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The flow equations of the renormalization group allow to analyse the perturbative n-point
functions of renormalizable quantum filed theories. Rigorous bounds implying renormaliz-
ability permit to control large momentum behaviour, infrared singularities and large order
behaviour in the number of loops and the number of arguments n.
In this paper, we analyse the Euclidean four-dimensional massive φ 4 theory using lattice
regularization. We present a rigorous proof that this quantum field theory is renormal-
izable, to all orders of the loop expansion based on the flow equations. The lattice reg-
ularization is known to break Euclidean symmetry. Our main result is the proof of the
restoration of the rotation and translation invariance in the renormalized theory using the
flow equations.

I. INTRODUCTION

Quantum field theory was originally developed as a theoretical framework that combines classi-
cal field theory, special relativity, and quantum mechanics and has become the general theoretical
framework to study physical systems with an infinite (or large) number of degrees of freedom.

A rigorous mathematical analysis of quantum field theories is faced with the problem that path
integrals describing systems in field theory are generally not defined. There exists a complete the-
ory of Gaussian measures that apply to free theories. However, for the interacting case, a rigorous
mathematical description starts from regularized versions of the theory, where the number of de-
grees of freedom in space and momentum has been essentially made finite. This is common to all
regularizations, such as momentum cutoff, Pauli-Villars regularization and lattice cutoff. One then
studies correlation functions and proves that these have uniform limits in the cutoffs.

There are important situations in quantum field theory where perturbation theory does not pro-
duce quantitatively reliable results for the calculation of physical quantities. The most prominent
example is the low-energy regime of Quantum Chromodynamics (QCD). So one would like to be
able to analyse such theories nonperturbatively. By nonperturbative, we mean a method by which
observables would directly be obtained to all orders in the coupling constant, without any expansion.
One example, maybe the most important, is lattice field theory which consists in discretizing space-
time. The continuous space-time is replaced by a discrete grid of points, the simplest arrangement
being a hyper-cubic lattice. The distance between nearest neighbor sites is called the lattice spacing
and usually denoted a. The inverse lattice spacing a−1 provides a natural ultraviolet regularization.
K. Wilson in 197420 introduced a formulation of Quantum Chromodynamics on a space-time lat-
tice, which allows the application of various nonperturbative techniques. This discretization leads
to a mathematically well-defined setting. Therefore, lattice field theory can be taken as a starting
point for a mathematically clean approach to quantum field theory. It is a good starting point to
derive properties of field theories in a rigorous way.

For finite lattice spacing a, the correlation functions are well approximated for momenta well
below the UV-cutoff a−1. Renormalization amounts to prove the existence of correlation func-
tions in the continuum limit a→ 0 with certain properties. In this limit a sequence of axioms
must be satisfied in order to construct a Euclidean quantum field theory. These are the well-known
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Osterwalder-Schrader axioms. In many important cases convergence is achieved by appropriately
adjusting a finite number of parameters of the action and by a rescaling of the fields. These param-
eters (bare parameters) become functions of corresponding renormalized coupling constants. The
renormalized coupling constants are defined by normalization conditions imposed on renormalized
correlation functions at fixed Euclidean momenta. Renormalizability implies that all renormalized
correlation functions, considered as functions of the renormalized parameters, stay well defined in
the continuum limit, for all finite momenta p. The issue of renormalization theory is to show that a
given field theory can be reparametrized in such a way that it stays finite if the UV-cutoff is removed
and that the symmetries of the theory are preserved.

In perturbation theory, the problem of renormalizability amounts to the study of Feynman inte-
grals since the correlation functions are represented as a sum of Feynman integrals. There exists
a "power-counting theorem" that permits to determine the convergence of Feynman integrals in
the large cutoff limit by counting suitably defined UV-divergence degrees. The Feynman integral
associated with a Feynman diagram, together with all its subintegrals, are required to have nega-
tive UV-divergence degrees so that the Feynman integrals are (absolutely) convergent. Generically,
Feynman integrals are not convergent a priori. However, the UV-divergences can be subtracted or-
der by order in perturbation theory, preserving locality. This provides a general renormalization pre-
scription, for example, the BPHZ-subtraction scheme for continuum field theories (the Bogoliubov-
Parasiuk-Hepp-Zimmermann finite part prescription). It applies to the integrand of momentum
space Feynman integrals and does not require introducing an UV-cutoff. On the other hand, for a
cutoff theory the subtractions are arranged in such a way that they result from local counterterms to
the action. These counterterms provide the map between bare and renormalized coupling constants
and fields. They become uniquely determined by imposing normalization conditions on the Green
or Schwinger functions.

A further issue is to prove that a theory showing a symmetry can be renormalized in such a way
that the symmetry is preserved. This is highly nontrivial for theories which are symmetric under a
nonlinear and/or local symmetry transformation, as in particular Yang-Mills theories like QCD and
the electroweak sector of the standard model.

Renormalization theory can also be studied directly in the framework of the Wilson renormaliza-
tion group18,19. In this framework the theories are described by an effective action LΛ,Λ0 , depending
on a scale Λ with 0 ≤ Λ ≤ Λ0 < ∞ for Euclidean quantum field theories in the continuum with
a momentum cutoff. Here Λ plays a similar role as an infrared cutoff, Λ0 denotes the ultraviolet
cutoff. LΛ,Λ0 should satisfy the following conditions:
• At the ultraviolet cutoff Λ = Λ0, LΛ,Λ0 coincides with the bare action.
• For Λ < Λ0, LΛ,Λ0 is obtained upon integration of the field degrees of freedom which propagate
with momenta p roughly between Λ and Λ0.
• As Λ→ 0, LΛ,Λ0 approaches the effective action, i.e. the generating functional of the (connected
amputated) Schwinger functions, of a theory without infrared cutoff. Thus the final effective action
contains the full information of the original action that evolves under a change of scale. Changing
the infrared cutoff Λ leads to renormalization group equations which describe the scale dependence
of the effective theories on Λ in a compact way. When Λ varies continuously, the resulting flow
equations are first-order differential equations in the infrared cutoff Λ. Solving them under appro-
priate boundary conditions (at Λ = 0 or Λ = Λ0) amounts to determine the infrared and ultraviolet
properties of a field theory.

Polchinski and later Keller, Kopper and Salmhofer showed that these ideas also lead to a simpli-
fied proof of perturbative renormalizability of quantum field theories6–9,11. Usually, complete proofs
of renormalizability are rather cumbersome, because of the complex combinatorics of overlapping
ultraviolet divergences of a Feynman diagrammatic approach. They require a power-counting theo-
rem which ensures finiteness of multi-dimensional Feynman integrals by imposing the appropriate
subtractions. In the framework of flow equations this complicated analysis is avoided. It gives an
alternative proof based on a tight inductive scheme wherefrom bounds on the regularized correlation
functions implying renormalizability can be deduced. Renormalizability of a quantum field theory
implies that the unregularized correlation functions

lim
Λ→0,Λ0→∞

L Λ,Λ0
l,n (p1, ..., pn)
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exist in the sense that they are both IR (in massless theories outside exceptional momentum con-
figurations) and UV finite. Finite limits are achieved by imposing a finite set of renormalization
conditions on a physical scale that is independent of the UV cutoff Λ0. We will consider the case in
which all fields are massive to avoid IR problems. Proving renormalizability then basically amounts
to show the existence of the large UV-cutoff limit Λ0→ ∞.

In the present work, we investigate the renormalizability of massive φ 4
4 -theory regularized by

a lattice cut-off. The proof of perturbative renormalizability of a lattice regularized field theory
is not direct from the usual power counting theorems. The well known power counting theorems
of Weinberg16, and Hahn, Zimmermann5 which state sufficient conditions for the convergence of
Feynman integrals do not apply in the presence of a lattice cutoff. Reisz13 has given a generaliza-
tion of the power counting theorem for a wide class of lattice field theories where a new kind of
an ultraviolet divergence degree is used. The existence of a power counting theorem ensures that
the combinatorics of subtractions to renormalize a diagram is described by Zimmermann’s forest
formula21. The situation is different for a lattice field theory. Reisz14,15 has proved that the coun-
terterms instead of being polynomials are periodic functions in the external momenta, which can be
obtained with the help of new operators he introduced, called subtraction operators.

The renormalization of lattice regularized φ 4
4 theory in Polchinski’s framework has been adressed

in10. The paper presents interesting arguments, but it does not aim at mathematical rigour and
thus leaves certain mathematical questions unsolved, in particular w.r.t. to O(4) and translation
invariance of the continuum limit.

Davoudi and Savage1 proposed a mechanism for the restoration of rotational symmetry in the
continuum limit of lattice field theories on hyper cubic lattices. The approach is based on construct-
ing smeared lattice operators that smoothly evolve into continuum operators with definite angular
momentum as the lattice-spacing is reduced. However, this method regards only finite lattices and
the full recovery of rotational invariance in the lattice theories requires the suppression of rotational
symmetry breaking contributions to the physical quantities not only as a result of short-distance dis-
cretization effects, but also as a result of boundary effects of the finite cubic lattice. More precisely,
the rotational invariant theory is achieved as the lattice becomes infinitely large, corresponding to
an infinitely large number of points in momentum space. Here we give a proof of rotation symmetry
restoration for φ 4

4 lattice regularized field theory on an infinite lattice.
The paper is organized as follows: In section II, we introduce the flow equations. In section III we

present the steps of proving renormalizability of four-dimensional φ 4 theory on the lattice by means
of the flow equations, following9. Renormalizability is stated in terms of uniform bounds on the
(coefficient functions of the) solution La0,a(φ) of the flow equation and its derivative with respect to
the lattice cutoff a−1, with boundary conditions imposed at a = ∞ for the relevant couplings and at
a = a0 for the irrelevant interactions.

Sections IV and V are at the heart of this paper. In section IV we introduce the rotated lattice and
we show that the differences Da0,a,O

l,n (p1, · · · , pn) of the correlation functions of arguments defined
on the rotated lattice and on the original lattice:

Da0,a,O
l,n (p1, · · · , pn) :=L a0,a,O

l,n (Op1, · · · ,Opn)−L a0,a
l,n (p1, · · · , pn)

converge to zero when a0 → 0 and a→ ∞. In section V we give a proof of the existence of the
continuum limit in position space in the sense of tempered distributions. We find that the obtained
limit is invariant under translations which concludes the restoration of the Euclidean symmetries in
the continuum limit.

II. THE FLOW EQUATIONS

We consider φ 4 scalar field theory on four dimensional Euclidean space. We will formulate our
theory with a lattice cutoff in the standard path integral formalism, where the lattice refers to the
discretization of space-time. In the following, we introduce general notions of a space-time lattice
and the φ 4 model on the lattice, but only to the extent that is relevant to this paper.
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A. Lattice field theory

The four-dimensional hypercubic lattice is a set of sites denoted by

Λa0 = a0Z4

where a0 denotes the lattice spacing in Euclidean time and spatial directions. One of the first ques-
tions in lattice field theory is how to put a model on the lattice once it is defined on the space-time
continuum. The question refers both to the framework of classical field theory, i.e. at the level of
the classical action, and to quantum field theory. Naturally discretization of space and time implies
that differentiation with respect to space and time is to be replaced by a corresponding difference
operation.

B. φ 4 scalar field theory on the lattice

Perturbative renormalizability of euclidean φ 4
4 theory will be established by analysing the gen-

erating functional La0,a of connected (free propagator) amputated Schwinger functions (CAS). The
upper indices a0 and a enter through the regularized propagator

Ca0,a(p) =
1

p̂2 +m2

(
e−a2

0(p̂2+m2)− e−a2(p̂2+m2)
)

(1)

where the map p̂ :=
(

p̂(pµ)
)

1≤µ≤4 is defined as follows

p̂ :
]
− π

a0
, π

a0

[
→

]
− 2

a0
, 2

a0

[
pµ 7→ 2

a0
sin( a0 pµ

2 )

(2)

In the sequel we shall write with slight abuse of notation

Ca0,a(p̂) :=Ca0,a(p), p̂(pµ) := p̂µ

Upon removal of the cutoffs, i.e. in the limit a0→ 0, a→ ∞, we indeed recover the free propagator
1

p2+m2 . For the Fourier transform we use the convention

f̂ (x) =
∫

p,Ba0

f (p)eip·x :=
∫]
− π

a0
, π

a0

[4
d4 p
(2π)4 f (p)eip·x (3)

using the shorthand ∫
p,Ba0

:=
∫]
− π

a0
, π

a0

[4
d4 p
(2π)4 with Ba0 =

]
− π

a0
,

π

a0

[4

denoting the first Brillouin zone. For the inverse Fourier transform we write

f (p) = a4
0 ∑

x∈Λa0

f̂ (x)e−ip·x (4)

so that in position space

Ĉa0,a(x,y) =
∫

p,Ba0

Ca0,a(p̂)eip·(x−y)

We assume

0≤ a0 ≤ a≤ ∞
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so that the Wilson flow parameter 1/a takes the role of an IR cutoff, whereas 1/a0 is the UV cutoff.
We introduce the convention

φ̂a0(x) =
∫

p,Ba0

φa0(p)eip·x,
δ

δ φ̂a0(x)
=
∫

p,Ba0

δ

δφa0(p)
e−ip·x

For our purposes the field φ̂a0(x) may be assumed to live in the Hilbert space l2
(
Λa0

)
endowed with

the inner scalar product

〈 f ,g〉l2(Λa0)
= a4

0 ∑
x∈Λa0

f (x)g(x)

Our starting point is the bare action of symmetric φ 4
4 theory

La0,a0(φ̂a0) = a4
0 ∑

x∈Λa0

{
f

4!
φ̂

4
a0
+d(a0)φ̂

2
a0
+b(a0)(∂̂µ,a0 φ̂a0)

2 + c(a0)φ̂
4
a0

}
(5)

d(a0),c(a0) = O(h̄) , b(a0) = O(h̄2)

The differentiation in (5) is defined by the difference operator(
∂̂µ φ̂a0

)
(x) =

φ̂a0(x+a0eµ)− φ̂a0(x)
a0

for x∈Λa0 , eµ is the unit vector in the µ th coordinate direction. The first term is formed of the field’s
self-interaction with real coupling constant f having mass dimension equal to zero. The second part
contains the related counter terms, determined according to the following rule. The canonical mass
dimension of the field is one, the counter terms allowed in the bare interaction are all local terms of
mass dimension ≤ 4 formed out of the field and its derivatives respecting cubic lattice symmetry.
The O(4) and translation symmetries are violated by the lattice regularization. From the bare action
and the flowing propagator, we may define Wilson’s flowing effective action La0,a by integrating out
momenta roughly in the region 1/a2 ≤ p2 ≤ 1/a2

0. It is defined through

e−
1
h̄

(
La0 ,a(φ̂a0

)+Ia0 ,a
)

: =
∫

dµa0 ,a
(Φ)e−

1
h̄ La0 ,a0 (Φ+φ̂a0

)
, (6)

La0,a(0) = 0 (7)

and can be recognized to be the generating functional of the CAS of the theory with propagator Ĉa0,a

and bare action La0,a0 . In (6), dµa0,a(Φ) denotes the Gaussian measure with covariance h̄Ĉa0,a. It
is proved in [1] that such a measure exists as a lattice approximation of the continuum gaussian
measure. Ia0,a denotes the field independent so called vacuum contributions. It is finite only in the
finite volume approximation. The infinite volume limit is taken only when it has been eliminated9.
We do not make the finite volume explicit here since it plays no role in the sequel.
The fundamental tool for our study of the renormalization problem is the functional flow equation

∂1/aLa0,a =
h̄
2
〈 δ

δ φ̂a0

,
(
∂1/aĈa0,a

)
∗ δ

δ φ̂a0

〉La0,a− 1
2
〈δLa0,a

δ φ̂a0

,
(
∂1/aĈa0,a

)
∗ δLa0,a

δ φ̂a0

〉 (8)

By 〈·, ·〉 we denote the scalar product in l2
(
Λa0

)
. (8) is obtained by deriving both sides of the

equation (6) with respect to 1/a and performing an integration by parts in the functional integral on
the RHS using the properties of the lattice Gaussian measure3, and finally rearranging the powers
of h̄ coming from La0,a/h̄ and from h̄∂1/aĈa0,a9. To derive the flow equations verified by the n-point
correlation functions, we first expand La0,a in moments for all (pi)1≤i≤n ∈Ba0 with respect to φa0 ,

(2π)4(n−1)
δφa0 (p1) · · ·δφa0 (pn)L

a0,a|φa0=0 = δ
4[

2π
a0

](p1 + · · ·+ pn)L
a0,a

n (p1, · · · , pn)
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where we have written δφa0 (p) = δ/δφa0(p) and δ 4[
2π
a0

] := ∑k∈Z4 δ
(4)
2kπ
a0

. We also expand in a formal

powers series with respect to h̄ to select the loop order l,

L a0,a
n =

∞

∑
l=0

h̄lL a0,a
l,n

From the functional flow equation (8), we then obtain the perturbative flow equations for the (con-
nected free propagator amputated) n-point functions by identifying coefficients

∂1/a∂
wL a0,a

l,n (p1, · · · , pn) =
1
2

∫
k,Ba0

∂
wL a0,a

l−1,n+2(k, p1, · · · , pn,−k)∂1/aCa0,a(k̂) (9)

−1
2

′

∑
l1,l2

′

∑
n1,n2

′

∑
wi

cwi

[
∂

w1L a0,a
l1,n1+1(p1, · · · , pn1 , p)∂ w3∂1/aCa0,a(p̂)∂ w2L a0,a

l2,n2+1(−p, pn1+1, · · · , pn)
]

rsy

p≡−p1−·· ·− pn1 ≡ pn1+1 + · · ·+ pn

[
2π

a0

]
Here we wrote (9) directly in a form where a number |w| of momentum derivatives, characterized
by a multi index w, act on both sides, and we used the shorthand notation

∂
w :=

n

∏
i=1

3

∏
µ=0

(
∂

∂ pi,µ

)wi,µ

(10)

where w = (w1,0, · · · ,wn,3), |w|= ∑wi,µ , wi,µ ∈ N∗.
The symbol ”rsy” means summation over those permutations of the momenta p1, · · · , pn, which do
not leave invariant the (unordered) subsets (p1, · · · , pn1) and (pn1+1, · · · , pn), and therefore, produce
mutually different pairs of (unordered) image subsets, and the primes restrict the summations to
n1 +n2 = n, l1 + l2 = l, w1 +w2 +w3 = w, respectively. Moreover, the combinatorial factor c{wi} =

w!(w1!w2!w3!)−1 comes from Leibniz’s rule. In the loop order l = 0, the first term on the RHS is
absent.

III. RENORMALIZATION OF LATTICE φ 4
4 THEORY

Perturbative renormalizability of the regularized field theory (6) amounts to the following: For
given coupling constant f in the bare interaction (5), the coefficients d(a0), b(a0) and c(a0) of the
counter-terms can be adjusted within a loop expansion of the theory,

d(a0) =
∞

∑
l=1

h̄ldl(a0), b(a0) =
∞

∑
l=2

h̄lbl(a0), c(a0) =
∞

∑
l=1

h̄lcl(a0)

in such a way that the limits of the lattice n−point CAS functions exist when a0 goes to 0 and a
goes to ∞ in every loop order l.

∀(pi)1≤i≤n ∈ R4,∃ã0 > 0 such that uniformly in Bã0 :

L 0,∞
l,n (p1, · · · , pn) := lim

a0→0,a0≤ã0
lim
a→∞

L a0,a
l,n (p1, · · · , pn), n ∈ N, l ∈ N∗ (11)

The parameter ã0 guarantees that (pi)1≤i≤n ∈Bã0 ⊂Ba0 for all a0 ≤ ã0 so that they are well defined
as arguments of the regularized n-point functions L a0,a

l,n . The lattice breaks Euclidean symmetry and
an essential point to the renormalizability of the theory is to prove the restoration of this symmetry.
We will analyse the limits L 0,∞

l,n (p1, · · · , pn) and prove in particular their invariance under rotations
and translations in sections IV and V.
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A. Propagator bounds

The subsequent bounds on the CAS functions will depend heavily on the propagator of the theory
we consider. The bare propagator is, apart from the renormalization conditions, the main ingredient
which decides what kind of bounds can be achieved. In this subsection we collect the bounds on the
propagator and its derivatives we will need subsequently. From the definition (1) we directly obtain

∂1/aCa0,a(p̂) = (−2a3)e−a2(p̂2+m2) (12)

One can then prove by induction that

∂
we−a2 p̂2

=
4

∏
µ=1

(
wµ

∑
k=1

awµ−k
0 ak Pk,µ

(
cos

a0 pµ

2
,sin

a0 pµ

2

)
P̃k,µ

(
ap̂µ

))
e−a2 p̂2

(13)

Here P, P̃ are real polynomials which we do not specify. Using (13) together with a0 ≤ a, we obtain
the following bound on the propagator and its derivatives∣∣∂ w

∂1/aCa0,a(p̂)
∣∣≤ a|w|+3P1(a|p̂|)e−a2(p̂2+m2) (14)

Using (13) and (24) below one can also show that

∣∣∂ w
∂1/aCa0,a(p̂)

∣∣≤ (1
a
+m

)−|w|−3

P2

(
a|p|

1+am

)
(15)

Both bounds are expressed in terms of suitable polynomials P1, P2 with nonnegative coefficients.
The following lemma shows how to bound integrals of powers of momenta multiplied by the expo-
nential appearing in the regularized propagator

Lemma 1. ∀α ∈ N , ∃Cα > 0 independent of a and a0 such that:

a4
∫

Ba0

e−a2 k̂2
(a|k|)α dk ≤Cα (16)

Proof. It is sufficient to bound

a
∫ π

a0

0
e−a2 k̂2

(ak)α dk (17)

uniformly with respect to a and a0. Using that ∀x ∈
[
0, π

2

]
we have sinx≥ 2

π
x , one obtains

a
∫ π

a0

0
e−a2 k̂2

(ak)α dk ≤ a
∫ π

a0

0
e−

a2k2

π2 (ak)α dk (18)

≤
∫

∞

0
e−

u2

π2 uα du ≤ Cα

When studying the restoration of rotation invariance we will also have to bound differences of de-
rived propagators, where one of them has undergone an arbitrary rotation O ∈ O(4). The following
lemma permits to bound these differences

Lemma 2. For all w ∈ N4, for all p ∈Bαa0 for some α > 0 holds

∣∣∂ w
∂1/aCa0,a(p̂)−∂

w
∂1/aCa0,a(p̂O)

∣∣≤ a0

(
1
a
+m

)−2−|w|
P

(
a|p|

1+am

)
(19)

Here p̂O := p̂(Op).
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Proof. If |p̂O| ≥ |p̂| we write

∂
w
(

e−a2(p̂2+m2)− e−a2((p̂O)2+m2)
)
= ∂

w e−a2(p̂2+m2)
(

1− e−a2((p̂O)2−p̂2)
)

(20)

In case |p̂O| ≤ |p̂|, we factorize instead e−a2((p̂O)2+m2) and follow again the subsequent reasoning.
By the Leibniz formula, we obtain

∂
we−a2(p̂2+m2)

(
1− e−a2((p̂O)2−p̂2)

)
= ∑

w1+w2=w
cwi∂

w1e−a2(p̂2+m2)
∂

w2
(

1− e−a2((p̂O)2−p̂2)
)

The first factor in each entry in the sum can be bounded as in (15). As regards the second factor we
first consider the exponential without derivatives

1− e−a2[(p̂O)2−p̂2]

We can rewrite the exponent as

a2 [(p̂O)2− p̂2] =
2a2

a2
0

4

∑
µ=1

[
cos(a0(Op)µ)− cos(a0 pµ)

]
(21)

= 2
a0

a

4

∑
µ=1

∫ 1

0
dt
(1− t)2

2!

[
[a(Op)µ ]

3 cos(3)[t a0 (Op)µ ] − [apµ ]
3 cos(3)[t a0 pµ ]

]
(22)

We used a Taylor formula with integrated remainder around 0 for both cosine functions and the
fact that the constant and quadratic terms in the difference of the two cosine functions cancel. The
statement of the lemma is then a consequence of the following facts
a) ∣∣∂ wa2 [(p̂O)2− p̂2]

∣∣≤ a0

a
a−|w| P(a|p|) (23)

This follows directly from (21), (22). The degree of the polynomial P can be chosen to be less
equal than 3.
b) ∣∣∣e− f (x)−1

∣∣∣≤ f (x) for f (x)≥ 0

c)

∂
we−a2[(p̂O)2−p̂2] =

a2
0

a2 a|w|P({a pµ ,
∫ 1

0
dt(1− t)2 cos(3)(t a0 pµ),∫ 1

0
dt(1− t)2 cos(3)(t a0(Op)µ),

a0

a
})

This statement follows by induction on |w| from (21), (22). The polynomial P (whose coefficients
are real but may have either sign) is at most of degree 3|w|. The coefficients do not depend on
a0, a, p.
d) The inequality

e−a2m2 ≤ C(n)
(1+am)n (24)

which holds for any n ∈N and suitable positive C(n) can be used to turn powers of a or of a|p| into
powers of a/(1+am) or a|p|/(1+am) .
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B. Renormalizability

A simple inductive proof of the renormalizability of φ 4
4 theory, regularized by a UV-cutoff has

been exposed several times in the literature7,9. Our proof follows the same line of reasoning. New
difficulties arise due to the particular form of the lattice propagator (1) that breaks Euclidean sym-
metry. The boundary conditions following from (5) are

∂
wL a0,a0

l,n (p1, · · · , pn)= 0, n+ |w|> 4 such that n 6= 2 (25)

∂
wL a0,a0

l,2 (p,−p)= bl(a0)∂
w p̂2, ∀|w| ≥ 3 (26)

As compared to continuum theory9, note that the boundary conditions (26) are not equal to zero.
For terms with n+ |w| ≤ 4, the boundary conditions are explicitly fixed by (a0-independent) renor-
malization conditions imposed for the fully integrated theory at a = ∞ :

L a0,∞
4 (0, · · · ,0) = f , L a0,∞

2 (0,0) = 0, ∂p2L
a0,∞

2 (0,0) = 0 (27)

The renormalization point is chosen at zero momentum for simplicity (BPHZ renormalization con-
ditions).
The induction hypotheses to be proven are

Theorem 1. For all l ∈ N∗, n ∈ N, w and for 0≤ a0 ≤ a, a0 <
1
m holds

A) Boundedness in the UV-cutoff∣∣∣∂ wL a0,a
l,n (p1, · · · , pn)

∣∣∣≤ (1
a
+m

)4−n−|w|
P1

(
log

1+am
am

)
P2

({
a|pi|

1+am

})
(28)

B) Convergence in the UV-limit∣∣∣∂1/a0∂
wL a0,a

l,n (p1, · · · , pn)
∣∣∣≤ ( 1

a +m
)5−n−|w|(

1
a0
+m

)2 P3

(
log

1+a0m
a0m

)
P4

({
a|pi|

1+am

})
(29)

where (pi)1≤i≤n ∈Ba0 and p1 + · · ·+ pn ≡ 0
[

2π

a0

]
. Here and in the following the P, Pi denote

(each time they appear possibly new) polynomials with nonnegative coefficients. The coefficients
depend on l,n, |w|, but not on m,{pi}, a, a0. For l = 0, all polynomials P1, P3 reduce to 1.

Remarks: We will prove Theorem 1 for pi ∈Ba0 but it is possible to extend it to (pi)1≤i≤n ∈ R4.

Since L a0,a
l,n is 2π

a0
-periodic, L a0,a

l,n (p1, · · · , pn) such that pi ∈Bkia0 :=
]
− (2ki+1)π

a0
, (2ki+1)π

a0

[
, ki ∈Z4

and ∑
n
i=1 pi ≡ 0

[
2π

a0

]
, also verifies the flow equations (9) with the same boundary conditions, as

we will see later, and therefore it verifies Theorem 1. The extension to the boundaries of the ex-
tended Brillouin zones Bki,a0 is performed using the continuity of L a0,a

l,n w.r.t. pi and taking the

limits pi → kiπ
a0

in (28). The fact that L a0,a
l,n is C ∞ w.r.t. pi and that it is 2π/a0-periodic can be

proven inductively using the flow equations and that the propagator and the boundary conditions
are 2π/a0-periodic and C ∞. We will not prove it here. It is also possible to prove a stronger version
of Theorem 1, replacing P

({
a|pi|

1+am

})
by P

({
a|p̂i|

1+am

})
.

The statement (29) implies that for sufficiently small a0 and suitable ν > 0∣∣∣∂1/a0∂
wL a0,a

l,n (p1, · · · , pn)
∣∣∣≤ a2

0

(
1
a
+m

)5−n−|w|(
log

1+a0m
a0m

)ν

P4

({
a|pi|

1+am

})
(30)

Integration of the bound (30) over the lattice cutoff 1/a0 immediately proves the convergence of all
L a0,a

l,n (p1, · · · , pn) for fixed a to finite limits when a0→ 0. In particular, one obtains for all â0 < a0

and (pi)1≤i≤n ∈Ba0 ,∣∣∣L a0,∞
l,n (p1, ..., pn)−L â0,∞

l,n (p1, ..., pn)
∣∣∣< a0m5−n

(
log

1
a0m

)ν

P5

({
|pi|
m

})
(31)

Thus, due to the Cauchy criterion in C ∞(R+) (w.r.t. to a0) finite limits exist to all loop orders l.
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Proof. The statement (28) has to be obtained first. The induction scheme to prove the statements
proceeds upwards in l, for given l upwards in n, and for given (n, l) downwards in |w| starting from
some arbitrary |wmax| ≥ 3. The induction works because the terms on the r.h.s. of the FE always are
prior to the one of the l.h.s. in the inductive order. So the bounds (28) and (29) may be used as an
induction hypothesis on the r.h.s. Then we integrate the FE, where the terms with n+ |w| ≥ 5 are
integrated down from 1/a0 to 1/a because of the boundary conditions (25)-(26) and the terms with
n+ |w| ≤ 4 at the renormalization point are integrated upwards from 0 to 1/a since we have (27).
Therefore, we can write

∂
wL a0,a

l,n (0, · · · ,0) = ∂
wL a0,∞

l,n (0, · · · ,0)+
∫ 1/a

0
dλ ∂λ ∂

wL
a0,

1
λ

l,n (0, · · · ,0) (32)

Once a bound has been obtained at the renormalization point, it is possible to move away from the
renormalization point using the integrated Taylor formula,

∂
wL a0,a

l,n (p1, · · · , pn) = ∂
wL a0,a

l,n (0, · · · ,0)+
n

∑
i=1

4

∑
µ=1

pi,µ

∫ 1

0
dt
(

∂pi,µ ∂
wL a0,a

l,n

)
(t p1, · · · , t pn) (33)

(A) Boundedness: To start the induction, we prove the bound (28) at the tree level. The classical
interaction contains no terms linear or quadratic in the fields. To bring the system of flow
equations to bear, however, at first the crucial properties,

L a0,a
0,2 (p,−p) = 0, L a0,a

0,4 (p1, · · · , p4) = f

have to be inferred directly from the representation (6). Since the Z2-symmetry φ →−φ , is
not broken by the renormalization procedure, we note

L a0,a
l,n (p1, · · · , pn) = 0, ∀n odd , ∀l

Thus, the bound evidently holds for n+ |w| ≤ 4. For n+ |w| > 4 (the irrelevant cases) pro-
ceed inductively ascending in n. For given n the various w dealt with in arbitrary order, by
integrating the respective flow equation (9) from the initial point 1/a0.
Using the induction hypothesis for L a0,a

0,n1+1 and L a0,a
0,n2+1, and (12), (15) we obtain a bound for

the quadratic part of the r.h.s. of (9)∣∣∣∂ w1L a0,a
0,n1+1(p1, · · · , pn1 , p) ∂

w3∂1/aCa0,a(p̂)∂ w2L a0,a
0,n2+1(−p, pn1+1, · · · , pn)

∣∣∣
≤
(

1
a
+m

)4−n−|w|−1

P

({
|pi|

λ +m

})
(34)

Therefore ∣∣∣∣∂λ ∂
wL

a0,
1
λ

0,n (p1, · · · , pn)

∣∣∣∣≤ (λ +m)4−n−|w|−1 P

({
|pi|

λ +m

})
(35)

This proves (28) at the tree order.
To generate inductively the bounds (28) for higher loop orders, we use them in bounding
the r.h.s of the FE (9), together with the bound (14) in the linear and in the quadratic term
respectively. For the linear term of the r.h.s. of the FE (9), we use the induction hypothesis
for ∂ wL a0,a

l−1,n+2, and we obtain the upper bound

∫
k,Ba0

(2a3)e−a2(k̂2+m2)P

(
a|k|

1+am
,

{
|pi|

λ +m

})
Using lemma 1 this can be turned into the bound∫

k,Ba0

(2a3)e−a2(k̂2+m2)P

(
a|k|

1+am
,

{
|pi|

λ +m

})
≤ 1

a
P̃

({
|pi|

λ +m

})
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Hence∣∣∣∣∣
∫

k,Ba0

∂1/aCa0,a(k̂)∂ wL a0,a
l−1,n+2(−k, · · · ,k)

∣∣∣∣∣≤
(

1
a
+m

)4−n−|w|−1

P1

(
log

am+1
am

)
×P2

({
|pi|

λ +m

})
For the quadratic part of the flow equations (9), we use the induction hypothesis for ∂ w1L a0,a

l1,n1+1
and ∂ w2L a0,a

l2,n2+1 together with the bound (13) and we obtain∣∣∣∂ w1L a0,a
l1,n1+1(p1, · · · , pn1 , p)∂ w3∂1/aCa0,a(p̂)∂ w2L a0,a

l2,n2+1(−p, pn1+1, · · · , pn)
∣∣∣

≤
(

1
a
+m

)4−n−|w|−1

P1

(
log

1+am
am

)
P2

({
|pi|

λ +m

})
(36)

Therefore∣∣∣∂1/a∂
wL a0,a

l,n (p1, · · · , pn)
∣∣∣≤ (1

a
+m

)4−n−|w|−1

P1

(
log

am+1
am

)
P2

({
|pi|

λ +m

})
(37)

Following the order of the induction stated before, for the irrelevant cases n+ |w| ≥ 5 the
bound (37) is integrated downwards from 1/a to 1/a0. For n+ |w| ≥ 5 such that n 6= 2,
integrating from 1/a to 1/a0 yields∣∣∣∂ wL a0,a

l,n (p1, · · · , pn)
∣∣∣≤ ∫ 1/a0

1/a
dλ (λ +m)4−n−|w|−1 P1

(
log

λ +m
m

)
P2

({
|pi|

λ +m

})
We now have, see9

∫ 1/a0

1/a
dλ (λ +m)4−n−|w|−1 P

(
log

λ +m
m

)
<

(
1
a
+m

)4−n−|w|
P̃

(
log

1+am
am

)
For the particular case (n, |w|) = (2,2), (37) is integrated from 0 to 1/a0 at zero momenta,∣∣∣∂p2L

a0,a0
l,2 (0,0)−∂p2L

a0,∞
l,2 (0,0)

∣∣∣≤ ∫ 1
a0

0
dλ (λ +m)−1 P

(
log

λ +m
m

)
≤P

(
log

1+a0m
a0m

)
This gives

|bl(a0)| ≤P

(
log

1+a0m
a0m

)
(38)

It then follows from (26) that the 2-point function and its derivatives at a = a0 can be bounded∣∣∣∂ wL a0,a0
l,2 (p,−p)

∣∣∣≤ 2|bl(a0)|a|w|−2
0 C

for some positive constant C depending on |w|, which implies for all |w| ≥ 3

∣∣∣∂ wL a0,a0
l,2 (p,−p)

∣∣∣≤ ( 1
a0

+m
)2−|w|

P

(
log

1+a0m
a0m

)
≤
(

1
a
+m

)2−|w|
P

(
log

1+am
am

)
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Integrating the inductive bound from 1/a to 1/a0 for n = 2, |w| ≥ 3 then gives∣∣∣∂ wL a0,a
l,2 (p,−p)

∣∣∣≤ ∫ 1/a0

1/a
dλ

∣∣∣∣∂λ ∂
wL

a0,
1
λ

l,2 (p,−p)
∣∣∣∣+ ∣∣∣∂ wL a0,a0

l,2 (p,−p)
∣∣∣

≤
(

1
a
+m

)2−|w|
P1

(
log

1+am
am

)
P2

({
|pi|

λ +m

})
For the relevant terms (n+ |w| ≤ 4), we start with the case (n = 2, |w| = 2) and continue to
(n= 2, |w|= 1) and (n= 2,w= 0). Bounding equation (32) in absolute value, we obtain using
the bound (37) at vanishing momenta:∣∣∣∣∫ 1/a

0
dλ∂ 1

λ

∂
wL

a0,
1
λ

l,n (0, · · · ,0)
∣∣∣∣≤ ∫ 1/a

0
dλ (λ +m)4−n−|w|−1 P

(
log

1+am
am

)
≤ (λ +m)4−n−|w|P

(
log

1+am
am

)
(39)

Hence, the assertion (28) is established at the renormalization point. In each case extension
to general momenta via (33) is guaranteed by the bounds established before. This concludes
the proof of (28).

(B) Convergence: The bound (30) follows on applying the same inductive scheme to bound the
solutions of the FE, integrated over 1/a and then derived w.r.t. 1/a0. The proof is analogous
to6,9 apart from the changes induced by the lattice momenta p̂ which were dealt with in the
proof of (28).

IV. RESTORATION OF O(4) SYMMETRY

A. The flow equations

The lattice breaks the rotation and translation symmetries. In order to define the rotated scalar
field on the lattice, we consider the rotated lattice

Λ
O
a0

:= OΛa0 , O ∈ O(4)

The rotated scalar field φ̂ O
a0

is defined by

φ̂
O
a0

:= φ̂ |
ΛO

a0

where φ̂ is the continuum scalar field. For our purposes, φ̂ O
a0

is considered to live in l2(ΛO
a0
) and the

Brillouin zone associated to the rotated lattice ΛO
a0

is

BO
a0

:= O

(]
− π

a0
,

π

a0

[4
)

The Fourier transform of φ̂ O
a0

is defined by

φ
O
a0
(p) := a4

0 ∑
x∈ΛO

a0

e−ip·x
φ̂

O
a0
(x)

The inverse Fourier transform is defined by

φ̂
O
a0
(x) :=

∫
BO

a0

d4 p
(2π)4 φ̂

O
a0
(p)eip·x
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such that the Plancherel identity is preserved.
The bare action associated to the rotated field is defined by

La0,a0
O (φ̂ O

a0
) := a4

0 ∑
x∈ΛO

a0

{
f

4!
(
φ̂

O
a0

)4
+d(a0)

(
φ̂

O
a0

)2
+b(a0)

(
∂̂

O
µ,a0

φ̂
O
a0

)2
+ c(a0)

(
φ̂

O
a0

)4
}

Note that the counter terms d(a0), b(a0) and c(a0) are the same as in the bare action La0,a, since
they are space-time independent and depend only on the spacing a0 between the points of the lattice.
The lattice derivative on the rotated lattice is defined as follows for φ̂ O

a0
∈ l2

(
ΛO

a0

)
(

∂̂
O
µ,a0

φ̂
O
a0

)
(x) :=

φ̂ O
a0
(x+a0eO

µ )− φ̂ O
a0
(x)

a0
, x ∈ Λ

O
a0

where eO
µ := Oeµ is the rotated unit vector in the µ th direction.

The flowing propagator is defined by

ĈO,a0,a(x,y) :=
∫

BO
a0

d4 p
(2π)4 eip·(x−y)Ca0,a(p)

where Ca0,a is defined as before,

Ca0,a(p) :=
1

p̂2 +m2

(
e−a2

0(p̂2+m2)− e−a2(p̂2+m2)
)

The lattice momentum p̂ was defined in (2). The derivation of the FE corresponding to the rotated
field follows the same steps as before, starting from the functional integral

e−
1
h̄

(
L

a0 ,a
O (φ̂O

a0
)+Ia0 ,a

)
:=
∫

dµ
O
a0,a (Φ)e−

1
h̄ L

a0,a0
O (φ̂O

a0
+Φ) (40)

where dµO
a0,a is uniquely defined by the covariance operator ĈO,a0,a,

∫
dµ

O
a0,a(Φ)e

〈Φ,J〉
l2(ΛO

a0) := e
1
2 〈J,Ĉ

O,a0 ,aJ〉
l2(ΛO

a0) , J ∈ l2
(
Λ

O
a0

)
In terms of momenta in Ba0 , the propagator Ca0,a has the following form

Ca0,a(Op) =
1

(p̂O)2 +m2

(
e−a2

0((p̂O)2+m2)− e−a2((p̂O)2+m2)
)

The FE are obtained by differentiating (40) w.r.t. 1/a,

∂1/aLa0,a
O =

h̄
2
〈 δ

δ φ̂ O
a0

,Ċa0,a ∗ δ

δ φ̂ O
a0

〉
l2
(

ΛO
a0

)La0,a
O − 1

2
〈

δLa0,a
O

δ φ̂ O
a0

,Ċa0,a ∗
δLa0,a

O

δ φ̂ O
a0

〉
l2
(

ΛO
a0

) (41)

We expand in a formal power series w.r.t. h̄ to select the loop order,

La0,a
O (φ̂ O

a0
) =

+∞

∑
l=0

h̄lLa0,a
O,l (φ̂

O
a0
)

From La0,a
O,l we obtain the CAS of loop order l in momentum space Ba0 as

δ
4[

2π
a0

](Op1 + · · ·+Opn)L
a0,a,O

l,n (Op1, · · · ,Opn) := (2π)4(n−1)
δφO

a0
(Op1)

· · ·δφO
a0
(Opn)

La0,a
O,l |φO

a0
≡0
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From the functional flow equations (9), we obtain the perturbative flow equations for the CAS n-
point functions

∂1/a∂
wL a0,a,O

l,n (Op1, · · · ,Opn) (42)

=
1
2

∫
k,Ba0

∂
wL a0,a,O

l−1,n+2(Ok,Op1, · · · ,Opn,−Ok)∂1/aCa0,a,O(k̂O)

−1
2

′

∑
l1,l2

′

∑
n1,n2

′

∑
w1,w2,w3

cwi

[
∂

w1L a0,a,O
l1,n1+1(Op1, · · · ,Opn1 ,Op)∂ w3∂1/aCa0,a,O(p̂O)

∂
w2L a0,a,O

l2,n2+1(−Op, · · · ,Opn)
]

rsy

Op≡−Op1−·· ·−Opn1 ≡ Opn1+1 + · · ·+Opn

[
2π

a0

]
, (pi)1≤i≤n ∈Ba0

where we used the same conventions as in (9).

B. Proof of rotation symmetry restoration

The O(4)-symmetry is restored for a0→ 0 if and only if ∀(pi)1≤i≤n ∈ R4 , ∀O ∈ O(4) ∃ã0 ≥ 0,

lim
a0→0,0≤a0≤ã0

lim
a→∞

(
L a0,a

l,n (p1, ..., pn)−L a0,a,O
l,n (Op1, ...,Opn)

)
= 0 (43)

Here we introduced the parameter ã0 as in (11). For (pi)1≤i≤n ∈Ba0 we thus define

∂
wDa0,a

l,n (p1, ..., pn) := ∂
wL a0,a

l,n (p1, · · · , pn)−∂
wL a0,a,O

l,n (Op1, · · · ,Opn)

From the flow equations (42) and (9), we can derive a FE for ∂ wDa0,a
l,n (p1, · · · , pn) :

∂1/a∂
wDa0,a

l,n (p1, ..., pn) =
1
2

∫
k,Ba0

∂1/aCa0,a(k̂)∂ wDa0,a
l−1,n+2(k, p1, ..., pn,−k) (44)

+
1
2

∫
k,Ba0

∂
wL a0,a

l−1,n+2(Ok,Op1, · · · ,Opn,−Ok)
[
∂1/aCa0,a(k̂)−∂1/aCa0,a(k̂O)

]
−1

2

′

∑
l1,l2
n1,n2

′

∑
w1,w2,w3

cwi

[
∂

w1L a0,a
l1,n1+1(p1, · · · , pn1)∂

w3∂1/aCa0,a(p̂)∂ w2Da0,a
l2,n2+1(−p, · · · , pn)

+ ∂
w1Da0,a

l1,n1+1(p1, · · · , pn1)∂
w3∂1/aCa0,a(p̂O)∂ w2L a0,a,O

l2,n2+1(−Op, · · · ,Opn)

+ ∂
w1L a0,a

l1,n1+1(p1, · · · , pn1)∂
w3(∂1/aCa0,a(p̂)−∂1/aCa0,a(p̂O))∂ w2L a0,a,O

l2,n2+1(−Op, · · · ,Opn)
]

rsy

p1 + · · ·+ pn ≡ 0
[

2π

a0

]
Op1 + · · ·+Opn ≡ 0

[
2π

a0

]
, (pi)1≤i≤n ∈Ba0

Restoration of O(4)-symmetry, i.e.

lim
a0→0,a→∞

Da0,a
l,n (p1, ..., pn) = 0

follows from the following Theorem.
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Theorem 2. ∀n, ∀w, ∀(pi)1≤i≤n ∈Ba0 such that ∑
n
i=1 pi,∑

n
i=1 Opi ≡ 0

[
2π

a0

]
,

∣∣∣∂ wDa0,a
l,n (p1, · · · , pn)

∣∣∣≤ a0

(
1
a
+m

)5−n−|w|
P1

(
log

1+a0m
a0m

)
P2

({
a|pi|

1+am

})
(45)

where Pi denote polynomials with nonnegative coefficients, that depend, as well as the degree of
the polynomials on l, n, w but not on m, {pi}, a, a0.

C. Proof of Theorem 2

Proof. We prove (45) using the inductive scheme indicated previously. The only terms in which
(45) cannot be used as an induction hypothesis are∫

k,Ba0

∂
wL a0,a,O

l−1,n+1(Ok,Op1, · · · , pn,−Ok)
[
∂1/aCa0,a(k̂)−∂1/aCa0,a(k̂O)

]
(46)

and

∂
w1L a0,a

l1,n1+1(p1, · · · , pn1)
(
∂

w3∂1/aCa0,a(p̂)−∂
w3∂1/aCa0,a(p̂O)

)
∂

w2L a0,a,O
l1,n1+1(−Op, · · · ,Opn) (47)

Our bound on Da0,a
l,n will be verified by proving it for these difference terms.

• We first bound (46). Using inequality (28) for ∂ wL a0,a,O
l,n (Op1, · · · ,Opn) which can be proven

as it was shown for ∂ wL a0,a
l,n , we obtain

∣∣∣∣∣
∫

k,Ba0

∂
wL a0,a,O

l−1,n+1(Ok,Op1, · · · ,Opn,−Ok)
[
∂1/aCa0,a(k̂)−∂1/aCa0,a(k̂O)

]∣∣∣∣∣
≤
∫

k,Ba0

2a3
(

1
a
+m

)3−n−|w| ∣∣∣e−a2(k̂2+m2)− e−a2((k̂O)2+m2)
∣∣∣

×P1

(
log

1+am
am

)
P2

(
a|k|

1+am
,

{
a|pi|

1+am

})
We define

I O
a0

:=

{
k ∈Ba0 :

4

∑
µ=1

sin2 a0kµ

2
≤

4

∑
µ=1

sin2 a0(Ok)µ

2

}

We decompose the integral over the Brillouin zone Ba0 into integrals over I O
a0

and I O
a0

c,

∫
k,Ba0

2a3
∣∣∣e−a2(k̂2+m2)− e−a2(k̂O)2+m2)

∣∣∣P(
a|k|

1+am
,

{
a|pi|

1+am

})
=
∫

k,I O
a0

2a3e−a2(k̂2+m2)
∣∣∣e−a2((k̂O)2−k̂2)−1

∣∣∣P(
a|k|

1+am
,

{
a|pi|

1+am

})
+
∫
(k,I O

a0
)c

2a3e−a2((k̂O)2+m2)
∣∣∣e−a2(k̂2−(k̂O)2)−1

∣∣∣P(
a|k|

1+am
,

{
a|pi|

1+am

})

From the definition of I O
a0

, we have

∀k ∈I O
a0
, |k̂| ≤ |k̂O| ∀k ∈I O

a0

c
, |k̂|> |k̂O|
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which implies that ∣∣∣e−a2((k̂O)2−k̂2)−1
∣∣∣≤ a2 ∣∣(k̂O)2− k̂2∣∣ , ∀k ∈I O

a0

∣∣∣e−a2(k̂2−(k̂O)2)−1
∣∣∣≤ a2 ∣∣(k̂O)2− k̂2∣∣ , ∀k ∈I O

a0

c

Using the bound (23), we obtain

a2 ∣∣(k̂O)2− k̂2∣∣≤ a0

a
P (a|k|) (48)

This gives the following bound∫
k,I O

a0

a3e−a2(k̂2+m2)
∣∣∣e−a2((k̂O)2−k̂2)−1

∣∣∣ P

(
a|k|

1+am
,

{
a|pi|

1+am

})

≤ a0

a

∫
k,Ba0

a3e−a2(k̂2+m2) P

(
a|k|,

{
a|pi|

1+am

})
≤ a0

a
P̃

({
a|pi|

1+am

})
(49)

where the last inequality follows from lemma 1. Similarly, we obtain for the second integral
depending over I O

a0

c

∫
k,I O

a0
c
a3e−a2((k̂O)2+m2)

∣∣∣e−a2(k̂2−(k̂O)2)−1
∣∣∣P(

a|k|
1+am

,

{
a|pi|

1+am

})
≤ a0

a

∫
k,I O

a0
c
a3e−a2((k̂O)2+m2) P

(
a|k|,

{
a|pi|

1+am

})
Performing the change of variables k→ Ok yields∫

k,I O
a0

c
a3e−a2((k̂O)2+m2) P

(
a|k|,

{
a|pi|

1+am

})
=
∫

k,O(I O
a0
)c

a3e−a2(k̂2+m2) P

(
a|O−1k|,

{
a|pi|

1+am

})
≤
∫

k,Bαa0

a3e−a2(k̂2+m2) P

(
a|k|,

{
a|pi|

1+am

})
≤ P̃

({
a|pi|

1+am

})
(50)

where α is a parameter strictly less than 1 such that OBa0 ⊂Bαa0 , and the last inequality
follows again from lemma 1. Combining (49) and (50) the first difference term is bounded∣∣∣∣∣

∫
k,Ba0

∂
wL a0,a,O

l−1,n+1(Ok,Op1, · · · ,Opn,−Ok)
[
∂1/aCa0,a(k̂)−∂1/aCa0,a(k̂O)

]∣∣∣∣∣
≤ a0

(
1
a
+m

)4−n−|w|
P1

(
log

1+a0m
a0m

)
P2

({
a|pi|

1+am

})
(51)

• The second step is to bound (47). For this step we use lemma 2.

Using (28) for ∂ w1L a0,a
l1,n1+1 and ∂ w2L a0,a,O

l2,n2+1 we obtain∣∣∣∂ w1L a0,a
l1,n1+1

(
∂

w3∂1/aCa0,a(p̂)−∂
w3∂1/aCa0,a(p̂O)

)
∂

w2L a0,a,O
l2,n2+1

∣∣∣
≤ a0

(
1
a
+m

)4−n−|w|
P1

(
log

1+a0m
a0m

)
P2

({
a|pi|

1+am

})
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Using the induction bound on ∂ wiDa0,a
li,ni+1 and the bound (15), we deduce that∣∣∣∂ w jL a0,a

l j ,n j+1 ∂
w3∂1/aCa0,a(p̂)∂ wiDa0,a

li,ni+1

∣∣∣
≤ a0

(
1
a
+m

)4−n−|w|
P1

(
log

1+a0m
a0m

)
P2

({
a|pi|

1+am

})
Combining all the previous estimates of each term of the r.h.s. of the FE (44), we obtain

∣∣∣∂1/a∂
wDa0,a

l,n (p1, · · · , pn)
∣∣∣≤ a0

(
1
a
+m

)4−n−|w|
P1

(
log

1+a0m
a0m

)
P2

({
a|pi|

1+am

})
(52)

• After these preparation steps, we integrate the flow equations (44):

C1) For the irrelevant terms, because of the boundary conditions

∂
wDa0,a0

l,n (p1, · · · , pn)= 0, ∀n+ |w| ≥ 5 (n 6= 2)

∂
wDa0,a0

l,2 (p,−p)= bl(a0)∂
w((p̂O)2− p̂2), ∀|w| ≥ 3

we integrate from 1/a0 to 1/a. We exclude for the moment (n, |w|) ∈ {(4,1);(2,3)}
which have to be treated as relevant in this case.
∀n+ |w|> 5, such that n 6= 2 we have∣∣∣∂ wDa0,a

l,n (p1, · · · , pn)
∣∣∣≤ ∫ 1/a0

1/a
dλ

∣∣∣∣∂λ ∂
wD

a0,
1
λ

l,n (p1, · · · , pn)

∣∣∣∣
≤ a0P1

(
log

1+a0m
a0m

)
P2

({
a|pi|

1+am

})
×
∫ 1/a0

1/a
dλ (λ +m)5−n−|w|−1

≤ a0

(
1
a
+m

)5−n−|w|
P1

(
log

1+a0m
a0m

)
P2

({
a|pi|

1+am

})
For n = 2 and |w| ≥ 4, the boundary conditions are not equal to zero. Therefore,∣∣∣∂ wDa0,a

l,2 (p,−p)
∣∣∣≤ ∫ 1/a0

1/a dλ

∣∣∣∣∂λ ∂ wD
a0,

1
λ

l,2 (p,−p)
∣∣∣∣+ ∣∣∣∂ wDa0,a0

l,2 (p,−p)
∣∣∣

We recall that

∂
wDa0,a0

l,2 (p,−p) = bl(a0)∂
w ((p̂O)2− p̂2)

Due to (38)

∂p2L
a0,a0

l,2 (0,0) = 2bl(a0) ≤ P

(
log

1+a0m
a0m

)
(53)

(21), (22) together with (53) imply

∣∣∣∂ wDa0,a
l,2 (p,−p)

∣∣∣≤ a0

(
1
a
+m

)3−n−|w|
P1

(
log

1+a0m
a0m

)
P2

(
a|p|

1+am

)
(54)

C2) For the cases n+ |w| ≤ 5, the claim (45) has to be deduced from the respective integrated
flow equation (44) at the renormalization point followed by an extension to general
momenta with the aid of the Taylor Formula (33) applied to Da0,a

l,2 . We proceed in the
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order of the induction starting with the cases (n = 2, |w|= 3), (n = 2, |w|= 2) and going
down in |w|. The integral in

∂
wDa0,a

l,n (0, · · · ,0) = ∂
wDa0,∞

l,n (0, · · · ,0)+
∫ 1/a

0
dλ∂

wD
a0,1/λ

l,n (0, · · · ,0) (55)

is bounded using (52) at vanishing momenta:∣∣∣∣∫ 1/a

0
dλ∂

wD
a0,1/λ

l,n (0, · · · ,0)
∣∣∣∣≤ a0

∫ 1/a

0
dλ (λ +m)5−n−|w|−1 P

(
log

1+a0m
a0m

)
≤ a0

( 1
a +m

)5−n−|w|
P
(

log 1+a0m
a0m

)
Hence, the assertion is established at the renormalization point. In each case extension
to general momenta via (33) is guaranteed by bounds established before. This concludes
the proof of Theorem 2.

V. TRANSLATION INVARIANCE

A. Some properties of the Schwartz space

We recall the definition of the Schwartz space

S
(
R4n) :=

{
f ∈ C ∞

(
R4n) | ∀(α,β ) ∈ N4n×N4n, sup

x∈R4n

∣∣∣xα Dβ f (x)
∣∣∣<+∞

}
The Schwartz space is a Fréchet space endowed with a topology induced by the filtrant family of
semi-norms

Np (·) = ∑
|α|,|β |≤p

‖·‖
α,β , p ∈ N

where

‖ f‖
α,β := sup

x∈R4n

∣∣∣xα Dβ f (x)
∣∣∣

Lemma 3. Let f ∈S
(
R4n
)

and Pr a polynomial of degree r, we have the following bound

|Pr (x1, · · · ,xn) f (x1, · · · ,xn)| ≤

(
n

∏
i=1

1
(1+ |xi|)s

)
Ns+r ( f ) , ∀s ∈ N

The proof of Lemma 3 which we do not reproduce here uses the definition of Schwartz functions and
will be useful in the sequel. For more details about the properties of Schwartz space and tempered
distributions, we refer the reader to12.

B. Translation invariance

The lattice breaks Euclidean translation invariance. In this section, we prove that the continuum
limit restores translation invariance.
The regularized (CAS) n-point functions in position space are tempered distributions that we define
by their Fourier transform, that is for f ∈S (R4n)

〈L a0,a
l,n,Λa0

, f 〉S ′ ,S :=
∫
Bn

a0

d4 p1···d4 pn
(2π)4n L a0,a

l,n (p1, · · · , pn)δ
(4)[

2π
a0

](p1 + · · ·+ pn)F−1( f )(p1, · · · , pn)
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where

δ
(4)[

2π
a0

](p1 + · · ·+ pn) := ∑
k∈Z4

δ
(4)
(

p1 + · · ·+ pn−
2kπ

a0

)

accounts for the invariance of L a0,a
l,n under lattice translations and F−1( f ) is the inverse Fourier

transform of f . L a0,a
l,n,Λa0

is well defined as a tempered distribution since

L a0,a
l,n (p1, · · · , pn)δ

(4)[
2π
a0

](p1 + · · ·+ pn)

is a 2π

a0
-periodic distribution12.

Similarly, we define the renormalized (CAS) n-point functions in the position space

〈L 0,∞
l,n,x, f 〉S ′ ,S :=

∫
R4n

d4 p1···d4 pn
(2π)4n L 0,∞

l,n (p1, · · · , pn)δ (4)(p1 + · · ·+ pn)F−1( f )(p1, · · · , pn)

L 0,∞
l,n,x denotes the continuum limit position space (CAS) n-point function. It is a tempered distribu-

tion for which the translation by a vector c ∈ R4 is defined as

〈τcL
0,∞

l,n,x, f 〉S ′ ,S := 〈L 0,∞
l,n,x,τ−c f 〉S ′ ,S , ∀ f ∈S

(
R4n)

and

(τ−c f )(p1, · · · , pn) := f (p1 + c, · · · , pn + c)

Therefore,

〈τcL
0,∞

l,n,x, f 〉S ′ ,S

=
∫

R4n

n

∏
i=1

d4 pi

(2π)4n L 0,∞
l,n (p1, · · · , pn)δ

(4)(p1 + · · ·+ pn)e−i(p1+···+pn)·cF−1( f )(p1, · · · , pn)

which implies

〈τcL
0,∞

l,n,x, f 〉S ′ ,S = 〈L 0,∞
l,n,x, f 〉S ′ ,S , ∀ f ∈S

(
R4n)

The continuum limit is clearly invariant under translations. Thus, proving the translation invariance
of the continuum limit amounts to establishing the following convergence

Theorem 3. Let f ∈S
(
R4n
)
,

〈L a0,a
l,n,Λa0

, f 〉S ′ ,S −→ 〈L
0,∞

l,n,x, f 〉S ′ ,S for a0→ 0,a→ ∞ (56)

The proof of Theorem 3 relies on the following lemma

Lemma 4. Let f ∈S
(
R4n
)
,

〈δ (4)[
2π
a0

](p1 + · · ·+ pn), f 〉S ′ ,S −→ 〈δ
(4)(p1 + · · ·+ pn), f 〉S ′ ,S for a0→ 0 (57)

C. Proof of lemma 4

Proof. Let f ∈ R4n, using lemma 3, one can verifies that∣∣∣〈δ 4 (p1 + · · ·+ pn) , f 〉S ′ ,S
∣∣∣≤CN5(n−1)( f )
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which proves that δ 4 (p1 + · · ·+ pn) is a tempered distribution. We have that

〈δ (4)[
2π
a0

], f 〉S ′ ,S =
∫

R4n
d4 p1 · · ·d4 pnδ

(4)[
2π
a0

](p1 + · · ·+ pn) f (p1 + · · ·+ pn)

=
∫

R4(n−1)
d4 p2 · · ·d4 pn ∑

k∈Z4

f

(
2kπ

a0
−

n

∑
i=2

pi + · · ·+ pn

)

We write

∑
k∈Z4

f

(
2kπ

a0
−

n

∑
i=2

pi, · · · , pn

)
= f

(
−

n

∑
i=2

pi, · · · , pn

)
+ ∑

k∈Z4,∗
f

(
2kπ

a0
−

n

∑
i=2

pi, · · · , pn

)

Since f ∈S (R4n), we have the following bound for any k ∈ Z4,∗,∣∣∣∣∣ f
(

2kπ

a0
−

n

∑
i=2

pi, p2, · · · , pn

)∣∣∣∣∣≤ 1(
|∑n

i=2 pi|2 +
∣∣∣ 2kπ

a0
−∑

n
i=2 pi

∣∣∣2)4

n

∏
i=2

1

(1+ |pi|)5 Ns( f )

where s = 5(n−1)+8 and

Ns( f ) := sup
pi∈R4

sup
|α|≤13n

|p1|α1 · · · |pn|αn | f (p1 + · · ·+ pn)|

Using

1
|a|2 + |b|2

≤ 2
|a+b|2

, ∀a,b ∈ Rp,∗

we obtain ∣∣∣∣∣ f
(

2kπ

a0
−

n

∑
i=2

pi, p2, · · · , pn

)∣∣∣∣∣≤C
(

a0

|k|

)8 n

∏
i=2

1

(1+ |pi|)5 Ns( f )

Using

∑
k∈Z4,∗

1
|k|8
≤ ∑

ki∈Z∗

4

∏
i=1

1
|ki|2

=

(
π2

3

)4

<+∞

we obtain

〈δ (4)[
2π
a0

], f 〉S ′ ,S =
∫

R4(n−1) d4 p1 · · ·d4 pn f (−∑
n
i=2 pi + · · ·+ pn)+C a8

0 Ns( f )

= 〈δ (4)(p1 + · · ·+ pn), f 〉S ′ ,S +C a8
0 Ns( f )

together with the useful bound ∣∣∣∣∣〈δ (4)[
2π
a0

], f 〉S ′ ,S

∣∣∣∣∣≤C(1+a8
0)Ns( f ) (58)

This proves that for a0→ 0 we have

〈δ (4)[
2π
a0

](p1 + · · ·+ pn), f 〉S ′ ,S →a0→0 〈δ (4)(p1 + · · ·+ pn), f 〉S ′ ,S
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D. Proof of Theorem 3

Proof. We recall the boundedness inequality (28) for the (CAS) n-point functions. For all (pi)1≤i≤n ∈
Ba0 such that ∑

n
i=1 pi ≡ 0

[
2π

a0

]
, we have

∣∣∣∂ wL a0,a
l,n (p1, · · · , pn)

∣∣∣≤ (1
a
+m

)4−n−|w|
P1

(
log

1+am
am

)
P2

({
a|pi|

1+am

})
This proves that L a0,a

l,n are C ∞ w.r.t. to the momenta and are at most of polynomial growth. There-
fore,

∀ f ∈S
(
R4n) , 1Ba0

(p1, · · · , pn)L
a0,a

l,n (p1, · · · , pn) f ∈S
(
R4n)

Taking the limit in the boundedness inequality (28), the same reasoning applies to L 0,∞
l,n (p1, · · · , pn)

to prove that

∀ f ∈S
(
R4n) , L 0,∞

l,n (p1, · · · , pn) f ∈S
(
R4n)

We write

ga0,a(p1, · · · , pn) := 1Ba0
(p1, · · · , pn)L

a0,a
l,n (p1, · · · , pn) f (p1, · · · , pn)

g(p1, · · · , pn) := L 0,∞
l,n (p1, · · · , pn) f (p1, · · · , pn)

Using (58), we obtain ∣∣∣∣∣〈δ (4)[
2π
a0

],ga0,a−g〉

∣∣∣∣∣≤C(1+a8
0) Ns(ga0,a−g)

Taking the limit â0→ 0 in (31) we find for all (pi)1≤i≤n ∈Ba0∣∣∣L a0,∞
l,n (p1, · · · , pn)−L 0,∞

l,n (p1, · · · , pn)
∣∣∣≤ a0m5−n

(
log

1
a0m

)ν

P

({
|pi|
m

})
where ν is the same constant of (31). Therefore, for any polynomial Q with nonnegative coeffi-

cients we obtain∣∣∣∣Q({ |pi|
m

})(
L a0,∞

l,n (p1, · · · , pn)− L 0,∞
l,n (p1, · · · , pn)

)
f
∣∣∣

≤ a0m5−n
(

log
1

a0m

)ν

P̃

({
|pi|
m

})
| f (p1, · · · , pn)|

Thus,

Ns(ga0,a−g)≤ a0m5−n
(

log
1

a0m

)ν

Nr( f )

which implies using (58)

〈δ (4)[
2π
a0

],ga0,a−g〉 →a0→0,a→∞ 0

Lemma 4 gives that

〈δ (4)[
2π
a0

]−δ
(4),g〉 →a0→0,a→∞ 0
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so that

〈δ (4)[
2π
a0

],ga0,a〉 →a0→0,a→∞ 〈δ (4),g〉

that is for all f ∈S (R4n),

〈L a0,a
l,n,Λa0

, f 〉S ′ ,S −→ 〈L
0,∞

l,n,x, f 〉S ′ ,S for a0→ 0,a→ ∞

CONCLUDING REMARKS

We have presented an alternative proof of the perturbative renormalizability of massive lattice
regularized φ 4

4 -theory. The starting point were the bounds (28)-(30) which prove the existence of
the continuum limit. In the flow equation formalism, they serve at the same time as induction
hypotheses for the inductive proof. Bounds of this sort have been established rigorously for all
theories of physical interest, including gauge theories2.

In this context it is also interesting to study the difference

L a0,a
l,n,Λ0

−L a0,a
l,n,a0

where L a0,a
l,n,Λ0

denotes the momentum space regularized correlation functions and L a0,a
l,n,a0

denotes the
lattice regularized correlation functions. The UV-cutoff can be related to the lattice parameter by
Λ0 = 1/a0, similarly for the corresponding flowing parameters Λ= 1/a. The study of this difference
by flow equations should allow to prove that in the limit a0→ 0 and a→∞, the difference vanishes,
implying consistency, that is the two regularization schemes converge to the same limit. This would
be an alternative way to prove that the continuum limit when the lattice regularization is removed
yields O(4)-symmetric correlation functions.

We are confident that our approach could be generalized to massless lattice regularized theories.
In this case the appearing infrared singularities have to be controlled in a similar way as it has been
done for theories with momentum cutoff regularization2. A particularly interesting subject is the
extension to gauge theories since the lattice regularization respects a priori gauge invariance. It
seems however that analyzing the flow equations still requires a gauge fixing procedure. In any case
the important issue is to prove that the continuum limit respects the continuum Ward identities for
suitable renormalization conditions.
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