢, — (‘V_—VEI) e

ifr. = ™ and R. = =M (that is such that |v — V'|eR? < r.\/2), then for all ¢ € C,_ g., the

matrix B(¢,e) = L — %]P’B is diagonalizable and its eigenvalues satisfy:

?

Ai(eg,6) =0,

Aa(e,€) = —v[¢)?,

Aa(e, €) = —“EL[¢ 2 +ilsel —ieD(e, €), (4.108)
(e, &) = As(e, ),
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where D(e,§) satisfies for all £ € C,_ p. (with k € {1,2}):

D(e.)| < (v = V)P le < Colv =) = Colw — v/)2e=GM+m),

42 [€nl Te
0, D(e,€)| < (v — 1) 525 L < Cov —v/)2 25 = Cow — v/)2em(BM+2m),
196, D(e.€)| < (v — ') 5L < Gyl — /2 EE = Co (v — v/)Pem0Em),

Moreover, if we denote by Pi(e,£) the projectors onto the k-th eigenvector (we refer to the
appendix from [10] for details), and by Py.f = Py(e, D)f = F~! (Pk(e,g)(f(g))), then Py = O

(defined in Proposition 1.1) and for any divergence-free R*-valued vectorfield f, we have:

Pof = (VA 'w(f),0,0), withw(f) =01 — daf,

(4.109)
IP2fll e < N FD e < W fllgge,  for any s € R.
and
(Ig—Po) f = (Val, Mdiv P, £3, £3),  with div g, f* = 01 f* + 02 f?, 110
[(Ia = P2) fll e < [fll 4=, for any s € R. e
Finally for k = 3,4,
PP, Sie < VELENPr Sl e = VB OIP, S (4.111)

If v = V', there is no need anymore of a frequency truncation or an expansion for the last two
eigenvalues (no €1 either is necessary), and the Py (k € {2,3,4}) are orthogonal so for any
divergence-free R*-valued vectorfield f, we have:

IPxfll 7o < | fllz7o, for any s € R.

4.4 Isotropic Strichartz estimates

We list in this section the following Strichartz estimates that we proved in [10]: namely Propo-
sitions 5.4 and 5.6. We state the first one a little differently compared to [10] because we wish
to estimate f in the case when its Py-part is zero (that is f = P3f + Pyf). We recall that the
operator P,_ g, is defined in Section 4.2 and that we chose (re, R.) = (¢™,e~M).

Proposition 4.5 ([10], v # V') For anyd € R, r > 2, ¢ > 1 and p € [1, 17%], there exists a
constant Cy,» > 0 such that for any ¢ €]0,&1] (where &1 = (V2/|v —v/|)""C"") and any f
solving (4.107) with initial data fo and external force F,; such that div fo = div Fi,y = 0 and
w(fo) = w(Fewt) = 0, then,

1IDIP . flzy 5,

792
Cp.r Re 7 142
< f’,; ) 3627158(1 - |Pr..r. follga + | Prer. Featll1pa ) (4.112)
(V—FV’)P 8(1 ,,.)T2+p T 2.9 2,q
€

When v = v/, usual simplifications allow better results: we have L = vA and System (4.107)
becomes:

{Btf - (VA - é]P)B)f = Feut, (4113)

f\t:O = fO-
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Proposition 4.6 (/10/, v = V') For any d € R, r > 2, ¢ > 1,0 € [0,1] and p € [1, ﬁ],
there exists a constant C' = Cy, ;.9 > 0 such that for any f solving (4.113) for initial data fo and
external force F.,; such that div fo = div Fepy = 0 and w(fo) = w(Fext) = 0, then,

Cpro 0 2
DI fllzr e < o537 ([l follgor + | Fewtllzipon ) (4.114)
(1-2) 2 2
t=rq vp 4 T q t q

Wherealid+%—%7%+g(17%).

4.5 Anisotropic Strichartz estimates

As observed in [13], dealing with functions only depending on x3 requires special versions of the
Strichartz estimates: the space in 2 now becomes of the form L7 (anisotropic integrability in x)
as introduced in (2.40). We emphasize that, as described in Remark 2.2, the vertical /horizontal
integrations are swapped compared to [13].

The aim of this section is to state and prove the following anisotropic results:

Proposition 4.7 (v # V') For any m > 2, p € [1, 17%], there exists a constant Cp , > 0 such

1
that for any € €]0,e1] (where e1 = (V2/|v — V/|) """ ) and any f solving (4.107) with initial
data fy and external force F,,; such that div fo = div Fezy = 0 and w(fy) = w(Fezt) = 0, then

||73T5,R5f||LfL1f;f

7

G, R
1 1 2 i3 2 7
nNp—s-%) F+5-=
(v+v)ers r

<

S0 (1P refollss + P Featllisrz ), (4115)

As usual, when v = v/ we can improve the previous result:

Proposition 4.8 (v = ') For any d € R, m > 2, 0 € [0,1] and p € [1, ﬁ], there exists
a constant Cp ¢ such that for any f solving (4.113) for initial data fo and external force Feyy
such that div fo = div Fepr = 0 and w(fy) = w(Fepe) = 0, then

Como  _o0-2
DI fllppmz < l_%(nf_;)fs(l ) (||f0||Bg2q + HFextHng;?q) ; (4.116)
’ vp m s N

where oy =d+ 4 — L — 24 8(1 - 2),

4.5.1 Proof of the anisotropic Strichartz estimates when v # 1/

The proof of Proposition 4.7 is inspired by the one from [13] but, as in [10], will require impor-
tant adaptations. As usual we first assume F.;; = 0 (and the inhomogeneous case is obtained
reproducing the arguments on the Duhamel term). Starting close to what we did in [10], we will
skip details and point out what is new. Let A be the following set:

def o
A= {¢ € CF(Ry x R?,R), ||¢HL17(R+_’LT';L2(R3)) <1}

As div fo = div Fepr = 0 and w(fy) = w(Fext) = 0, we have f = Psf + P4 f so we can reduce
to study Psf (having in mind the norm of projectors Ps 4 given in Proposition 4.4). Thanks to
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Plancherel and (4.104), using the arguments from [10] (section 5.3.2)
P Flipime = sw [ [ P st aote o
R

— Csup / /R PR DO F(ByP  [o)(€)f25 om, ()00, E)dEdt

peA
< C|P3Py, r. follL2

1
2

> o0 v+u' ’ —_
X sup [ / / Vs artb(t, Y gz e 5 OB b | ndtdt | (4.117)
wEA 0 0 v, h v,h

where for some g:

(Letrg) (x):/RS gt e EH (g i B —i(—t)eD(e,©) (2@' )(1 X('ff“)g(g)dg. (4.118)

As in [10], it is not possible to directly use the smoothing effect of the heat flow from Lemma 2.3
n [1] (Section 2.1.2), and we use Proposition 4.3 which is an adaptation for the set C, r (defined
n (4.102)). The fact that in the present article, the spaces are anisotropic does not change the
result as the bounds are obtained through convolution estimates, so that we obtain:

viu!

AP (T

e

(t',)]

R3
12 < 074667
v,h r

€

L2 (4.119)
The other term will require the Riesz-Thorin theorem, and thanks to [10] we already have:
7 2
||L87t7t1||L12):2h_>L12)),i S Coe 16 (t+t ) 5, (4120)

Obtaining a bound for || L ;¢ ||L1 2 o2 will require us (as in [13]) to rewrite this operator. Let

us first introduce the horizontal and vertlcal Fourier transforms: for a function g depending on
x = (xp,73) € R3,

Fng(&n,x3) o /

2€7mh'£hg(fﬂh,$3)d$h, and  F,g(xp,&s) d;f/fm'ggg(xh,lﬂ?a)dff&
R

R

Of course, F = Fy o F, = F, o F, and we easily obtain that, if we introduce:

Iatt/(fhal'?)) (27_‘,) /6”3‘53 V+u (t4t')[€]2+i fsi ‘lfgh“ —i(t—t")eD(e,£) ( ‘£| )( (|€h|)d€3,
R

E

(4.121)
then (also denoting as F, the vertical Fourier transform of a function depending on (&, x3)):

(Lettr9) (z)
_ /Rz eien-én ([R w33 LA (1) €] 2 i %7 (t—t")eD(e,£) (Jg )( x('fh)ﬁ(f)d@) ds,

g

= / e nEn (/ s 53]: (I tt')(fhafi’)) 'fvfhg(fmf?))dfi%) dén
R2 R
= C/ eizh.gh (-Fv)il (-F ( e,t t’)(gha€3) -vahg(gha&;))dgh
R2
=C ei@h En (Ie,t,t’ (§ny73) *25 (Fng)(Ens $3)>d5h
R2

= COF (Te (€ ) #oy (Fig) (n,3))- (4122)
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Thanks to (2.40), the Plancherel, Minkowski and Young estimates, and to Remark 1.1 from [19],

||L6tt,g||Loo 2 = C||F, ( I ¢ (En, x3) %o (]:hg)(fhw?)))HL;f;f

1
2

=0y ([ (Lo 6 s (P00 P
x3€ER
— C sup ( Lo (Ens53) % (fhg)(sh,x3>|2dsh)2
RQ

z3€R

<o(L

< Oz (€, Moy 1Fng G Nl ey

=

2
Ia,t,t’(£h7x3) *24 (]:hg)(fhvx?))HLm(R )df)

LZ(REh)
S C”Is,t?t/(ghy ) HL” (Rgh’L‘”(st)) ||-th(€h7 ) HLz (Rgh’Ll(Rrs))

< Ol w3, ity WFs €l < ClL grll=llg(an, )

ey L2(RZ)) L1 (Rey L2(R2,))

< Oer (4.123)
which implies that
||L€’t’t/||Liii—>Lf;§2 < O Lev | Lo (4.124)
Thanks to (4.121), we immediately see that:
el < CoRoe™ “F6- 012, (4.125)

In order to obtain a finer estimate, we will adapt the proof of Proposition 5.4 from [10]: as
Iy (&n, —23) = Ie v (§n, x3) we can assume that zg > 0. Moreover for any ¢,, €,

—t

t
et llLe@sy = sup | Lc s (&, x3)|l,

(&n,x3)€ER3

so that we will bound:

t—t — 2 2 NeR+it=t a(e)—i(t—t )eD(e E g
et (60, " Cs) = (2m) 1/]1«6 S (1 t7) 4 £ a(€)—i(t—t)e D ’f)x(%)( el h‘)dgg,

€

(4.126)
where function a is the same as in [10]:
def
()™ 2 g + 12
el
If we also introduce the same operator L:
1 . .
[E=amrse] (f(§) +ia(€)0e, f(£)) 1t >,
Lf = . (4.127)

m (f(§) —ia(§)0g, F(§)) else,

with

a(§) = =g a() = — (=
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then, performing an integration by parts, we obtain

t—t

Ie,t,t’ (ghv

1'3)

:/eit?/a(f)(l_x(|£h|))tﬁ (e“tﬁtﬂ’)lszz‘(tt')w SO (o ] )> (4.128)
R

Te

As the computation is the same as in [10], we do not give details and only jump to the following
bound:

) vty r2
It (e—“t”(t+t’)£2—i(t—t’)sD(s,5) (2L €] )> | < <, S ( - |04|>7 (4.129)
T

Y
R 1+%OK2 Te

and

t—t

|Ka,t,t/(§h7 $3)|

2_ 2
X(@ﬂe*%(tﬂ’)r? (B2l 1 |a|
Te r2

S CO 1 - T ¢ o
| @Rz 6?1+ Fha?

> dés. (4.130)

Te

We bounded a similar term in [10] (in the present article there is no horizontal integration) but will

1 1
give a few details. It is easy to bound the second term using that |«| = (t_Tt/) ’ (%) ’ la] <
_1
b (5) 0t
V (2R5)27‘§h‘2 o 1 t— t/ _%
/ %d& <3 ( )
—VERIE R L+ e 2

The first integral is split into two halves and the first half is easily bounded using the change of

1
; _ (t=t'\?% _re .
variable z = ( - ) 16R§,§3.

4R..
€

0 0 N — 3
1 1 t—t'\ R
T iv 3 d€3§/ df3<00< > e
/—\/(2R5>2—5h|2 1+ a2 R e 1+ =t & 2 re

e 162RS

The most difficult part is to correctly bound the second half of the integral. In [10] we did it
thanks to the following technical result:

Proposition 4.9 ([10] Proposition 6.1) There exists a constant Cy > 0 such that for any 0 <
a < R, (with R > 2 a)andal]ﬁ>0

VR ;

def dx R . _1

Ifﬁ(a) = /0 [T o(u@ 7 < Coa% min(1,077). (4.131)
«@

Moreover, the exponent —i is optimal in the sense that there exists cg, oo > 0 such that for any

RZ%O&&HdO’Z(To,

N
Q
lw

sup IE 5(0) > coo”
BERL
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This implies there exists a constant Cy > 0 such that

/\/(2R5)2_|§h|2 1 2R, (t t) R7 (1 (t—t’ _i>

t—t o 3 = [&n] 23 )

0 1+ -« £ 7,82 5

which finally leads to:

IS

7 1 7 1
Metwlle < Coemin (1, S | =532 <coR BRI St
r L 2t -]

Using this together with (4.120) and (4.124), we obtain thanks to the Riesz-Thorin theorem that
for any r € [2, 00]:

R7 5% m vt (t4t)r2
||Lstt/g||Lm2 < Cy E— e 32 EHgHLTﬁ'

Gathering this estimates together with (4.119), and thanks to (4.111), we can properly bound
(4.117) and obtain that:

||P37)r57R5 f||LfL:}ny’h2

1+ +I(1- N i
< CollPr..r. fol > s 1+2+15(1 - 58( >[/ / |t—t’ 1il)dtdt’ , (4.132)

1n

V+V

where h(t) = e~ 16172 ||o)(t, )||L7ﬁ;12. The rest of the proof is identical to [10] (end of Section
5.3.2) so we dlrectly write the bound:

7

6— L
Chm R ™ 1(
H]P)3,P7’57RefHLfLm’2 S ‘f ( —2) Qigil 8 m ||’Pr€ R, fO”L2
t ~v,h (V“‘V/)p m 52 p m
-30-2)

1
where Cp ., = Co [16(% —s(1=2)]" which concludes the proof. B

4.5.2 Proof of the anisotropic Strichartz estimates when v =/

As in the previous section, we are reduced to study P3f in the case Fo; = 0, but when v = v/
additionnal simplifications arise (described in Proposition 4.4):

e The projectors P3 4 become mutually orthogonal (we recall that in the general case they
are orthogonal to P3) and their norms become 1,

e Frequency truncations are not needed anymore for the eigenvalues (and projectors) in the
case k € {3,4}, and we can consider Py f (instead of PxP,_ r.f in the previous part).

Nevertheless, to prove Proposition 4.8, we will begin as in [7, 9] by frequency localization (we refer
to Section A2 from [7] for the notations related to the Besov spaces, and more generally to [1] for
a complete presentation of the Littlewood-Paley theory). Introducing the complete truncation

operator Aju = ¢(277|D|)u and its horizontal counterpart Alu = ¢(27%|Dy,|)u:
. J+1 . .
IP3A; fllpprmz < D7 IPSALA; fllppme,
k=—oc0
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and

IBsALA, Flg = sup / / PyAlA, f(t, 2)(t, 2)dwdt
RS

< CIPsALA, foll 2
s | [ [Tk ot
peA

where ¢ is a function (with values in [0,1]) supported in the set C' = [cg, Co| (say (co, Co) =
(£,3)) and equal to 1 close to C = [3, 8] (introduced in the first section of the appendix), and for
some g we define the analoguous of the operator L. ;4 from the previous section:

[N

L lleE 02 0 (73| D)oy (27K D Y, ) 5t |

(4.133)

(Lhog) @) = [ e S0P oo 0 e e de. (@134

The heat term is estimated without resorting to Proposition 4.3 thanks to the following fact:
introducing hy (zp,) = F;, "¢1(|&n]), for any p,q € [1,00] and any function g we have:

IALA, 2
:/ (/ AzAjf(l‘h,.Tgﬂquh) d.’173:/ ||22kh1<2k|.|)*wh Ajf(.,$3)||iq(R2)dI3
R \JR2 R h

. p .
< /R (Il ) 1A T o)l acesy ) s = NI o 1A A1, (4135)

so that (as explained in the previous section, obtaining an anisotropic version of Lemma 2.3 from
[1] is easy as the proof involves convolutions) there exists a constant C' > 0 such that (¢o = 3/5
as recalled above):

le2+2 0, (277 D))r (27 Dal)o (¥, ) Mpmz < le %0y (279 DY) (1, Mpme
< Ce 5G|y || . (4.136)
v,h
With a view to use the Riesz-Thorin theorem, similarly as in the previous section we have:
||L5tt’||L22—>L22 < Cpe™ g (t+t)cd 22J (4137)

Introducing

t—t' &

T o1 (271 1 (276 s, (4.138)

P g) = (2m) 1 [ evtoem 8RS
R

and reproducing the arguments from the previous section leads to

(L2 09) @) = CFT (00 (€0 ws) oy (Fag)(Ens ) ),

and

j k
||Lé:t,t’g||L;"f;12 < ||Ig7t t/ A

so that (thanks to (4.138)):

: v " 2627
1L wllpie e < 125 |l poe < Co2ie™ 8t (4.139)
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Next, performing the change of variable 3 = 2713, we can write that

i,k i ; .
Ig,t,t/ (2.777}“ xS) - ZJIE t t’(nhv 2jx3)7

where
@(m,xs) = (277)—1/Rem n3 o~ 527 (1) n|*+its Lol o1 (1)1 (27 % n ) dina, (4.140)
which entails that
ZF e = 2 I2F | e (4.141)
In IE + ¢+ the frequencies are now truncated as follows: ¢y < In| < Co and ¢o2F~7 < |np,| < Cy2F7,

so that we can reproduce the arguments from the previous section (see also [10]) to the vertical

rescale IE i (s = t=t' 24} with (re, R.) replaced by (Co, ¢g257) and obtain that (also using (4.139))
for all |ny| > o2k~ 5 and x3,

P VC—lmnl?  g=%(t+t')c32%
r3)| < CO/ T .
—VmE 1+ = ()2

so that (we recall that in the present case |1| > ¢o, which is better than in the previous section)
with the same steps as in the previous part (see also Section 5.3.2 and Proposition 6.1 from [10],
which is recalled in the present article as Proposition 4.9), for every 6 € [0, 1]

4 1
T, ((1 )+ laly ><|,7|+1>) dns,

[

. . cr . , . 1
1T e < Co2T —20 o= 50402 gy [, S~
Y (002]C 3)7 |t—t/|1

[

7 v
< Cp2! (Sol)ue—i(wt’)céi“ |€7|9 (4.142)
co2F~I)2 t—t|a

Remark 4.1 As in the previous section the most difficult is to correctly bound the following
integral, which is done using Proposition 4.9:

VTR o -t Cr et
deg I‘EO| x (7) S 017.11 min 1, (7) 4 .
0 1+ a2 v e (co2v~9) % :

Gathering the previous bound for ||Igft,\|Loe with (4.137), thanks to the Riesz-Thorin theorem
we finally obtain that with m > 2 and for any 6 € [0, 1],

[} 1 m
v N 2625 11 g1
|L? Ett, Wt ")”LZT;f < Cpe~ 1 (tHt)e02 (23+ 5 (J k)|t—t’|3> H«/;(t)“Lth
Plugging this into (4.133), we obtain

Chk
”PfﬁAkAijLva"ff

1
2
S CO||P3AJf0||L22(]+%(7_k))(%_%)6 Sup / / dtdt/ , (4143)
peA |t—t’| (1—*
with h(t) = e~ %027y (t,.)|| e Using once more the Hardy-Littlewood theorem, and intro-

ducing k1,3 > 1 defined as follows (the condition on p comes from here)

1 0 2 1 1 0 2
—=1--(1-= d —=-—-(1-=
kl 8( m)7 an ﬁ p 8( m)?
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we obtain that:

1

1
2 00 ] 5
_34/9222“% -
V / ‘tiﬂ (1 — eyt gc||h||Lk1(R)gc</0 e~ ¥ ) [l s pms

and
IPsALA, ]| . < M”p A fol ,es(- )2(J+“(J M) (-%)-3
3RS L2 = l/;_g(l 3 OllL
Cpm&
- y%fs( 77%1.)

IPsA, foll2e80—m)2% (- NG9 (35 -3+40-3) (4,144

Now, all that remains is to sum for k < j + 1, which is possible if and only if m > 2, and:

A C m,0 1_1_2,60¢1_2
1BsAsfllpppma < — B [y foll ek =20 (=54 0-30),
v v 8 m

Multiplying by 27¢ and summing over j € Z, we conclude the proof. B

4.6 Proof of theorem 1.5

Let us fix some € > 0. We will use the Friedrich’s scheme introduced in [10]. If DI = (V*, H),
projecting over divergence-free vectorfields with the Leray projector P, this system is written as
follows (for n € N, J,, is the Fourier truncation operator on the ball centered at zero and with
radius n):

D .yl
&, D — LD + LPBJ, DI = —J,P | D2 - VDI + 0 + 3"V, D | + J,G,
D3 . 930,
Dg|t:0 =Jn (UO,s,OSC + (UO,E,S - (6870’0))) =Jn (UO,s,osc + (U&E,S - 68) 0’0)) .
(4.145)
In order to neutralize the constant term é, let us introduce the following Stokes-type system:

& E. — LE. + 1BE. = - ( V@ ) +G,

Ee\f O_U0505c+(U055 'UO,OO)

(4.146)

It is easy to prove that if E.(0) € H* for some s € [0, % + 0], there exists a unique global solution
satisfying for all ¢ > 0:

t t _
1= ()] +V0/ IV Ee(7)l[3.dr < (|E5(0)||2~5 +/ ||G(7')|Hsd7') elo 16i= 7 (4.147)
0 0
Now, we introduce £ = J, E. and F]' = D} — E7 which satisfy F s|t o = 0 and:

(E + F1) - Vol
0 + "V (EM 4 )

1
O F" — LF + ~PBJ,F" = —J,P N
) (B2S 4+ F29) - 050

+F'-VEF'+F"-VE'+ E'-VE" + E".VE"|,

(4.148)
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Reproducing the arguments from Section 2.1 we obtain that

d n n C n 2 ~ 4
IF2 I + vl VEE |\%2S;OHFE |%2<IIVEEII2 + V"%, ”5”96“?11(1&))

1 ~ ~
+C ;OllEelliI% (IVE:|Z + IV0"[[72) + (1 + ||UhH2- ONVENT + 1003 gy 1 Eel 72
(4.149)
and if § < s < 1+ & (for some 8 > 0)
I + vl P21 < 2CIF2 ||y IVER I + *IIF [N [ S 2 IVE e

co _
+,70||F5 ||2-5<(1+ B 12NV E , + (1 + 2||E I DIVEEL? )

= BN IV E 2, + IV ) + (512 IV By + IBZ 2 16 'H”(R)] e
If we define =
T2 = supft > 0, Vi € 0,4, [F2 ()] < 12},

then we have T/! > 0 (we recall that F*(0) = 0) and thanks to the previous estimates with
= %, Theorem 1.2 and (4.147), there exists a constant D = D(Cy, §, v, 1/, ||U0,57OSCHH%) for all

t< T

IEZ @7, + 2 / IVEZ @I, d

2 ~h |2 2 ~h 12 POl
<Dy [WEEHLgLﬁnw s VBl Iy + BNy I

(4.151)

All these quantities are independant of n and converge to zero as t goes to zero, so if we define

T2 > 0 such that the right-hand side is bounded by (é’—g)z for all ¢ < T2, then with the same
arguments as in the previous bootstrap, we obtain that 7! > T2 > 0 for all n, and for all
t<T2

t
2 Yo 2
P20+ [ IVF2 I ydr < D(Coubs/ Ul 1)
which allows to prove (with classical arguments) existence of a strong solution as described in
Theorem 1.5.
The propagation of the regularity and the blow-up criterion are proved through classical ideas

thanks to the following estimates (which are proved with the very same arguments): for all
s€[0,4+6 and t €[0,T7],

t
o —_ ~
ID=(®) 1+ + 5/0 IVD:(P)1}d7 < | 100.c,0elFre + UG e.s — Tl + ”GHL%HS}

2 4 .
SSAIVD® | HIVEE o Al ) g 16elP, 8l o
o L2F2 L2F2 o L9oF 2 L3l r2i2th
X e t L t ¢ ¢ , (4.152)

which ends the proof of Theorem 1.5. B
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