
HAL Id: hal-04459244
https://hal.science/hal-04459244v1

Submitted on 15 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mapping VOTable Data on Data Models:
Implementation Status and Prospect

Laurent Michel, Julien Abid, François Bonnarel, Mark Cresitello-Dittmar,
Somia Floret, Gille Landais, Mireille Louys, Gregory Mantelet,

François-Xavier Pineau, Jesus Salgado

To cite this version:
Laurent Michel, Julien Abid, François Bonnarel, Mark Cresitello-Dittmar, Somia Floret, et al.. Map-
ping VOTable Data on Data Models: Implementation Status and Prospect. ADASS 2023 Astronomical
Data Analysis Software & Systems XXXIII, University of Arizona, Nov 2023, Tucson, United States.
�hal-04459244�

https://hal.science/hal-04459244v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Mapping VOTable Data on Data Models: Implementation Status
and Prospect

Laurent Michel1, Julien Abid1, François Bonnarel1, Mark Cresitello-Dittmar2,
Somia Floret3, Gille Landais1, Mireille Louys1,4, Gregory Mantelet,1
François-Xavier Pineau,1 and Jesus Salgado,5

1Universit é de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg,
UMR 7550, F-67000 Strasbourg, France; laurent.michel@astro.unistra.fr
2Center for Astrophysics | Harvard & Smithsonian, Boston, USA
3Université Technologique de Belfort-Montbeliard, France
4Université de Strasbourg, CNRS, ICube Laboratory, UMR 7357, F-67412
Illkirch Cedex
5SKA Observatory, Jodrell Bank, Lower Withington, Macclesfield, Cheshire
SK11 9FT, UK

Abstract. Model Instances in VOTables (MIVOT) is a VO standard that defines a
syntax to map VOTable data to any data model serialised in VODML (Virtual Observa-
tory Data Modeling Language). This annotation schema operates as a bridge between
data and models. It associates both VOTable metadata and data to model elements
(class, attributes, types, etc.). It also brings up VOTable data or metadata that were pos-
sibly missing in the table, e.g., accurate description of a coordinate system or curation
tracing. MIVOT became an IVOA recommendation in June 2023. Having this standard
was necessary to exercise data models against real data and to make the data interpreta-
tion easier by using code based with shared models. This paper presents our on-going
developments : reading and writing MIVOT annotations with a CDS RUST library,
reading and interpreting annotations with AstroPy/PyVO and creating an add-on to the
VOLLT TAP library able to annotate query responses on the fly.

1. Introduction

MIVOT (?) is an XML schema that defines a standard way to connect VOTable (?) data
with VODML (?) compliant data models. The MIVOT syntax reproduces the structure
of the mapped classes such as sky positions from Meas/Coords models (?, ?) or fluxes
from the Mango draft model 1. It uses @ref XML attributes to establish connections
between model leaves and columns of the data tables.
Producing instances of the classes outlined in the MIVOT block is fairly straightfor-
ward: simply replicate the class description (a compound XML element) and resolve

1https://github.com/ivoa-std/MANGO

1

mailto:laurent.michel@astro.unistra.fr


2 Michel et al.

the pending references with the data cells of the current row. Annotating query re-
sponses with MIVOT offers the following advantages:

1. The model views generated that way do not depend on the data server since the
models are shared by all stakeholders.

2. The MIVOT syntax allows to connect data to each other e.g., associate measures
with flags or errors.

3. MIVOT can provide VOTables with possibly missing metadata (coordinate sys-
tem details, curation tracking, filter descriptions, flags, link semantics) defined in
mapped models.

Figure 1. This figure shows how MIVOT binds model leaves with table columns.
This mechanism allows client code to easily obtain a model view on the active data
row.

2. Using MIVOT in the context of a TAP service

The goal here is to enable a TAP (?) server to annotate query responses on the fly. As
it was outlined after the ADASS BoF 2021 (?), the requirements hold the following:



MIVOT: Implementation Status 3

• The client application must be able to discover services able to annotate re-
sponses. This can be achieved by either a registry capability or a new TAP pa-
rameter specific for that purpose.

• The client application must be able to ask the server to generate MIVOT annota-
tions for a given model.

• The query engine must be able to analyse the ADQL query to determine whether
the selected columns can be mapped on the requested data model.

• The annotation engine must be able to retrieve MIVOT serializations of the model
components that can be mapped.

• The annotation engine must understand the binding between model leaves and
table columns to complete the annotation process.

3. Client Side

We have defined different API levels that can apply to any language (Python or RUST
in our case).

• Level 0: extract the MIVOT block from the VOTable: No reference is resolved.
The MIVOT block is made available as a parser subset. Level 0 has been imple-
mented in Astropy 6.0.

• Level 1: provide access to a parser tree whose structure matches the model view
of the current row. The internal references (e.g. association with coordinate
systems) have been resolved. The attribute values have been set with the actual
table data. This parser subset can be used for building whatever objects.

• Level 2: entail a few methods to ease the browsing of the level 1 output. Level
2 API allows to retrieve MIVOT elements by either class roles or data types. At
this level, the MIVOT block still needs to be handled as parsed XML elements.

• Level 3: transform the layer 1 output into a dynamic object (in Python). Different
components can be accessed through object paths. The field names of this object
are derived from the roles played by the attributes in the model context.

• Level 4 (Python): build Astropy objects (e.g., SkyCoord) from the level 1 output.

Both of our implementations have a similar architecture. Level 0 is embedded in
the VOTable parser and all further levels are implemented in a VO aware package.

4. Status and Prospect

The presented work is still in progress at the time of writing. The PyVO implementation
is working up to layer 3. Current developments are guided by IVOA’s request for a
high-performance demonstrator processing celestial positions with epoch propagation
(position, proper motion, parallax and radial velocity including correlated errors). On
server side, our implementation is based on a former prototype (?) that led to an online



4 Michel et al.

Figure 2. On the fly annotation by a TAP server: The annotator module knows the
binding of the searched table FIELDS with the model leaves. It searches the MIVOT
elements matching the classes to be mapped, sets the appropriate references in the
MIVOT ATTRIBUTE, and packs all of these snippets on top of the VOTable data
table.

demonstrator xtapdb 2 operated at Strasbourg by the Survey Science Consortium of
XMM-Newton (SSC).

Acknowledgments. We would like to thank M. Marchand (CDS), B. Sipöcz, P.L.
Lim and T. Donaldson (STSCI) for introducing us as AstroPy/PyVO contributors and
for their careful review of our PRs. We would also like to thank the CDS, the CNES
and the SSC for funding and supporting the internships that made this possible.

2https://xcatdb.unistra.fr/xtapdb

https://xcatdb.unistra.fr/xtapdb

