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Simple Summary: We recently established a biological classification of head and neck cancers into
hot and cold tumors, which were associated with different responses to immunotherapy (a type of
cancer treatment helping the immune system fight cancer). Because this classification requires a
tumor biopsy, the development of a non-invasive approach, based on imaging data, would be relevant
to determine this hot/cold tumor status without performing an invasive biopsy. Thus, our goal was
to determine whether imaging data from computed tomography (CT) scans can distinguish hot and
cold head and neck squamous cell carcinomas (HNSCCs). Using biological and clinical imaging data
from two independent cohorts, we established a computational model to determine the hot/cold
status from the CT scan. This non-invasive approach, based on a “virtual” biopsy, could help for the
identification and monitoring of patients with HNSCC who may benefit from immunotherapy.

Abstract: Background: We recently developed a gene-expression-based HOT score to identify the
hot/cold phenotype of head and neck squamous cell carcinomas (HNSCCs), which is associated
with the response to immunotherapy. Our goal was to determine whether radiomic profiling from
computed tomography (CT) scans can distinguish hot and cold HNSCC. Method: We included
113 patients from The Cancer Genome Atlas (TCGA) and 20 patients from the Groupe Hospitalier
Pitié-Salpêtrière (GHPS) with HNSCC, all with available pre-treatment CT scans. The hot/cold
phenotype was computed for all patients using the HOT score. The IBEX software (version 4.11.9,
accessed on 30 march 2020) was used to extract radiomic features from the delineated tumor region in
both datasets, and the intraclass correlation coefficient (ICC) was computed to select robust features.
Machine learning classifier models were trained and tested in the TCGA dataset and validated using
the area under the receiver operator characteristic curve (AUC) in the GHPS cohort. Results: A total
of 144 radiomic features with an ICC >0.9 was selected. An XGBoost model including these selected
features showed the best performance prediction of the hot/cold phenotype with AUC = 0.86 in the
GHPS validation dataset. Conclusions and Relevance: We identified a relevant radiomic model to
capture the overall hot/cold phenotype of HNSCC. This non-invasive approach could help with the
identification of patients with HNSCC who may benefit from immunotherapy.

Keywords: head and neck squamous cell carcinoma; radiomic; hot phenotype; biomarker
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1. Introduction

Head and neck squamous cell carcinomas (HNSCCs) are common epithelial tumors
arising from the mucosa of the oral cavity, oropharynx, nasopharynx, larynx, or hypophar-
ynx. They are ranked as the 7th most common cancers worldwide with over 800,000 patients
diagnosed per year globally, and they are responsible for over 400,000 deaths [1]. HNSCC
is characterized by a high inter- and intra-tumoral heterogeneity, which may significantly
impact treatment response.

Recent clinical trials evaluating immunotherapies, notably PD-1/PD-L1 inhibitors,
represent an unprecedented advance in the management of HNSCC [2,3]. Beyond the
identification of a specific biomarker associated with the response to a given immune
checkpoint inhibitor (ICI), the upcoming era of new immunotherapy strategies combining
different ICIs with co-stimulatory agonists or therapeutic vaccines, as well as with cytotoxic
drugs, has recently led to the concept of targeting hot versus cold tumors [4,5].

Briefly, compared to cold tumors, hot tumors have been characterized by an overall
activated immune microenvironment with high infiltrating immune cells and are more
likely to respond to immunomodulatory strategies. Although the concept of hot versus
cold tumors is questionable regarding the known complexity of the immune microenviron-
ment [6], it is of particular relevance in clinical research for the identification of patients
more likely to benefit from immunotherapies, including in neoadjuvant settings. In this
context, we recently developed an HOT score based on the expression of 27 genes in order
to identify hot head and neck tumors [7]. We showed that hot tumors, as defined by a
positive HOT score, were characterized by a high TCD8 (T-cell) infiltrate as well as an
activation of the interferon-gamma (IFN-γ) response. Interestingly, in two independent
cohorts of patients with HNSCC or non-small-cell lung cancers (NSCLCs) treated with
immunotherapies, we also showed that patients with hot tumors had a better overall
survival as well as progression-free survival compared to cold tumors.

Medical imaging is routinely used for cancer patients and is promising in the de-
velopment of non-invasive biomarkers for the molecular characterization of a tumor
phenotype [8]. Computational medical imaging, known as radiomics, is an emerging
field first defined in 2012 as the high-throughput extraction of large amounts of image
features from radiographic images [9,10]. Radiomics provides fast, low-cost, and non-
invasive instruments through the generation of image-driven biomarkers directly extracted
from standard-of-care medical images. Over the past few years, we have observed an
increasing trend of publications on radiomic approaches in oncology [11], especially for
predicting diagnosis [12–14] and treatment response [15–19], as well as tumor molecular
profiles [20,21]. In particular, in patients with HNSCC, different radiomic features extracted
from computed tomography (CT) imaging, which is routinely performed in this setting,
were significantly associated with clinical (local control, tumor failure, lymph node metas-
tasis, extranodal extension, overall survival, human papillomavirus (HPV) status) and
histological (differentiation grade, perineural and lymphovascular invasion) parameters
as well as molecular features, especially some specific somatic mutations, in patients with
head and neck cancer [22–39].

Because some radiomic features were also associated with the tumor immune microen-
vironment of HNSCC, such as the T-cell infiltration [40], we hypothesized that radiomic
analysis can predict the immune tumor hot phenotype of HNSCC. Using radiomic features
extracted from pretreatment CT images of HNSCC, we developed a radiomic model for
tumor classification according to the hot/cold phenotype.

2. Methods
2.1. Datasets (Table 1)
2.1.1. Training and Testing Datasets

The “TCGA-HNSCC” dataset includes molecular and imaging data of patients with
HNSCC from The Cancer Genome Atlas database. Gene expression profiles as well as clini-
cal data were downloaded using the TCGA2STAT R package [41] as well as from the cBio-
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portal database (https://www.cbioportal.org/study/summary?id=hnsc_tcga (accessed on
3 March 2020) [42,43]. DICOM files of corresponding pre-treatment CT scans were down-
loaded from The Cancer Imaging Archive (TCIA) (https://www.cancerimagingarchive.
net/nbia-search/?CollectionCriteria=TCGA-HNSC (accessed on 3 March 2020) (N = 188).

2.1.2. External Validating Dataset

The “GHPS” dataset included 20 patients treated in the department of maxillo-facial
surgery at the Groupe Hospitalier la Pitié-Salpétrière (GHPS), with available gene expres-
sion profiles as well as corresponding pre-treatment CT scans (DICOM images). For each
patient, targeted gene expression profiles were previously generated in order to define
the hot/cold tumor phenotype based on the HOT score as previously defined [7,44]. We
retrospectively reviewed corresponding contrast-enhanced pre-treatment CT scans and
data were de-identified. For both datasets, inclusion criteria were patients suffering from
histologically confirmed HNSCC with available pretreatment contrast-enhanced CT scans.
Only patients with CT scans of the proper quality were included (contrast-enhanced CT,
soft or standard convolution kernel, slice thickness ≤ 5 mm, no artifacts (dental) in the
region of interest, visualization of the tumor).

In all samples from the training and validating datasets, we computed the HOT
score using the gene set variation analysis (GSVA) [45], as previously defined, in order to
identify the hot/cold tumor. Tumors with a score ≥ 0 and <0 were classified as hot and
cold, respectively.

Tumor characteristics are detailed for each dataset in Table 1.

Table 1. Patient characteristics of the two cohorts. NA: not available.

TCGA-HNSCC
(N = 113) GHPS-COSMOS (N = 20)

N (%) N (%)

Age (mean) at diagnosis 59.69 62.15

Gender
Female 27 (23.9%) 8 (40.0%)
Male 86 (76.1%) 12 (60.0%)

Anatomic Site
Oral cavity 68 (60.2%) 20 (100%)
Larynx 31 (27.4%) 0
Oropharynx 13 (11.5%) 0
Hypopharynx 1 (0.9%) 0

Alcohol
Yes 28 (24.8%) 8 (40.0%)
No 85 (75.2%) 10 (50.0%)
NA 0 2 (10.0%)

Smoking
Current 45 (39.8%) 10 (50.0%)
Former 46 (40.7%) 2 (10.0%)
No 21 (18.6%) 8 (40.0%)
NA 1 (0.9%) 0

Pathological T stage
T1 6 (5.3%) 1 (5.0%)
T2 23 (20.3%) 5 (25.0%)
T3 23 (30.3%) 3 (10.0%)
T4 41 (36.3%) 11 (55.0%)
Tx 13 (38.0%) 0
NA 5 (11.5%) 0

https://www.cbioportal.org/study/summary?id=hnsc_tcga
https://www.cancerimagingarchive.net/nbia-search/?CollectionCriteria=TCGA-HNSC
https://www.cancerimagingarchive.net/nbia-search/?CollectionCriteria=TCGA-HNSC
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Table 1. Cont.

TCGA-HNSCC
(N = 113) GHPS-COSMOS (N = 20)

N (%) N (%)

N stage (%)
N0 47 (41.6%) 10 (50%)
N1 13 (11.5%) 2 (10%)
N2 32 (28.3%) 4 (20%)
N3 1 (0.9%) 4 (20%)
Nx 15 (13.3%) 0
NA 5 (4.4%) 0

M stage (%)
M0 109 (96.5%) 20 (100%)
M1 1 (0.9%) 0
Mx 3 (2.6%) 0

Phenotype (%)
HOT 48 (42.5%) 9 (45%)
COLD 65 (57.5%) 11 (55%)

2.2. Radiomics Workflow (Figure 1)
2.2.1. Tumor Volume Segmentation

We manually outlined the regions of interest (ROIs, defined as the gross tumor volume)
using the “Imaging Biomarker Explorer” IBEX radiomics software [46,47] on each axial slice.
During this process of segmentation, all artifacts and other tissues around the tumor as well
as airways were avoided in order to include only tumor tissues in the ROIs. All the ROIs
were segmented by a head and neck specialist (T.-M.N.). In the TCGA dataset, a second
delineation was performed on 17 randomly selected CT scans by a radiation oncologist
(J.-E.B.). This repeated manual segmentation was performed to assess the reproducibility
and stability of radiomic features in light of the variation in manual selection. The ROIs from
the two independent specialists were downloaded into the IBEX software and compared.
Divergences in the two segmentations for each tumor volume were resolved through
discussion with another head and neck expert (J.-P.F.).

2.2.2. Quantitative Image Feature Extraction

The IBEX software automatically generates tumor radiomic features in six princi-
pal categories: shape, intensity histogram, gray level co-occurrence matrix (GLCOM) 25
(computed from all 2-D image slices) and 3 (computed from all 3-D image matrices), neigh-
borhood gray-tone difference matrix (NGTDM) 3 and 25, gray level run-length matrix
(GLRLM) 25, and histogram of oriented gradients (Supplementary Table S1). A total of
1767 quantitative image features were extracted from the segmented region of interest of
each gross tumor volume, without image preprocessing filters.

2.2.3. Feature Selection

Extracted radiomic feature scaling was performed through normalization in a linear
manner within the range [0:1]. To assess the robustness of the radiomic features from the
ROIs, we computed the intraclass correlation coefficient (ICC) for each radiomic feature [48].
Thus, the ICC can be used when quantitative measurements are performed on units
organized into groups [49]. It ranges from 0 to 1, indicating null and perfect reproducibility,
respectively. We used the “ICC” R package (version 3.4.2) to calculate this coefficient
(https://cran.r-project.org/web/packages/ICC/ICC.pdf (accessed on 20 May 2020). Only
features with an ICC greater than or equal to 0.90 were selected.

https://cran.r-project.org/web/packages/ICC/ICC.pdf
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Figure 1. Radiomic workflow.

2.3. Radiomic Model (Figure 2)

Selected features were used as predictor inputs for constructing XGBoost models,
which is a decision-tree-based ensemble machine learning algorithm using a gradient-
boosting framework for regression and classification problems. This model uses a large
number of “weak learners,” which are relatively simple classifiers, each trained using only
part of the data. The estimate produced by each weak learner is then aggregated into
an overall decision using mechanisms such as voting. In this manner, a large number of
weak learners are combined to produce one strong learner. Thus, a sequential training
process creates a cascade of weak learners, such that in each subsequent step, weak learners
focus on the data that were most difficult to classify in the previous step. To improve
our model, we performed hyperparameter tuning using a grid search. Moreover, to limit
overfitting and increase the generalizability of our models, we constructed our model
based on training, validation, and independent testing in separate datasets [50]: the TCGA
dataset was randomly divided into the training dataset (80%) and the testing dataset (20%),
while the GHPS cohort was an independent validating dataset. The characteristics of
the datasets are available in Supplementary Table S2. Finally, to minimize the true error
estimate bias, each classifier model was trained using three-fold cross-validation (3-fold
CV) on the training set [51]. We estimated the contribution of each variable to the model
using the varImp function from the R caret package.

In order to assess the predictive performance of our model, we computed different
well-established metrics from the literature. Notably, we measured the area under the
receive operator characteristic (ROC) curve (AUC) using the pROC package in R. We
also computed accuracy, recall, precision, F-score, and area under the precision–recall
curve using the precrec package in R (https://cran.r-project.org/web/packages/precrec/
vignettes/introduction.html (accessed on 10 September 2020). AUC and accuracy are two of
the most commonly used classification metrics in machine learning. AUC is commonly
recognized as the best indicator of model performance, especially due to the relationship
between true positive rate and false positive rate [52], except in the case of class imbalance.
In this context and because the hot and cold classes are well balanced, we used AUC to

https://cran.r-project.org/web/packages/precrec/vignettes/introduction.html
https://cran.r-project.org/web/packages/precrec/vignettes/introduction.html
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select the best model for the classification of the hot/cold phenotype. A brief description of
each performance metric is provided in Supplementary Table S3.

All the machine learning algorithms were conducted using the R caret package [50].
All the analyses were completed using the R software (version R 4.0.1) [51]. The code is
available at https://github.com/TMNgn/Master2IBM.git (accessed on 3 March 2020).
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Figure 2. Model construction.

3. Results
3.1. Identification of the Hot Phenotype and Radiomic Feature Selection

A total of 113 and 20 patients suffering from HNSCC were included from the TCGA-
HNSCC and the GHPS cohorts, respectively. The hot/cold phenotype was previously
computed using the HOT score in each sample. We identified 48/113 and 9/20 hot tumors
from the TCGA and GHPS cohorts, respectively.

We initially extracted 1767 radiomic features from the segmented tumor regions of
the pretreatment CT images from the TCGA-HNSCC cohort. The ICC was computed
from the tumor ROI delineation by two independent investigators (T.-M.N. and J.-E.B.) in
17 randomly selected patients. A total of 144/1767 features with ICC ≥ 0.90 were selected
for further analysis (Supplementary Table S3).

3.2. Predictive Radiomic Model of the Hot Phenotype

Using the 144 selected radiomic features, we trained an XGBoost model on the training
set of the TCGA cohort and tuned the hyperparameters.

Our best XGBoost model after hyperparameter tuning (booster = gbtree, nrounds = 4900,
eta = 0.01, max_depth = 6, gamma = 0.5, colsample_bytree = 0.6, min_child_weight = 1, subsam-
ple = 1) on the independent validating cohort (GHPS) predicted the hot/cold phenotype
with the following performance metrics: AUC = 0.859, PR-AUC = 0.734, accuracy = 0.750,
precision = 0.833, recall = 0.556, and F1-score = 0.667 (Figure 3). The confusion matrix and
the model performance metrics are summarized in Figure 3a,c. The top five contributive
radiomic features using the varImp function from the R caret package were F10.Shape Voxel
Size, F1.Gradient Orient Histogram 0.975 Quantile, F1.Gradient Orient Histogram 85 Per-
centile, F1.Gradient Orient Histogram 95 Percentile Area, and F2. Gray Level Co-occurence
Matrix 25270.7 Auto Correlation.

https://github.com/TMNgn/Master2IBM.git
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The min–max values of the performance metrics of all the classification methods
trained with the selected features are reported in Supplementary Table S4.

4. Discussion

Medical imaging is routinely used for cancer patients and is promising in the devel-
opment of non-invasive biomarkers for the molecular characterization of a tumor phe-
notype [53]. While most radiomic studies in patients with HNSCC focused on diagnosis
and prognosis prediction [16,23–25,27,54,55], few publications only showed the association
between radiomic features and the molecular characteristics of head and neck cancers, es-
pecially involving the immune tumor microenvironment [40,56–59]. Because we previously
demonstrated the association between a hot/cold tumor phenotype based on gene expres-
sion and the association with the response to anti-PD1/PD-L1 in patients with HNSCC, we
assessed whether some radiomic features extracted from the tumor ROI could help with
the prediction of this molecular phenotype. Based on initial CT scans, we built and tested
a radiomic XGBoost model, including 144 robust features, to predict our hot/cold tumor
phenotype. Notably, we observed the good performance of our model for the prediction
of the hot/cold phenotype, with AUC = 0.86. Besides the performance metrics, this study
showed the relevance of a non-invasive imaging radiomics-based approach to capture
molecular tumor characteristics in HNSCC.

The association between radiomics and cancer biology, especially regarding the tumor
immune microenvironment, has been recently investigated in some cancer types, especially
in lung and breast cancers [60–67]. Some studies have focused on HNSCC [60,68], with
most of them investigating the relevance of radiomics to capture histological features
related to HPV status [25] and immune cell infiltration [40]. Indeed, different radiomic
signatures were identified to assess tumor T-CD8 cell infiltration [69] as well as PD-L1
expression or other immune checkpoint molecules [58,59,70,71], which were associated
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with the response to PD1/PD-L1 inhibitors. Interestingly, some radiomic features were
also associated with the histological classification between immune-inflamed and immune-
desert tumors [59]. However, the inter- and intra-observer variability in the pathological
assessment of immune features in cancer samples, especially PDL1 expression [72], may
limit the extrapolability of radiomic signatures for capturing histological immune features,
suggesting the need to identify radiomic surrogates of the molecular biomarkers of the
immune infiltrate. In line with previous studies showing the relevance of radiomic models
to identify gene-expression- and methylome-based subtypes [56], with distinct immune
molecular features [40], we built a radiomic model to classify hot and cold tumors, as
defined by our score based on the expression of 27 genes. Thus, our study confirms,
in patients with HNSCC, the relevance of a non-invasive imaging approach to identify
different immune subtypes, as previously performed in other cancer types [63,64,73–75].

Our model was based on an XGBoost method, which is a relevant machine learning
algorithm for problem classification [76]. This algorithm has recently been dominating
applied machine learning and Kaggle competitions for structured or tabular data, and it
has proven its relevance in building radiomic classification models for different cancer
types [28,77–80]. This model includes a large number of hyperparameters that are divided
into general parameters (booster), booster parameters (eta, min_child_weight, max_depth,
max_leaf_nodes, gamma, max_ delta_step, subsample, etc.), and learning task parameters
(objective, eval_metric, and seed). Thus, we performed exhaustive parameter tuning in
this model in order to improve the predictive performance of our model. Hyperparameter
tuning as well as the cross-validation method and feature selection were used to limit
overfitting, as previously recommended [81], with very good predictive performance
(AUC = 0.86) in the external validation dataset.

We observed that shape and textural radiomic features were the most relevant quanti-
tative image features that contributed to the predictive performance of our model. This
observation is consistent with recent reports of radiomics and biology in HNSCC, showing
that textural features were associated with tumor heterogeneity and were commonly used
in radiomic model biological prediction [68,71]. In particular, image-derived textural diver-
sity has been associated with increased immune cell infiltration, causing tumor imaging
heterogeneity [65,82]. Although the relevance of radiomic features to identify molecular
immune features is questionable regarding the known complexity of the immune microen-
vironment, the very good predictive performances of our model may also be related to a
relatively simple binary classification with major biological differences between hot and
cold tumors [7], which goes beyond the expression of a single gene or protein biomarker.

The principal limitation of our study is the relatively small sample size (<150 patients).
However, the TCGA dataset was split into a training and a testing dataset to build a model
that we validated in an independent dataset, strengthening confidence in the generaliz-
ability of our model. Indeed, the inter-scanner variability in CT image radiomic studies
especially related to scanner manufacturers [83] may limit the extrapolability of previously
published radiomic models using training and validation from a single institutional dataset.
Because the TCGA and GHPS datasets are two independent datasets with different imaging
parameters, we believe that our radiomic model is robust and could be extrapolated in
other centers to predict this hot/cold molecular phenotype. With the goal of the further
clinical application of our model in routine practice to predict clinical outcomes of pa-
tients treated with immunotherapies, larger institutional cohorts are needed to validate
our model, with the possibility of “face to face” verification of the clinical characteristics
and the natural evolution of the disease in every single case. Moreover, this model was
constructed from manually delineated ROIs. Although the variability in manual segmenta-
tion may cause intra- and inter-reader variability [84], a second delineation was performed
by an independent investigator in order to select stable features by computing the ICC.
Semi-automated approaches can help reduce this variability but are still reliant on human
input [85]. Although automatic segmentation techniques are objective, they may generate
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errors, especially when images have artifacts and noise and when lesions of interest are
highly heterogeneous.

5. Conclusions

In conclusion, we identified a robust radiomic model using an XGBoost classifier
to predict gene-expression-based hot and cold phenotypes, which were associated with
the clinical benefit of PD1/PD-L1 inhibitors. Overall, this non-invasive-imaging-based
approach, called a “virtual biopsy”, could help with the selection of patients for treatment
with immunotherapies in different clinical settings: (i) before surgery in order to refine
neoadjuvant immunomodulatory strategies based on the hot/cold phenotype and (ii) in
patients with recurrent and/or metastatic disease in order to avoid repeated invasive biop-
sies and/or technically challenging biopsies. Moreover, compared to molecular analysis,
the cost-effectiveness of radiomics is a crucial point when considering the incorporation of
radiomic signatures/models within future clinical trials for precision medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15225369/s1, Table S1: Radiomics features used in the analysis;
Table S2: Subtypes characteristics in the different datasets; Table S3: 144 radiomic features used for
the analysis; Table S4: Performance metrics with XG Boost models to predict the hot/cold phenotype.
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