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Abstract

While antitrust authorities strive to detect, prosecute, and thereby deter collu-
sive conduct, entities harmed by that conduct are also advised to pursue their own
strategies to deter collusion. The implications of such delegation of deterrence have
largely been ignored, however. In a procurement context, we find that buyers may
prefer to accommodate rather than deter collusion among their suppliers. We also
show that a multi-market buyer, such as a centralized procurement authority, may
optimally deter collusion when multiple independent buyers would not, consistent
with the view that “large” buyers are less susceptible to collusion.
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Collusive conduct has long been recognized as harmful, both in the academic liter-
ature and in practice.1 This has led most major jurisdictions to adopt antitrust laws
and set up enforcement agencies dedicated to deterring collusion. In addition to these
efforts, competition authorities provide advice to procurement officials on strategies to
deter collusion.2 However, the implications of such delegation of deterrence have largely
been ignored. In particular, it is not clear whether procurement officials have the right
incentives and tools to deter collusion. Prompted by this, we study the private costs
and benefits of deterrence. We show that relying on market participants may result in
socially insufficient deterrence, particularly because of free-riding problems among them.
In addition, in a setting with multiple independent buyers, even when buyers succeed in
deterring collusion, they may fail to coordinate on the optimal deterrence strategy. This
suggests that antitrust enforcement by governments and legal authorities may be even
more important than hitherto thought.

Specifically, we study a procurement context in which buyers face the possibility of
collusion by suppliers, which is a setting of practical relevance for both public and private
procurers.3 We further assume that, if it occurs, collusion takes the form of a market
allocation, whereby suppliers coordinate on who refrains from bidding below the reserve
in a given market. Such schemes are among the most common collusive practices,4 and
have spurred the development of dedicated policy task forces (e.g., the U.S. Procurement
Collusion Strike Force created in 2019) and detailed procurement guidelines.5 The large
and repeated public purchases prompted by the COVID pandemic, as well as recent
evidence on the human cost of bid rotation schemes affecting public procurement,6 further

1See, e.g., Smith (1776) and Stigler (1964) and, e.g., the U.S. Federal Trade Commission’s discussion of
the Sherman Act of 1890 (https://www.ftc.gov/tips-advice/competition-guidance/guide-antitrust-laws/
antitrust-laws).

2The U.S. DOJ (2015a) encourages procurement officials to, among other things, expand the list of
bidders, require non-collusion affidavits, maintain records that might show a pattern of bid allocation or
rotation, and press vendors to explain and justify their prices. The Australian competition authority’s
guide for government procurement officials provides advice for “competitive tender design” (ACCC, 2019).
The OECD has recommendations on fighting bid rigging in public procurement, including a “checklist for
designing the procurement process to reduce risks of bid rigging” (OECD, 2016).

3Kawai and Nakabayashi (2022) document large-scale collusion by construction firms participat-
ing in Japanese government procurement auctions. Executives at optical disk drive manufacturer
Hitachi-LG Data Storage pleaded guilty to felony charges that they “conspired with co-conspirators
to suppress and eliminate competition by rigging bids for optical disk drives sold to Dell Inc. and
Hewlett-Packard Company (HP) and/or fixing prices for optical disk drives sold to Microsoft Corpo-
ration” (U.S. Department of Justice Press Release, December 13, 2011, https://www.justice.gov/opa/pr/
three-hitachi-lg-data-storage-executives-agree-plead-guilty-participating-bid-rigging-and).

4According to the U.S. DOJ’s antitrust primer on price fixing, bid rigging, and market allocation
schemes, “Most criminal antitrust prosecutions involve price fixing, bid rigging, or market division or
allocation schemes” (U.S. Department of Justice, 2015b, pp. 1-2). See also U.S. DOJ (2015a).

5See, e.g., U.S. DOJ (2015b), OECD (2016), ACCC (2019), and U.K. CMA (2020).
6Barkley (forth.) quantifies the cost in terms of human life of a bid rotation scheme used by a four-
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emphasize the relevance of these issues.
Deterrence tools available to buyers include auction format, procurement timing, and

reserves, among other things.7 We assume that buyers use their most advantageous auction
format and procurement timing, and focus on the role of reserves in deterring collusion.
When taking collusion or competition as given, buyers find it optimal to set a more
aggressive reserve in the case of collusion because they end up paying the reserve more
often.8 However, buyers can also deter collusion by setting sufficiently aggressive reserves.
Because asymmetry impedes collusion, this is best achieved with a differentiated treatment
of markets. Still, deterrence comes at the cost of inefficiently low volumes of trade due to
the lower reserves. Consequently, deterrence is optimal only when collusion is somewhat
fragile, namely, if the discount factor is not too large; otherwise buyers are better off by
accommodating collusion and setting the reserve accordingly.

The comparative statics of the buyers’ optimal reserves with respect to the discount
factor exhibit three regions. For small values of the discount factor, collusion is blockaded
by setting the optimal reserve for competition, which is independent of the discount
factor. However, as the discount factor increases, collusion is no longer blockaded by the
competitive reserve, and deterrence becomes optimal. Because collusion becomes easier as
the discount factor increases, the required deterrence reserves decrease with the discount
factor. Eventually, for a sufficiently large value of the discount factor, accommodation
becomes the best strategy for the buyers, at which point the optimal reserves increase
discontinuously and no longer depend on the discount factor.

We also show that independent buyers may not have the correct incentives to deter
collusion. Indeed, it is possible that, in any equilibrium, independent buyers only achieve
deterrence with suboptimal reserves compared to those that an integrated buyer would
choose, or that they fail to deter collusion altogether when an integrated buyer would deter
it. Because optimal deterrence entails asymmetric reserves, the interests of independent
buyers are not aligned over the set of deterrence reserves. Each buyer favors the reserve
that is closest to the competitive one, and the buyer who is supposed to set the less
favorable reserve is more prone to switch to accommodation. As a result, the buyers
may achieve deterrence only with suboptimal reserves or fail altogether to deter collusion.

firm bidding ring in the Mexican insulin market, where disjoint procurement divisions used first-price
sealed-bid auctions with an identical reserve price. The ring’s designated winner submitted a bid at
(or just below) the reserve price, while the others submitted slightly higher bids. The government’s
successful deterrence strategy involved removing entry restrictions and consolidating procurement under
a centralized authority.

7See, e.g., Aubert, Kovacic and Rey (2006) on the value of enhanced deterrence tools, such as incen-
tives for whistleblowers, that require governmental support.

8Specifically, trade takes place under the same circumstances under competition and collusion
(namely, when a supplier has a cost below the reserve) but, conditional on trade taking place, the buyer
always pays the reserve under collusion, whereas it can benefit from a lower price under competition.
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By contrast, there is never a coordination failure in accommodating collusion; hence, an
integrated buyer deters collusion in more circumstances than independent buyers would.
This is consistent with a view that larger buyers are less vulnerable to collusive conduct
by their suppliers.

In addition to analyzing the sustainability of collusion, our focus on market allocations
enables us to also study the initiation of collusion. In our setup, a supplier can signal its
intent to collude by bidding at the reserve—a credible signal that the supplier had a low
enough cost to compete, but chose not to do so, thus indicating a natural allocation of the
market. We find that it is profitable to initiate collusion in this way whenever collusion
is sustainable.

There is a considerable literature on bid rigging through the use of allocation schemes
(see, e.g., Harrington, 2006; Marshall and Marx, 2012).9 Indeed, Stigler (1964, p. 46) rec-
ognizes the effectiveness of customer allocations as a collusive scheme, noting that, relative
to fixing market shares, “Almost as efficient a method of eliminating secret price-cutting is
to assign each buyer to a single seller.” The possibility of deterring bidding rings through
defensive measures has also been extensively studied. Our findings related to auction
formats and information disclosure are broadly consistent with the literature (e.g., Klem-
perer, 2002; Kovacic et al., 2006; Marshall and Marx, 2009; Kumar et al., 2015; Marshall,
Meurer and Marx, 2014; Marx, 2017), and those on the ability of aggressive reserves to
deter bid rigging echo existing results (e.g., Graham and Marshall, 1987; Thomas, 2005;
McAfee and McMillan, 1992; Kirkegaard, 2005; Larionov, 2021).10 However, much less
work has been done on the costs of implementing defensive measures and the optimal de-
ployment of defensive measures taking into account both the benefits and costs of doing
so,11 which is the focus of our paper.

An exception is Zhang (2022), who studies optimal collusion in a repeated first-price
auction setup, and finds that lower reserves can be used to deter collusion, and that the
auctioneer may nevertheless optimally choose to accommodate rather than deter collusion.

9Rey and Stiglitz (1995) show that exclusive territories, which are a type of market allocation, can
reduce competition. Recent empirical evidence of bid rigging based on geographic market allocations is
found in Barrus and Scott (2020). See Kawai et al. (forth.) on using bid rotation and incumbency to
detect collusion.

10Abdulkadiroğlu and Chung (2003) consider auction design in the face of colluding bidders that
optimize their collusive mechanism based on the auction design. In contrast, we take as given a collusive
mechanism based on a market allocation.

11In a repeated first-price procurement setup in which cartel members observe each other’s costs and
use an optimal collusive scheme, Chassang and Ortner (2019) show that the buyer can mitigate collusive
effects by setting a minimum bid because that restricts the ability of cartel members to use price wars
to punish deviations. They focus on the implications of this observation for detecting collusion and do
not address the cost to the buyer of imposing minimum bids. Calzolari and Spagnolo (2022) consider a
repeated procurement setting with a single buyer in which deterring supplier collusion is costly in terms
of reduced noncontractible quality.
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Our paper differs in that we focus on a setup with multiple markets and collusion based
on a market allocation, allowing us to study, among other things, the value of asymmetric
reserves across markets and the possibility of coordination (or miscoordination) of reserves
across markets. Furthermore, we analyze the effects of deterrence strategies on buyer
surplus and discuss policy implications.

Finally, our analysis also relates to the literature on multi-market contact. In a set-
ting in which firms can collude symmetrically in every market, Bernheim and Whinston
(1990) show that multi-market contact helps collusion only if markets are asymmetric.12

In contrast, we consider a procurement setting in which the winner takes all; as a result,
multi-market contact supports collusion even when the markets are symmetric.

The remainder of the paper is organized as follows. Section 1 contains the setup. We
analyze tradeoffs between accommodating and fighting collusion in Section 2. In Section
3, we discuss implications for competition policy. Section 4 concludes the paper.

1 Setup
We consider a discrete-time, infinite-horizon setting with two suppliers and two markets.13

The markets could correspond to distinct customer segments, products, services, or ge-
ographic areas; they can be operated by an integrated buyer or two independent buyers
with one buyer for each market.

At the beginning of each period, the suppliers draw their costs from a distribution,
which is denoted by G and has finite positive continuous density g over the support [c, c]

and increasing reversed hazard rate G(c)/g(c).14 We assume that each supplier has the
capacity to serve both markets and that its cost is the same for both markets.15 Cost draws
are independent across suppliers and time and are the suppliers’ private information.

In every period, each buyer wishes to make a purchase, for which it has value v > c.
Buyers rely on first-price auctions, with a reserve equal to r ∈ (c,min{c, v}]—reserves
outside this range are dominated for the buyers.16 An integrated buyer commits to a pair
of reserves (r1, r2), one for each market. For the case of two independent buyers, each

12Byford and Gans (2014) compare collusion within versus across markets in a similar setup.
13In Online Appendix OA-B, we extend the model to allow more than two markets. As we show there,

as the number of markets increases, deterrence is optimal for a smaller range of discount factors, as long
as one holds fixed whether there is an odd or even number of markets.

14This is equivalent to G being log concave. The family of distributions with this property is large
and includes most of the “standard” distributions such as the uniform, normal, exponential, power, and
extreme value distribution. See Bagnoli and Bergstrom (2005, Table 1) for a more comprehensive list.

15The analysis extends to the case of market-specific costs.
16While we present our analysis in the context of procurement auctions, it applies equally to the case

of sales auctions when suppliers, each one constituting a “market,” repeatedly sell scarce resources (e.g.,
annual wine auctions).
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buyer commits to a reserve for its market.
We assume that, in each period, suppliers bid simultaneously, both within and across

procurements, and that bids are publicly observed before the next procurement. All
agents are risk neutral with quasi-linear utility and discount the future according to the
common discount factor δ ∈ [0, 1). All of the above is common knowledge. The case
of δ = 0 corresponds to a one-shot setting, in which case the Bayes Nash equilibrium is
unique (Lebrun, 1999).

1.1 Market allocation
We restrict attention to collusive schemes that do not involve the communication of private
information and that do not involve transfers between the suppliers. In our setup, as shown
below, an optimal collusive scheme within this class is a market allocation, whereby the
suppliers alternate in taking the role as the “designated” supplier for each market, and
so we focus on such schemes. If, in a given period, supplier 1 is designated for market
1 and supplier 2 is designated for market 2, then they switch roles for the next period,
with supplier 1 being designated for market 2 and supplier 2 being designated for market
1. The designated supplier bids slightly below the reserve when its cost lies below it,
and at cost otherwise, and the non-designated supplier bids the reserve whenever its cost
lies below it, and bids at cost otherwise.17 Any deviation results in competitive conduct
thereafter.

While the joint profit of the suppliers and the payoff of the buyer are the same under a
rotation and a fixed market allocation that always designates supplier 1 for market 1 and
supplier 2 for market 2 (or vice versa),18 a rotation is easier to sustain when reserves are
asymmetric. A rotation does not eliminate the asymmetry between the two markets, but
allows the supplier with the higher gain from a deviation (namely the supplier currently
assigned to the less profitable market) to face the higher loss from foregone future collusion
because it will be assigned to the more profitable market in the next period. By contrast,
in case of a fixed market allocation, that supplier would also face the lower loss. Rotation
therefore helps to attenuate the asymmetry among the suppliers’ incentives to deviate.

1.2 Payoffs
Suppliers. For a supplier with cost c, let πm(c, r) ≡ max{0, r − c} denote the payoff
in a market with reserve r under monopoly and πc(c, r) ≡ Ec̃ [max{0,min{r, c̃} − c}]

17Specifying that the non-designated supplier should not bid at all (or, equivalently, bid above the
reserve) would reduce expected collusive profits, which would make collusion more difficult to sustain.
For further analysis of profitable tacit collusive schemes without explicit communication, see Skrzypacz
and Hopenhayn (2004).

18The suppliers can share ex ante the expected profit from collusion by randomizing over the initial
market designation.
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denote the interim expected payoff under competition, where c̃ denotes the rival’s cost.19

Likewise, let

πm(r) ≡ Ec [πm(c, r)] =

∫ r

c

G(c)dc and πc(r) ≡ Ec [πc(c, r)] =

∫ r

c

G(c) [1−G (c)] dc,

respectively, denote the supplier’s expected per-market payoff under monopoly and com-
petition. The supplier’s benefit from collusion is then

B(r) ≡ πm(r)− πc(r) =

∫ r

c

G2(c)dc, (1)

which is positive and increasing in r.
The designated supplier obtains the monopoly profit and the other supplier, when

its cost is c, obtains an interim expected payoff equal to πn (c, r) ≡ [1−G(r)] πm (c, r) ,

which accounts for the probability 1 − G(r) that the designated supplier’s cost exceeds
r. The non-designated supplier’s expected payoff is therefore πn(r) ≡ Ec [πn (c, r)] =

[1−G(r)] πm(r), which involves some sacrifice: the cost of collusion for the non-designated
supplier is given by

C(r) ≡ πc(r)− πn(r) =

∫ r

c

[G(r)−G(c)]G(c)dc, (2)

which is positive and increasing in r.
Notwithstanding this countervailing effect, the monotonicity of the hazard rate ensures

that the benefit of collusion exceeds the cost:

Lemma 1. A market allocation is jointly profitable for the suppliers: B(r) > C(r).

Proof. See Appendix A.1.

The proof of Lemma 1 uses the monotonicity assumption on the reversed hazard rate.
This corresponds to the condition identified by McAfee and McMillan (1992) for the
profitability of optimal collusive mechanisms without communication.20 Their analysis
abstracts from enforcement issues, but accounts for suppliers’ private information.

Remark: Optimality of rotation schemes. As shown by Skrzypacz and Hopenhayn (2004)
in the context of an infinitely repeated game like ours, when restricting attention to

19 Ec̃ [max{0,min{r, c̃} − c}] is the payoff of a bidder with cost c in the dominant strategy equilibrium
of a second-price auction with reserve r; by the payoff equivalence theorem, this is the same as the payoff
of the same bidder in a first-price auction.

20Allowing for optimal collusive schemes when firms are allowed to communicate, Athey, Bagwell and
Sanchirico (2004, Proposition 5) show that sufficiently patient firms bid the reserve price if the distribution
is log-concave.
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collusive schemes that are independent of history, a market rotation scheme is optimal
absent transfers.21 Thus, without transfers and history-dependent collusive strategies, our
focus on market rotation schemes does not restrict the scope for collusion. Furthermore,
because of our assumption that G/g is increasing, it follows from Athey, Bagwell and
Sanchirico (2004, Section 6) that reversion to static Nash equilibrium induces the worst
symmetric perfect public equilibrium.

Buyers. Compared with competitive bidding, collusion does not affect trade, which takes
place whenever at least one supplier’s cost lies below the reserve; however, it harms the
buyer, by forcing it to trade at the reserve.

Specifically, when the suppliers bid competitively, the buyer pays the reserve only when
exactly one cost lies below it, which occurs with probability 2[1−G(r)]G(r); when instead
both costs lie below the reserve, the buyer pays the higher cost, which is distributed with
probability density function 2G(c)g(c) (derived from a cumulative distribution function
equal to G2(c)). The buyer’s payoff under competitive bidding is therefore equal to:

UComp(r) ≡ 2(v − r)[1−G(r)]G(r) + 2

∫ r

c

(v − c)G(c)g(c)dc. (3)

By contrast, in case of collusive bidding, the buyer always pays the reserve and its expected
payoff is therefore equal to:

UColl(r) ≡ (v − r)Ĝ(r), (4)

where Ĝ(c) ≡ 1− [1−G(c)]2 is the cumulative distribution function of the lower cost. The
monotonicity of the hazard rate ensures that both types of payoff are strictly quasi-concave
in the reserve.22

Welfare. Collusion also reduces welfare, because the more efficient supplier is no longer
always selected. Interestingly, the welfare loss is entirely borne by the non-designated
supplier,23 as the harm to the buyer coincides with the benefit for the designated supplier;

21For example, to see why a rotation is easier to sustain than a stationary market allocation, it suffices
to note that the supplier currently assigned to the market with the weakly lower reserve—and, thus,
weakly more prone to deviate—is rewarded with the weakly more profitable market in the next tender.

22We have dUComp(r)/dr = ĝ(r)[v− r−G(r)/g(r)] and dUColl(r)/dr = ĝ(r)[v− r− Ĝ(r)/ĝ(r)], where
ĝ is the density associated with Ĝ; the monotonicity of the hazard rate G(r)/g(r), which implies that of
Ĝ(r)/ĝ(r), thus ensures that UComp(r) and UColl(r) are both strictly quasi-concave in r.

23Formally, the cost of collusion for the non-designated supplier is C(r). The change in social welfare
is equal to the change in the cost of production, which is

∫ r
c
cdG(c) + [1−G(r)]

∫ r
c
cdG(c) under collusion

and
∫ r
c
cdĜ(c) under competition. Integrating by parts and simplifying confirms that the difference in

costs is indeed C(r).
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indeed, integrating (3) by parts, this harm can be expressed as:

UComp(r)− UColl(r) =

∫ r

c

G2(c)dc = B(r). (5)

The reason is that the designated supplier benefits from collusion if and only if both costs
are below the reserve, which are precisely the instances in which the buyer benefits from
competitive bidding. In other words, from the perspective of the designated supplier and
the buyer, the market allocation is merely a transfer.

1.3 Scope for collusion
We now characterize the conditions under which collusion can arise, for given reserves.
We first study the sustainability of collusion, before addressing initiation.

Sustainability. A market allocation is sustainable if and only if:

L(r1, r2, δ) ≥ S(r2) and L(r2, r1, δ) ≥ S(r1), (6)

where the long-term stake L(ri, rj, δ) represents the benefit of future collusion for the
supplier currently designated for market i, whereas the short-term stake S(rj) reflects the
gain from deviating in the other market. Because the supplier will switch to market j in
the next period and then keep rotating, the long-term stake is given by:

L(ri, rj, δ) ≡
δ

1− δ2

(
B(rj)− C(ri) + δ [B(ri)− C(rj)]

)
.

The gain from deviating in a market is maximal when the supplier has the lowest possible
cost, c; therefore, the short-term stake is

S(rj) ≡ πm (c, rj)− πn (c, rj) = G (rj) (rj − c) . (7)

The supplier currently designated for the market with the lower reserve has more to gain
from deviating in the other, more profitable market, but also more to lose from forgoing
the benefit of collusion in that market in the next period. Intuitively, one would expect
the former, immediate effect to dominate the second, delayed one, all the more so when
suppliers place less weight on the future. The next lemma confirms these intuitions and
shows that, as a result, the temptation to deviate is greater for the supplier currently
assigned to the less profitable market and decreasing in the discount factor:

Lemma 2. Collusion is sustainable if and only if δ ≥ δ̂(r), where the discount factor
threshold δ̂(r) is the unique solution to L(r, r, δ) = S(r), with r and r, respectively, de-
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noting the lower and the higher of the two reserves.

Proof. See Appendix A.2.

Initiation. To study the incentives to initiate a market allocation, suppose that a supplier
signals its willingness to engage in a market allocation by bidding the reserve.24 The long-
term stake amounts to switching from competition to collusion in future tenders, and
is therefore the same as for sustainability. The short-term sacrifice amounts to forgoing
the competitive profit and instead obtaining the profit expected from bidding the reserve
when the other supplier bids competitively, πc(c, r) − πn(c, r), which decreases with the
initiator’s cost. It follows that initiation is profitable whenever it is so for the lowest
possible cost, which amounts to the same condition as (6), but with S(r) replaced by
Ŝ(r) ≡ πc(c, r)−πn(c, r).25 Because πc(c, r) < πm(c, r), Ŝ(r) < S(r), we have the following
result:

Proposition 1. Initiation is profitable whenever collusion is sustainable.

In light of Proposition 1, in what follows we focus on sustainability.

1.4 Defensive measures
Market allocations can be difficult to detect, especially given suppliers’ incentives to dis-
guise their conduct. However, suspicions may be aroused by certain bidding patterns,
such as bids that are consistently close to the reserve, or a supplier withdrawing from a
market. Various tools can be used to “fight back” when suspecting collusion, although
buyers may differ in their ability to use these tools based, for example, on their sophisti-
cation, commitment ability, and purchase volumes. Three tools particularly emphasized
by the literature are auction format, timing of purchasing, and reserves.26

With regard to auction format, first-price sealed-bid auctions are generally considered
to be more robust to collusion than second-price or ascending-bid auctions because in the
latter cases the designated supplier can bid at cost (and yet obtain the monopoly price),
which reduces the gain from deviations. To see that it is indeed the case in our setup,
suppose that buyers rely instead on second-price sealed-bid auctions. This auction format
allows the designated supplier to bid at cost, which limits the other supplier’s gain from a

24Empirical evidence on initiation of collusion through price signals is also provided by, for example,
Alé-Chilet (2017) and Byrne and de Roos (2019).

25Sustainability conditions must hold for every cost realization, including the lowest one. By contrast,
collusion could be initiated for some cost realizations even if it could not be initiated for the lowest cost
realization; insisting that initiation must be profitable for every cost realization is thus conservative and
may overstate its difficulty.

26For a wider ranging discussion of tools for fighting bid rigging, see, e.g., Cassady (1967); Graham,
Marshall and Richard (1996); Thomas (2005); Kovacic et al. (2006); Albano et al. (2006).
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deviation and reduces the short-term stake, from S(r) to Ŝ(r); as a result, collusion is sus-
tainable whenever it is profitable to initiate it. With regard to the timing of purchasing,
simultaneous procurements are considered to be less prone to collusion than sequential
procurements, as deviations can be punished sooner in the latter case.27 Iossa et al. (2022)
confirms this intuition in our setting by showing that, when allowing for arbitrary (con-
stant) lags between the auctions held in the two markets, synchronous procurements are
indeed the least prone to a market allocation. Thus, consistent with buyers’ adopting a
defensive procurement format, we focus on first-price sealed-bid auctions and synchronous
procurements.

The literature has recognized that aggressive reserves can be used to respond to and
potentially deter collusion, but little attention has been paid so far to the costs of deterring
collusion in this way and to whether these costs outweigh the benefits, which is what we
analyze in the next section.

Before doing so, we briefly discuss the strand of related literature that derives op-
timal mechanisms in the face of collusion when the cartel members have access to an
internal commitment device and transfers, including Che and Kim (2006, 2009), and Che,
Condorelli and Kim (2018). For example, Che and Kim (2006) derive an optimal sell-
ing mechanism that is robust to collusion and show that under certain conditions the
designer’s expected profit is the same as in an optimal auction without collusion. The
designer accomplishes this by leveraging the commitment power of the cartel members
against themselves. In contrast, in our approach based on market allocation schemes,
the cartel members’ power derives from the repeated game, while the buyers, taking the
auction format as given, can vary the reserve prices to change the incentive compatibility
constraint necessary for collusion.

2 To accommodate or fight collusion?
We now study the optimal reserve policy, taking into account its impact on the scope for
collusion. To this end, we suppose that, in each market, the buyer initially sets the reserve,
which remains in place forever.28 The suppliers then repeatedly interact, colluding if a

27This goes against the view, sometimes expressed in practice, that sequential procurements are less
prone to collusion. For example, in the context of the AT&T–Time Warner merger, the judge found
that “the staggered, lengthy industry contracts would make [coordination] extremely risky” (emphasis
added) because one party would have to “jump first” on the hope that the other would do the same later
on, concluding that “putting such blind faith in one’s chief competitor strikes this Court as exceedingly
implausible!” (Leon, 2018, p. 163).

28The assumption that the reserve is fixed forever is arguably restrictive. Applying the insights of
Frezal (2006) to our setting, collusion can be deterred almost without cost if the buyer can commit to
the nonstationary policy of setting the reserve rC for a predetermined, large number of periods, and
preventing trade subsequently for a sufficiently large number of periods. By choosing both numbers large
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market allocation is sustainable, and competing otherwise. For the sake of exposition,
we adopt the tie-breaking rule that competition prevails in the boundary case where the
sustainability condition is binding.29

2.1 Competitive and accommodation reserves
Let rC and rA, respectively, denote the optimal reserves under competition and under
collusion, which we refer to as the competitive and accommodation reserves. The reserve
rC , which maximizes UComp(r), corresponds to the monopsony price that a buyer would
charge, given its valuation v, if it were to face a single supplier with cost distribution
G.30 Perhaps more surprisingly, rA, which maximizes UColl(r), is the reserve that would
be optimal if the two suppliers had merged (Loertscher and Marx, 2019), a situation
equivalent to perfect collusion. A market allocation does not achieve perfect collusion
because production does not necessarily occur at the lowest cost; however, this is imma-
terial for the buyer: what matters is whether production occurs, in which case the buyer
pays the reserve, and it occurs in exactly the same instances as under perfect collusion,
namely, when at least one supplier has a cost below the reserve. It follows that rA is
the monopsony price that a buyer would charge when facing a single supplier with the
cost distribution Ĝ, which corresponds to the lower of two draws. This distribution has a
lower reversed hazard rate than the original distribution G, which makes the supply less
elastic and leads to a more aggressive reserve:31

Proposition 2. A buyer’s optimal reserve is strictly more aggressive when facing collud-
ing rather than competing suppliers: rA < rC.
Proof. See Appendix A.3.

Proposition 2 is consistent with the advice given to practitioners that “[w]hen collusion
among suppliers is suspected, the reserve price should be set at a lower value than in the
absence of collusion. This simple policy forces the bidding ring to submit a lower bid”
(Albano et al., 2006, p. 282). This suggests that collusion may not only result in an
inefficient allocation among ring members, but also induce buyers to adopt less efficient
procurement practices.

enough, the discounted cost of no trade will be negligible. This nonstationary policy would, however,
require a particularly strong form of commitment.

29This ensures that optimal deterrence is achieved at the boundary, rather than for reserves “arbitrarily
close” to the boundary.

30As is well known, the optimal reserve does not depend on the number of suppliers; hence, it maximizes
the monopsony payoff G(r)(v − r).

31It is interesting to note the similarity and subtle difference relative to Blume and Heidhues (2004).
Their analysis implies that in a one-shot, second-price auction, any reserve below c eliminates supra-
competitive Bayes Nash equilibria, whereas with r ≥ c, there are a continuum of noncooperative Bayes
Nash equilibria. In our setting, the optimal reserve in the face of collusion is more aggressive than with
competitive bidding—and always strictly lower than the reserve.
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Remark: on the nature of collusion. The collusive scheme that we consider enables the
non-designated supplier to step in when trade would otherwise not occur. An alternative
collusive scheme that requires the non-designated supplier to withdraw regardless of its
realized costs amounts instead to a reduction in the number of suppliers. Because the
optimal reserve is independent of the number of bidders, buyers’ optimal reserves are then
the same as under competition. Hence, the optimal reserve depends not only on whether
suppliers collude, but also on the nature of the collusive scheme; it can, moreover, be
lower under a more efficient collusive scheme.

2.2 Deterrence reserves
More aggressive reserves can also serve a buyer faced with the threat of collusion by
making collusion less profitable for the suppliers and thereby unsustainable. For example,
for symmetric reserves equal to r, the sustainability condition (6) boils down to

δ

1− δ
≥ S (r)

B (r)− S (r)
,

where the left-hand side is strictly increasing in δ. Furthermore, while decreasing the
reserve reduces suppliers’ profits under both collusion and competition, for low enough
reserves, we show in the proof of Lemma 3 that the expected profitability of collusion,
B(r)−C(r), decreases at a faster rate than the deviation gain for an efficient supplier, S(r);
this is because the reserve is likely to prevent future trade, whereas an efficient supplier
always trades. It follows that for sufficiently low reserves, the critical discount factor for
symmetric reserves, δ̂S (r) ≡ δ̂(r, r), where δ̂(·) is defined in Lemma 2, is decreasing in
the reserve. A similar argument applies when there is a unique market, which amounts
to setting the other reserve to c, yielding a critical discount factor for a unique market of
δ̂U (r) ≡ δ̂(c, r).

Lemma 3. There exists r ∈ (c, c] such that for r ∈ (c, r], both δ̂S (r) and δ̂U (r) are strictly
decreasing in r and δ̂U(r) > δ̂S(r); furthermore, they both tend to 1 as r tends to c.

Proof. See Appendix A.4.32

By Lemma 3, for low enough reserves, δ̂U(r) > δ̂S(r) holds. This means that collusion
is easier when the suppliers interact in two markets rather than in only one.33 However, for
both one and two markets, sufficiently aggressive reserves can prevent a market allocation

32While the proof uses our assumption that g(c) > 0, the result extends to the case in which the
density is positive only in the interior of the support.

33Thus, in contrast with Bernheim and Whinston (1990) for the case where individual markets can be
shared, in our procurement setting where the winner takes all, multi-market contact facilitates collusion
even when these markets are symmetric.
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from being sustainable. This resonates with the advice to practitioners in a sales auction
context that “In some auctions, the most effective way of overcoming a buyers’ ring is
to set a reserve price, prohibiting sale of the item below its estimated value and thus
impairing the profitability of a collusive operation” (Cassady, 1967, p. 191).

From Lemma 2, collusion is deterred when the non-designated supplier has an incentive
to deviate in the more profitable market. It follows that the threshold δ̂ (r) is the solution
in δ to L(r, r, δ) = S(r), where r ≡ min{r1, r2} and r ≡ max{r1, r2}. Furthermore, for δ
sufficiently close to 1, the long-term stake L(ri, rj, δ) is increasing in ri,34 implying that
the critical threshold δ̂ (r) is strictly decreasing in the lower of the two reserves. For
simplicity, from now on we will assume that the above three monotonicity properties of
the threshold δ̂ (r) hold in the entire range of reserves:

Assumptions (monotonicity):

• Assumption S: δ̂S (r) is strictly decreasing in r;

• Assumption U : δ̂U (r) is strictly decreasing in r;

• Assumption L: δ̂ (r) is strictly decreasing in r, the lower of the two reserves.

The first two assumptions extend the monotonicity properties established by Lemma
3 (for low enough reserves or, equivalently, for large enough values of the discount fac-
tor threshold δ̂ (·)) in the cases of symmetric reserves (S) and of a unique market (U).
Assumption L amounts instead to extending the monotonicity property of the long-term
stake L(rj, ri, δ) in the range of discount factors where collusion is an issue, i.e., for
δ > δ ≡ infr∈[c,min{v,c}]2 δ̂(r). These conditions are satisfied, for example, when costs are
distributed over [0, 1] according to G(c) = c1/s, where s > 0 reflects the strength of the
suppliers’ cost distribution, and v ≥ 1.35

2.3 Integrated buyer
We now study the optimal reserve policy by first considering the case of an integrated
buyer operating both markets. By construction, as long as δ ≤ δC ≡ δ̂S(rC), it is optimal
for the buyer to set the competitive reserve in both markets; using terminology from the
literature on entry deterrence, collusion can then be said to be blockaded, because the
optimal reserve absent collusion, rC , is sufficiently low to deter collusion.

34This holds for δ > C ′(ri)/B
′(ri), where the right side is strictly lower than 1 (see Appendix A.1).

35See the Online Appendix. For instance, if costs are uniformly distributed (i.e., s = 1), then, as r
increases, δ̂U (r) decreases from δ̂U (0) = 1 to δ̂U (1) = (

√
31−1)/5 ' 0.91, and δ̂S(r) = 6/(6+r) decreases

from δ̂S(0) = 1 to δ̂S(1) = δ = 6/7 ' 0.86 > C ′(·)/B′(·) = 1/2.
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When instead δ > δC , deterring collusion is costly.36 As the next proposition shows,
minimizing this cost requires asymmetric reserves. To see why, starting from symmetric
deterrence reserves r1 = r2 = rDS (δ), where rDS (δ) ≡ δ̂

−1

S (δ), consider increasing r1 by a
small amount and reducing r2 by the same amount. Such a change has no impact on the
buyer’s expected payoff, as the effect of the two reserves offset each other, but improves
deterrence by creating asymmetry in the suppliers’ incentives to collude. It follows that
there is a nearby (asymmetric) modification of the reserves that improves the buyer’s
expected payoff while preserving deterrence.

0. 0.2 0.4 0.6 0.8 1.

0.

0.2

0.4

0.6

0.8

1.

r1

r2

competition

collusion

rCrD(δ)
rA

rSD(δ)

ℬ(δ)

Figure 1: Deterrence boundary and relevant reserves. Assumes that costs are uniformly distributed over
[0, 1], v = 1, and δ = 0.94.

Furthermore, because the buyer’s payoff is strictly quasi-concave in the reserves, the
optimal reserves lie on the boundary of the set of deterrence reserves.37 Thus, in the region
r2 ≥ r1, it is optimal for the buyer to set the reserves:

rD(δ) = (rD1 (δ), rD2 (δ)) ≡ argmax
r∈{r′∈B(δ)|r′1≤r

′
2}
ŪComp (r) ,

where B(δ) denotes the deterrence boundary (formally defined in Appendix A.5), and

ŪComp (r) ≡ 1

2

[
UComp(r1) + UComp(r2)

]
is the buyer’s average per-market payoff under competition. Let

UD (δ) ≡ ŪComp
(
rD (δ)

)
36As always with deterrence, maintaining a threat begs the question of credibility; although we do not

model this explicitly, repeated interaction may here help the buyer to maintain a credible threat.
37Starting from any r in the interior of the deterrence set, moving towards rC would enhance the

buyer’s payoff.
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denote the corresponding deterrence payoff. We illustrate the deterrence boundary and
the optimal deterrence reserves in Figure 1.

Obviously, as long as δ ≤ δAS ≡ δ̂S(rA), deterring collusion is optimal: symmetric
reserves equal to rA then suffice to deter collusion, implying that UD(δ) > UComp(rA) >

UColl(rA). By continuity, this remains the case when the discount factor δ is close to δAS .
However, as δ further increases, deterring collusion may become too costly—indeed, as δ
tends to 1, the deterrence payoff tends to vanish, as deterrence reserves are close to c. It
is then optimal for the buyer to accommodate collusion and set both reserves equal to rA.
Formally, we have:

Proposition 3. There exists δA > δAS such that it is optimal for the buyer to set the
competitive reserves if δ ≤ δC, to engage in costly deterrence if δC < δ ≤ δA, and to
accommodate collusion if δA ≤ δ. Furthermore, in case of costly deterrence, the optimal
deterrence reserves rD (δ) are asymmetric and the deterrence payoff UD (δ) is continuous
and strictly decreasing in δ.

Proof. See Appendix A.5.

Figure 2 illustrates the optimal reserves, which are discontinuous in the discount factor
as it increases from the region of deterrence to the region of accommodation.

(a) Optimal reserves

0.9 0.98 1δC δA
δ

0.1

0.2

0.3

rA

rC

blockaded deterred accommodated

r1
D(δ)

r2
D(δ)

(b) Buyer payoff

0.9 0.98 1δC δA
δ

UC

UA

blockaded deterred accommodated

U
D(δ)

Figure 2: Optimal reserve and expected per-period buyer payoff for an integrated buyer as functions of the
discount factor. Dashed lines are for symmetric reserves. Assumes that costs are uniformly distributed
over [0, 1] and that v = 1, implying that δC = 0.9231, δAS = 0.9466, and δA = 0.9541.

2.4 Independent buyers
The option of using asymmetric reserves raises the prospect of coordination issues when
there are two different buyers, one in each market. To analyze this case, in what follows
we assume that two buyers simultaneously and independently set their reserves. To fix
ideas, buyer 1 sets the reserve r1 in market 1, and buyer 2 sets the reserve r2 in market 2.
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Then the suppliers observe the reserves and engage in a market allocation whenever that
is sustainable, and otherwise competition occurs. Thus, we analyze the Nash equilibrium
reserves in the reserve-setting game with independent buyers in which the buyers choose
reserves and the payoff of buyer i given strategy profile r = (r1, r2) is

UComp(ri) · 1r∈D(δ) + UColl(ri) · 1r/∈D(δ),

where D(δ) denotes the set of reserves deterring collusion (formally defined in Appendix
A.5). We first note that there always exists a Nash equilibrium:

Lemma 4. The reserve-setting game with independent buyers has at least one Nash equi-
librium in pure strategies.

Proof. See Appendix A.6.

Having established existence, we now characterize the equilibrium outcomes. Given
any r2, the best response for buyer 1 is either rC (if that deters collusion), rA (if accom-
modation is optimal), or a reserve r1 such that (r1, r2) ∈ B(δ) (if deterrence is optimal,
but rC would allow collusion).38 Building on this, the next proposition shows that the
independent buyers achieve perfect coordination when either collusion is blockaded or
accommodation is optimal:

Proposition 4. If collusion is blockaded (i.e., δ ≤ δC) or accommodation is uniquely
optimal for an integrated buyer (i.e., δ > δA), then the reserve-setting game with inde-
pendent buyers has a unique equilibrium, and its outcome matches that for an integrated
buyer.

Proof. See Appendix A.7.

If collusion is blockaded, then setting both reserves equal to rC clearly constitutes a
Nash equilibrium, as each buyer then gets its maximal payoff. Likewise, if accommodation
is uniquely optimal for an integrated buyer, then setting both reserves equal to rA con-
stitutes a Nash equilibrium, as each buyer cannot gain from unilaterally deviating from
these optimal reserves. Proposition 4 however goes further by establishing uniqueness.
In the case of blockaded collusion, the intuition underlying the proof is that, given any
reserve for buyer 1, say, buyer 2 would be best off setting a reserve (namely, rA if it favors
collusion, or a reserve r2 such that (r1, r2) deters collusion) that is so low that, in response,
buyer 1 can achieve its maximal payoff by deterring collusion with r1 = rC . In the case
of accommodation, it suffices to note that (i) the average buyer payoff cannot exceed UA

38In the latter case, any reserve lying in the interior of the deterrence region is dominated by another
reserve that remains in the interior but is closer to rC ; buyer 1’s best response then consists in setting r1
such that r lies slightly inside the boundary of D (δ).
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in that case, and (ii) setting its reserve equal to rA enables each buyer to obtain UA (if
this triggers collusion) or even more (if it induces competition); it follows that, starting
from any r 6= (rA, rA), at least one buyer can profitably deviate.

We now show that the independent buyers may however fail to coordinate their reserve
decisions when an integrated buyer would engage in costly deterrence. Specifically, in what
follows we say that coordination failure can arise (resp., arises for sure) when there exists a
Nash equilibrium outcome that differs (resp., when all Nash equilibrium outcomes differ)
from what an integrated buyer would achieve.

To be sure, independent buyers may still adopt the optimal deterrence reserves rD(δ)

when δ is close enough to δC . By construction, conditional on deterrence, each of these
reserves constitutes a best-response to the other one; furthermore, the deterrence payoff
remains close to UC when δ is close to δC , implying that both deterrence reserves remain
close to rC , making a deviation to accommodation unprofitable. Yet, as the following
proposition shows, coordination problems may induce the buyers to deter collusion with
suboptimal reserves and/or to forgo deterrence altogether:39

Proposition 5. In the reserve-setting game with independent buyers, there exists δDN ∈
(δC , δA) such that optimal deterrence constitutes an equilibrium for δ ≤ δDN . However, if
costly deterrence is uniquely optimal for an integrated buyer (i.e., δC < δ < δA), then
generically:

(i) whenever optimal deterrence constitutes an equilibrium, there also exists a contin-
uum of equilibria with suboptimal deterrence;

(ii) furthermore, there exist δ̃
D

N , δ̂
D

N , and δ
A
N satisfying δDN ≤ δ̃

D

N < δ̂
D

N ≤ δAN < δA such
that for δ̃

D

N < δ ≤ δ̂
D

N , the only deterrence equilibria entail suboptimal reserves and
for δ > δAN , the equilibrium is unique and entails accommodation.

Proof. See Appendix A.8.

For δ greater than but close to δC , collusion is nearly blockaded and thus easy to
deter; as a result, the optimal deterrence reserves give each buyer strictly more than the
accommodation payoff: UComp(rDi (δ)) > UA for i ∈ {1, 2}. It follows that the optimal
deterrence reserves constitute an equilibrium because, by construction, a unilateral devia-
tion maintaining competition could not be profitable, and a deviation triggering collusion
would give a payoff of at most UA. Conversely, for optimal deterrence to constitute an
equilibrium, both buyers must obtain at least the deterrence payoff. Furthermore, because
optimal deterrence entails asymmetric reserves, generically one buyer has a strictly lower
payoff than the other; hence, one buyer gets at least UA, and the other buyer gets strictly

39Genericness in Proposition 5 refers to G and δ and is formally defined in Lemma A.6 in Appendix
A.8.
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more than UA. It follows that, among the nearby reserves on the deterrence boundary,
any reserves that are more favorable to the disfavored buyer keep giving both buyers more
than UA, and therefore constitute an equilibrium. Finally, for δ close to δA, collusion is
difficult to deter and an integrated buyer is close to being indifferent between accommo-
dation and deterrence; the average deterrence payoff is thus close to UA and, because,
optimal deterrence requires asymmetric reserves, generically one buyer obtains less than
UA and would thus have an incentive to deviate.

Figure 3 shows two cases in which deterrence is optimal for an integrated buyer, i.e.,
δ ∈ (δC , δA), but in which coordination failure either arises for sure (panel (a)) or can arise
because of multiplicity of Nash equilibria (panel (b)). In Figure 3(a), an integrated buyer
would deter collusion, but the only Nash equilibrium involves accommodation. In Figure
3(b), the optimal deterrence reserves constitute a Nash equilibrium of the reserve-setting
game, but there is also a continuum of suboptimal deterrence equilibria; hence, while
independent buyers deter collusion, they need not use the optimal deterrence reserves.40

(a) δ = 0.95

r1

r2

competition

collusion

rC

rArD(δ)

ℬ(δ)

BR2(r1)

BR1(r2)

(b) δ = 0.94 (detail)

r1

r2 }

︷

rC

rA

rD(δ) NE

(r2
D(δ), r1D(δ))

NE

BR2(r1)

BR1(r2)

Figure 3: Examples of coordination failure. In both panels, an integrated buyer deters collusion with
optimal deterrence reserves rD(δ), while with independent buyers: in panel (a), accommodation is the
unique Nash equilibrium, so coordination failure arises for sure; in panel (b), the optimal reserves are not
the only Nash equilibrium, so coordination failure can arise. Panel (a) depicts the deterrence boundaries
and buyers’ best-responses, but for clearer illustration, panel (b) omits the boundaries and “zooms in.”
Both panels assume that costs are uniformly distributed over [0, 1] and v = 1. The discount factor δ is
as indicated above the panels. In this setup, δC = 0.9231, δDN = 0.9475, δAN = 0.9483, and δA = 0.9540,
so for panel (a), δ ∈ (δAN , δ

A), and for panel (b), δ ∈ (δC , δDN ).

From Proposition 4, independent buyers always accommodate collusion when it is
jointly optimal for them to do so. By contrast, when deterrence is jointly optimal but
costly, Proposition 5 shows that independent buyers may fail to deter it, or deter with
suboptimal reserves; in particular, for δAN < δ < δA, an integrated buyer would deter

40For additional illustrations see the Online Appendix.
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collusion but, with independent buyers, accommodation is the unique equilibrium. In
this sense, an integrated buyer deters collusion “more often” as well as more effectively
than independent buyers.

Corollary 1. Compared with an integrated buyer, the equilibrium of the game with in-
dependent buyers can never result in over-deterrence, but can result in under-deterrence;
furthermore, when the equilibrium still entails deterrence, it may do so in a suboptimal
manner.

For sufficiently well-behaved cost distributions, numerical calculations show that six
regions of discount factors can be distinguished (see Figure 4 for an illustration using
G(c) = c1/s for c ∈ [0, 1] and s ∈ [0.5, 1.6]), where the optimal and equilibrium reserves
are as follows:

Table 1: Integrated versus independent buyers

δC < δDN < δ̂
D

N < δAN < δA

integrated: rC rD rD rD rD rA

Nash eqm: rC rD & subopt. deterrence subopt. deterrence rA & subopt. deterrence rA rA

coordination failure arises for sure

The threshold δDN , above which optimal deterrence no longer arises in equilibrium, is
such that the buyer with the lower deterrence payoff is indifferent between deterrence and
accommodation: mini∈{1,2} U

Comp(rDi (δDN)) = UA. The threshold δ̂
D

N , above which accom-
modation arises in equilibrium, is such that a buyer is indifferent between accommodation
and deterrence when the other buyer chooses rA, that is UA = UComp(r̂(rA, δ̂

D

N)), where
r̂(r, δ) denotes the reserve r′ ≤ r such that (r, r′) ∈ B(δ).41 For example, for the class of
power distributions, the thresholds are as illustrated in Figure 4.

Further, for the class of power distributions used in Figure 4, the strength s of the
cost distribution and the buyers’ (common) value v affect the optimal reserves and the
scope for coordination failure. As shown in Appendix B, weaker suppliers are more likely
to be blockaded, whereas stronger suppliers are more likely to be accommodated. Buyers
with higher values, who have more to lose from a failure to trade, are more likely to
accommodate collusion; conversely, collusion is more likely to be blockaded if the buyer’s
value is low. With independent buyers, coordination failure is a greater concern when
buyers have larger values and when suppliers draw their costs from better distributions in
the sense that the range of discount factors such that independent buyers deter collusion
only with suboptimal reserves, and the range of discount factors that fail to deter collusion,
both increase with v and with s.

41For uniformly distributed costs, δ̂
D

N = 0.9482.
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Figure 4: Threshold discount factors. Assumes G(c) = c1/s and v = 1. While the regions between δDN
and δ̂

D

N and between δ̂
D

N and δAN are difficult to discern in the figure (there, coordination failure arises for
sure), the relative rankings of the threshold discount factors are maintained throughout.

3 Discussion
The possibility that independent buyers accommodate collusion when an integrated buyer
would have deterred it provides a rationale for the popular view that large buyers are
less prone to be victims of collusion.42 To the best of our knowledge, this is the first
formalization of this notion. It apparently contrasts with Loertscher and Marx (2019),
who show that endowing a buyer with buyer power makes covert collusion more attractive
relative to a merger because the merger is a public event and causes the powerful buyer
to react in a way that is detrimental to the merging suppliers. The way to reconcile
these statements is that powerful and large buyers are distinct things. Our independent
buyers are as powerful as an integrated buyer insofar as they can as well commit to a
binding reserve forever. Yet, lacking size, they do not internalize the positive externality
of deterring collusion in the other market. Conversely, a buyer cannot use reserves to
fight collusion if it cannot credibly maintain them below min{v, c}. Hence, a buyer must
be both powerful and large to fight collusion in an effective manner.43

Demand aggregation, or centralized procurement, is already widely used for making
purchases and awarding contracts, both in the public and in the private sector.44 The ex-
isting policy and economic literature has however so far highlighted its potential benefit
in reducing the total cost of purchases via economies of scale, buyer power, profession-

42See, for example, Carlton and Israel (2011) for an expression of this view.
43The superior ability of an integrated buyer to deter collusion derives from the asymmetry of the

optimal deterrence reserves. As we show in Online Appendix OA-B, this asymmetry does not hinge on
the number of markets being two, but rather on it being even.

44For the public sector, examples of centralized units include the Government for Service Procurement
in the United States, the Crown Commercial Service in the UK, and Consip in Italy. For the private
sector, centralization is typically undertaken by creating a procurement department that purchases on
behalf of multiple divisions.
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alization, infrastructures (e-procurement tools), governance and transaction costs; the
potential costs are those typical of delegation.45 Our findings highlight an additional ben-
efit of centralization, namely, that it enhances the fight against bid-rigging by reducing
the scope for potential under-deterrence as well as the cost of actual deterrence.46

Yet, creating centralized procurement units is unlikely to fully address bid-rigging
problems. Not all procurement can be centralized: for example, independent public and
private buyers need to manage directly urgent or non-standardized purchases. Moreover,
procurers, and especially centralized procurers, are not final users and their objective may
underestimate the benefit of competition for total consumer surplus, thus failing to deter
collusion even though doing so would be socially valuable.47

These considerations suggest that the fight of bid-rigging cannot be fully delegated
to buyers: an effective antitrust enforcement remains desirable. Our results reinforce the
call for a close cooperation between public buyers and antitrust authorities, as advocated
by the most recent international principles on fighting bid-rigging in public procurement
(EC, 2021), and as recently implemented for example by the U.S. DOJ, with the setup of
the Procurement Collusion Strike Force.

In the collusive mechanism that we consider, the designated supplier for a market
submits a bid just below the reserve, whenever its cost is below that level, and the
nondesignated supplier submits a bid at the reserve, whenever its cost is below that level.
Thus, the bids will be close whenever both bids are less than or equal to the reserve.
This is consistent with research identifying close bids in first-price auctions as potentially
reflective of collusion (see, e.g., Marshall and Marx, 2007; Kawai and Nakabayashi, 2022;
Kawai et al., forth.) and suggests that the detection mechanism described by Kawai et al.
(forth.), which uses the observation that in the absence of collusion, the identity of the
winner should be “as-if-random” conditional on close bids, could be useful in our context.
This highlights an additional possible advantage of first-price auctions in that effective
collusive strategies may require close bids, which then may facilitate detection.

We conclude with a remark on secret reserves. Li and Perrigne (2003, p. 189) note that
“The theoretic auction literature is still unclear on the rationale for using a random reserve
price.”48 However, in our setup, opting for a secret, random reserve creates challenges

45See e.g., Dimitri, Dini and Piga (2006); Bandiera, Prat and Valletti (2009); Castellani, Decarolis and
Rovigatti (2021).

46Related to this, our findings also add to the antitrust analysis of joint purchasing agreements,
stressing the efficiency gain that they may generate in terms of fighting collusion among suppliers.

47If antitrust authorities were relying on a social welfare criterion, rather than consumer surplus,
delegating to buyers the fight against collusion may potentially result in over-deterrence, which is an
issue that has so far not been part of the economic debate.

48Li and Perrigne (2003) estimate that the French forest service had lower profits as a result of using
secret, random reserve prices at timber auctions; however, they assume noncooperative bidding. Given
evidence of collusion at U.S. timber auctions (see, e.g., Baldwin, Marshall and Richard, 1997; Athey and
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for initiating and sustaining a market allocation. First, secret, random reserves prevent
suppliers from signaling their wish to initiate collusion through a bid equal to the reserve,
because they do not know what that reserve is. That said, if the reserve is drawn from a
distribution with upper bound of the support r < c, then there remains the possibility of
signaling initiation with a bid of r. Second, secret, random reserves inhibit the ability of
suppliers to maintain a market allocation while still having positive expected payoffs in
their non-designated markets. To see this, note that with a secret, random reserve drawn
from a distribution with upper bound of support r, the only way for the non-designated
supplier to ensure that it does not provide meaningful competition for the designated
supplier is to bid r or above. But in this case, unless it bids exactly r and there is
an atom in the distribution at that point, it wins with probability zero, and so it has
an expected payoff of zero in its non-designated market. As these points suggest, secret,
random reserves create challenges for colluding suppliers, and more so if those reserves are
drawn from a distribution whose upper support is r = c. By increasing the profitability
of deterrence, random reserves could expand the range of values for which a buyer prefers
to deter rather than accommodate collusion.

4 Conclusion
Actions that deter collusion impose costs of their own, implying that it can be optimal
for buyers to accommodate collusion among their suppliers rather than deter it. We
analyze the tradeoff between accommodation and deterrence in a procurement context in
which bidders attempt to engage in market allocation. Although aggressive reserves can
deter collusion, the use of such reserves comes at the cost of reduced trade. Indeed, for
sufficiently high discount factors, collusion is so robust that excessively aggressive reserves
would be required to deter it; buyers are then better off setting the optimal reserve in the
face of colluding bidders. By contrast, for lower discount factors, buyers optimally adjust
reserves to achieve deterrence. Interestingly, a buyer operating two markets optimally sets
different reserves across the markets, so as to create an asymmetry that helps to impede
collusion. Independent buyers do not internalize the benefit of this asymmetry, and, as
a result, may fail to use the optimal deterrence reserves or even fail to deter collusion
at all when an integrated buyer would. The greater and more efficient deterrence of
collusion by a multi-market buyer, as compared to independent buyers, suggests a benefit
of centralized procurement agencies in terms of deterring collusion.49

Levin, 2001), the secret, random reserve may have provided benefits in terms of deterring collusion not
captured in an analysis based on noncooperative bidding.

49In public procurement, this could be done by setting up national or regional procurement authorities
that operate on behalf of local offices. In private procurement, it could be achieved by managing some
purchases at a central rather than at a division level.
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A Proofs

A.1 Proof of Lemma 1
For any reserve r ∈ [c, c̄], the impact of collusion on total profit is equal to:∆Π (r) ≡
πm (r) + πn (r) − 2πc (r) =

∫ r
c

[2G (c)−G (r)]G (c) dc. The market is at risk (i.e., col-
lusion is strictly profitable) if and only if ∆Π (r) > 0. We have: ∆Π′ (r) = G2 (r) −∫ r
c
g (r)G (c) dc = G (r)

∫ r
c
g (c) dc−

∫ r
c
g (r)G (c) dc =

∫ r
c
G (r)G (c)

[
g(c)
G(c)
− g(r)

G(r)

]
dc > 0,

where the inequality stems from the monotonicity of the hazard rate. Because ∆Π (c) = 0,
it follows that ∆Π (r) > 0 for any r ∈ (c, c̄]. �

A.2 Proof of Lemma 2
The following lemma shows that reserves have more impact on short-term stakes than
long-term stakes:

Lemma A.1. For any r > c, S (r) > B (r) + C (r) > 0, and S ′ (r) > B′ (r) + C ′ (r) > 0.

Proof. See Online Appendix OA-A.1.

Building on this first lemma yields:

Lemma A.2. Fix r = (r1, r2) and let r = min{r1, r2} and r = max{r1, r2} respectively
denote the lower and the higher of the two reserves. We have:

(i) the more stringent condition in (6) is L(r, r, δ) ≥ S(r);

(ii) L(r, r, δ) is strictly increasing in δ.

Proof. See Online Appendix OA-A.2.

From Lemma A.2, the relevant sustainability condition is L(r, r, δ) ≥ S(r), where the
long-term stake is strictly increasing in δ. The conclusion follows. �

A.3 Proof of Proposition 2
Differentiating the buyer’s payoffs yields:

∂

∂r
UComp(r) = ĝ(r) [v − γ(r)] and

∂

∂r
UColl (r) = ĝ(r)[v − γ̂(r)],

where (with ĝ denoting the density associated with Ĝ):

γ(c) ≡ c+
G(c)

g(c)
and γ̂(c) ≡ c+

Ĝ(c)

ĝ(c)
= c+

G(c)

g(c)

2−G(c)

2[1−G(c)]
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are the virtual costs associated with the distributions G and Ĝ. The monotonicity of
the reversed hazard rate ensures that these virtual costs are strictly increasing in c.50 It
follows that the payoffs are quasi-concave, and the optimal reserves are respectivelyrC ≡
min {γ−1(v), c} and rA ≡ γ̂−1(v) < c. The conclusion then follows from the fact that, by
construction, γ̂(c) = γ(c) = c(< v) and, for c > c, we have γ̂(c) > γ(c). �

A.4 Proof of Lemma 3
For symmetric reserves equal to r, collusion is deterred if and only if φS (r, δ) ≥ 0, where

φS (r, δ) ≡ (1− δ)S (r)− δ [B (r)− C (r)] ,

with B (r), C (r), and S (r), respectively, given by (1), (2) , and (7). Because φS (r, δ) is
strictly increasing in δ, collusion is deterred for δ ≤ δ̂ (r, r) ≡ δ̂S (r), where δ̂S (r) is the
unique solution to φS (r, δ) = 0, namely:

δ̂S (r) ≡ S (r)

S (r) +B (r)− C (r)
. (A.1)

When instead there is a unique market, collusion is deterred if and only if φU (r, δ) ≥ 0,
where

φU (r, δ) ≡
(
1− δ2

)
S(r)− δ [B(r)− δC(r)] .

The function φU (r, δ) is quadratic and convex in δ, equal to S (r) > 0 for δ = 0, and to
− [B(r)− C(r)] < 0 for δ = 1; hence, in the relevant range δ ∈ (0, 1), collusion is deterred
for δ ≤ δ̂ (c, r) ≡ δ̂U (r), where δ̂U (r) is the positive solution to φU (r, δ) = 0, namely:

δ̂U (r) ≡
√
B2 (r) + 4S (r) [S(r)− C(r)]−B (r)

2 [S(r)− C(r)]
. (A.2)

Noting that B (c) = C (c) = S (c) = 0, B′ (c) = C ′ (c) = S ′ (c) = 0, B′′ (c) = C ′′ (c) =

0, S ′′ (c) = 2g (c) > 0, and B′′′ (c) = 2g2 (c) > C ′′′ (c) = g2 (c) > 0, for r close to c we have
(focusing on the dominant terms in both the numerator and denominator):

B (r)

S (r)
'
B′′′ (c) (r−c)3

6

S ′′ (c) (r−c)2
2

= g (c)
r − c

3
, (A.3)

50This is obvious for γ (c); for γ̂ (c), it suffices to note that it can be expressed as γ̂(c) ≡ c +
G(c)
g(c)

(
1 + G(c)

2[1−G(c)]

)
, where the expression in large parentheses is positive and increasing.
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and
C (r)

S (r)
'
C ′′′ (c) (r−c)3

6

S ′′ (c) (r−c)2
2

= g (c)
r − c

6
. (A.4)

Using these approximations, we have for r close to c:

δ̂S (r) =
1

1 + B(r)
S(r)
− C(r)

S(r)

' 1

1 + C(r)
S(r)

' 1− C (r)

S (r)
' 1− g (c)

r − c
6

,

where the equality uses (A.1), the first approximation uses the implication of (A.3) and
(A.4) that B(r)

S(r)
' 2C(r)

S(r)
, the second approximation uses 1

1+ε
' 1 − ε for ε close to zero,

and the third approximation uses (A.4). This implies that

lim
r→c

δ̂S (r) = 1 and lim
r→c

δ̂
′
S (r) = −g (c)

6
< 0.

In addition, for r close to c:

δ̂U (r) =

√
1−C(r)

S(r)
+ B2(r)

4S2(r)
− B(r)

2S(r)

1−C(r)
S(r)

'

√
1−C(r)

S(r)
+ C2(r)

S2(r)
− C(r)

S(r)

1−C(r)
S(r)

' 1− C(r)

2S (r)
' 1− g (c)

r − c
12

< 0,

where the equality uses (A.2), the first approximation uses the implication of (A.3) and
(A.4) that B(r)

2S(r)
' C(r)

S(r)
, the second approximation uses

√
1−ε+ε2−ε

1−ε '1 − ε
2
for ε close to

zero, and the final approximation uses (A.4). This implies that

lim
r→c

δ̂U (r) = 1 and lim
r→c

δ̂
′
U (r) = −g (c)

12
.

Thus, we have completed the proof that the thresholds δ̂S (r) and δ̂U (r) both tend
to 1 as r tends to c and that, for r low enough, they are both strictly decreasing in the
reserve. Further, using limr→c δ̂

′
U(r) > limr→c δ̂

′
S(r), we have shown that for r low enough,

δ̂U(r) > δ̂S(r). �

A.5 Proof of Proposition 3

We first characterize the set of deterrence reserves. By analogy with rDS (δ) = δ̂
−1

S (δ), for
any δ > δ̂U(min{c̄, v}) let

rDU (δ) ≡ δ̂
−1

U (δ)

denote the unique-market deterrence reserve, and for any r ∈ (rDS (δ), rDU (δ)], let

r̂ (r, δ) ≡ {r′ ≤ r | δ̂(r, r′) = δ}
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denote the deterrence reserve for the less profitable market, conditional on setting the re-
serve r on the more profitable one. As shown in the proof of next Lemma, the monotonicity
assumption ensures that these reserves are uniquely defined and strictly decreasing in δ.
Letting c ≡ (c, c) and rDS (δ) ≡ (rDS (δ), rDS (δ)), we have:

Lemma A.3. The set of deterrence reserves is D(δ) ≡ DS(δ) ∪ D1(δ) ∪ D2(δ), where
DS (δ) ≡ {r | c ≤ r ≤ rDS (δ)} and, for i 6= j ∈ {1, 2}:

Di (δ) ≡ {r | rDS (δ) ≤ ri ≤ rDU (δ) and c ≤ rj ≤ r̂ (r, δ)}.

Furthermore, as δ increases, D(δ) shrinks strictly and continuously.

Proof. See Online Appendix OA-A.3.

It follows from Lemma A.3 that the boundary of the deterrence set can be expressed
as B(δ) ≡ B1(δ) ∪ B2(δ), where

Bi(δ) ≡
{
r | ri ∈ [rDS (δ), rDU (δ)] and rj = r̂(ri, δ)

}
.

Building on Lemma A.3, we now show that the deterrence payoff is continuously
decreasing in δ:

Lemma A.4. In the range δ ≥ δC, UD (δ) is continuous and strictly decreasing in δ;
furthermore, UD

(
δC
)

= UC ≡ UComp
(
rC
)
and limδ−→1 U

D (δ) = 0.

Proof. See Online Appendix OA-A.4.

It follows from Lemma A.4 that the deterrence payoff decreases from UC > UA to
0 < UA as δ increases from δC to 1. Hence, there there exists a unique δA ≡

(
UD
)−1 (

UA
)

for which the buyer is indifferent between (costly) deterrence and accommodation; by
construction, deterrence therefore dominates for δ < δA, and accommodation dominates
for δ > δA.

We now show that, whenever collusion is not blockaded (i.e., δ > δC), asymmetric
reserves are more effective at deterring it. For ri ≥ rj the relevant deterrence condition is
φ(rj, ri, δ) ≥ 0, where:

φ(rj, ri, δ) ≡
(
1− δ2

)
[S (ri)− L(rj, ri, δ)] = φ̄ (ri, δ)− φ (rj, δ) ,

where

φ̄ (r, δ) ≡
(
1− δ2

)
S(r)− δ [B(r)− δC(r)] , (A.5)

φ (r, δ) ≡ δ [δB (r)− C (r)] . (A.6)
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An increase in ri increases both the short-term stake S (ri) and the long-term stake
L(rj, ri, δ); by contrast, an increase in rj only affects the long-term stake. It follows
from Lemma A.1 that, for symmetric reserves, the impact on short-term stakes prevails.
Specifically:

Lemma A.5. For any r > c, we have ∂φ̄(r,δ)
∂r

+
∂φ(r,δ)

∂r
> 0.

Proof. See Online Appendix OA-A.5.

With symmetric reserves, when collusion is not blockaded the buyer’s optimal reserve
is rDS (δ)—as the buyer’s payoff is strictly quasi-concave in the reserve and rDS (δ), being
the maximal symmetric deterrence reserve, is therefore also the closest to rC . Suppose
now that, starting from r = rDS (δ), the buyer increases r1 by ε > 0 and reduces r2 by the
same amount; the change has no first-order effect on the buyer’s expected payoff (starting
from symmetric reserves, the impact of the two reserves offset each other), but strictly
improves deterrence because

dφ =

(
∂φ̄(r, δ)

∂r

∣∣∣∣
r=rDS (δ)

+
∂φ(r, δ)

∂r

∣∣∣∣
r=rDS (δ)

)
ε > 0,

where the inequality uses Lemma A.5. It follows that there exists a nearby (asymmetric)
modification of the reserves that improves the buyer’s expected payoff while preserving
deterrence. �

A.6 Proof of Lemma 4
We show in the proof of Proposition 4 (see Appendix A.7) that there exists a unique
equilibrium in case of blockaded collusion (i.e., δ ≤ δC) as well as if accommodation is
optimal for an integrated buyer (δ ≥ δA). We thus focus here on the intermediate range in
which costly deterrence is uniquely optimal for an integrated buyer and consider a given
δ ∈ (δC , δA).

Obviously, if there is no reserve r such that (rA, r) ∈ D(δ), then (rA, rA) constitutes
an equilibrium, as (i) setting rA maximizes the buyer’s payoff under accommodation, and
(ii) no buyer can unilaterally deviate to deterrence. Suppose now that there exists r such
that (rA, r) ∈ D(δ), and let Ũ(δ) denote buyer 1’s maximal payoff from a deviation to
deterrence, starting from (r1, r2) = (rA, rA); that is:

Ũ(δ) ≡ max
{r|(r,rA)∈D(δ)}

UComp (r) .

Three cases can be distinguished, depending on the value of Ũ(δ).
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• Case 1: Ũ(δ) ≤ UA. The reserves (r1, r2) = (rA, rA) then still induce collusion, otherwise
we would have Ũ(δ) ≥ UComp(rA) > UColl(rA) = UA, a contradiction. It follows that
these reserves constitute an equilibrium, because: (i) by definition, setting rA maximizes
the buyer’s payoff under accommodation, and (ii) because Ũ(δ) ≤ UA, deviations to
deterrence are also unprofitable.

• Case 2: Ũ(δ) = UC . This occurs when (rC , rA) ∈ D(δ), implying that the deviation to
deterrence yields the maximal buyer payoff. This, in turns, implies that rA ≤ r̂(rC , δ) <

rC : the inequalities stem from the definition of r̂(rC , δ) and the fact that, given r2 = rC ,
setting r1 = rA would deter collusion whereas, because δ > δC , setting r1 = rC would
not deter it. It follows that (rC , r̂(rC , δ)) constitutes an equilibrium, because: (i) these
reserves deter collusion, (ii) buyer 1 therefore obtains its maximal payoff, (iii) conditional
on deterrence and on buyer 1 setting rC , buyer 2 wants to set the reserve that is closest
to rC , which is precisely r̂(rC , δ), and (iv) because rA ≤ r̂(rC , δ) < rC , the deterrence
payoff exceeds that of accommodation (by quasi-concavity of the buyer’s payoff, we have:
UComp(r̂(rC , δ)) ≥ UComp(rA) = UA).

• Case 3: UA < Ũ(δ) < UC . Let r̃(δ) denote a solution to the above problem (that
is, UComp(r̃(δ)) = Ũ(δ)). As Ũ(δ) < UC , r̃(δ) must lie on the deterrence boundary—
otherwise, starting from (r1, r2) = (r̃(δ), rA), slightly moving r1 towards rC would improve
the buyer’s payoff, a contradiction. Two subcases can be distinguished.

Case 3a. Suppose first that r̃(δ) ≥ rA, implying that rA = r̂(r̃(δ), δ). It follows that
(rA, r̃(δ)) constitutes a Nash equilibrium:
• By construction, given r1 = rA, setting r2 = r̃(δ) is a best-response for buyer 2

because: (i) by definition, r̃(δ) maximizes buyer 2’s deterrence payoff, and (ii) the
resulting payoff exceeds that of accommodation (by construction, UComp(r̃(δ)) =

Ũ(δ) > UA);

• Conversely, given r2 = r̃(δ), setting r1 = rA is a best-response for buyer 1, because:
(i) by definition, r̂(r̃(δ), δ) = rA(< rC) is the closest to rC in the deterrence region,
and thus maximizes the deterrence payoff, and (ii) the resulting payoff dominates
that of accommodation (by construction, UComp(rA) > UColl(rA) = UA).

Case 3b. Suppose now that r̃(δ) < rA, implying that r̃(δ) = r̂(rA, δ). Let Ǔ(δ)

denote buyer 2’s maximal payoff from a deviation preserving deterrence, starting from
(r1, r2) = (rA, r̃(δ)); that is:

Ǔ(δ) ≡ max
{r|(r̃(δ),r)∈D(δ)}

UComp (r) .

By construction, (r̃(δ), rA) ∈ D(δ); it follows from the quasi-concavity of the buyer’s payoff
that Ǔ(δ) ≥ UComp(rA) > UColl(rA) = UA. Furthermore, if Ǔ(δ) = UC (meaning that
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(r̃(δ), rC) ∈ D(δ)), then the same reasoning as above shows that (r̂(rC , δ), rC) constitutes
an equilibrium. Indeed, buyer 2 then obtains its maximal payoff, and given r2 = rC ,
setting r1 = r̂(rC , δ) constitutes a best-response for buyer 1—to see the latter, note first
that (r̃(δ), rC) ∈ D(δ) and δ > δC together imply r̃(δ) ≤ r̂(rC , δ) < rC ; it follows that
buyer 1 obtains the maximal payoff it can achieve from deterrence, and that this payoff
exceeds that of accommodation (from the quasi-concavity of the buyer’s payoff, we then
have UComp(r̂(rC , δ)) ≥ UComp(r̃(δ)) = Ũ(δ) > UA).

Finally, suppose that UA < Ǔ(δ) < UC , and let ř(δ) denote a best-response to r̃(δ). By
construction, ř(δ) ≥ rA, because: (i) (r̃(δ), rA) ∈ D(δ), implying that Ǔ(δ) ≥ UComp(rA),
and (ii) from the quasi-concavity of the buyer’s payoff, setting r < rA(< rC) would
generate a payoff lower than UComp(rA). It follows that r̃(δ) = r̂(ř(δ), δ).

To conclude the proof, it suffices to note that (r1, r2) = (r̃(δ), ř(δ)) then constitutes
a Nash equilibrium. Indeed, given r1 = r̃(δ), setting r2 = ř(δ) is a best-response for
buyer 2 because by definition doing so maximizes its payoff in the deterrence region, and
the resulting payoff exceeds that of accommodation (as Ǔ(δ) > UA). Conversely, given
r2 = ř(δ), setting r1 = r̂(ř(δ), δ) = r̃(δ) is a best-response for buyer 1, because: (i) by
construction, it is the largest reserve that buyer 1 can set while preserving deterrence,
(ii) it is lower than rC (r̃(δ) < rA(< rC)), and (iii) the resulting payoff exceeds that of
accommodation (UComp(r̃(δ)) = Ũ(δ) > UA). �

A.7 Proof of Proposition 4
We study in turn the cases of blockaded collusion and accommodation. In each case, we
start with existence before establishing uniqueness.

Blockaded collusion. Consider first the case where δ ≤ δC , implying that rC = (rC , rC) ∈
D (δ).

• Existence. rC obviously constitutes a Nash equilibrium, as it deters collusion and gives
each buyer its highest possible payoff.

• Uniqueness. Let rN = (rN1 , r
N
2 ) be an equilibrium, and UN = (UN

1 , U
N
2 ) denote the

buyers’ associated payoffs. We distinguish three cases, depending on the type of candidate
equilibrium.

Case a: rN /∈ D(δ), implying UN
i = UColl

(
rNi
)
. If rNi 6= rA for some buyer i ∈ {1, 2}, then

this buyer would benefit from deviating to ri = rA, so as to obtain at least

min
{
UColl

(
rA
)
, UComp

(
rA
)}

= UColl
(
rA
)
> UColl

(
rNi
)

= UN
i ,

where the inequality stems from UColl (·) being maximal for r = rA. It follows that
rN =

(
rA, rA

)
. But then, any buyer would profitably deviate to rC : indeed, doing so woud
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deter collusion (as, under Assumption L, rC ∈ D (δ) and rA < rC imply
(
rA, rC

)
∈ D (δ)),

and thus deliver the highest possible payoff.

Case b: rN ∈ D (δ) \B (δ). As any small change in either reserve keeps deterring collusion,
we must have rN = rC otherwise, as the buyers’ payoffs are strictly quasi-concave, any
buyer i with ri 6= rC would profitably deviate towards rC .

Case c: rN ∈ B (δ); without loss of generality suppose that rN ∈ B1 (δ) (i.e., rN2 ≤ rN1 ).
It follows from Assumption L that reducing r2 below rN2 would keep deterring collusion.
Hence, rN2 ≤ rC , otherwise buyer 2 would benefit from reducing its reserve to r2 = rC .
This, in turn, implies that r =

(
rC , rN2

)
∈ D1 (δ), as rC ∈ D (δ) and, from Assumption

L, reducing r2 from rC to rN2 thus keeps deterring collusion. But then, we must have
rN1 = rC , otherwise buyer 1 would profitably deviate to r1 = rC .

Accommodation. Suppose now that accommmodation is uniquely optimal for an inte-
grated buyer (i.e., δ > δA), implying:

2UA > UComp (r1) + UComp (r2) for any r = (r1, r2) ∈ D (δ) . (A.7)

• Existence. Fix ri = rA and consider buyer j’s best-response, for i 6= j ∈ {1, 2}. For any
rj satisfying

(
rA, rj

)
∈ D (δ), we have:

UComp(rA) + UA ≥ 2UA > UComp
(
rA
)

+ UComp (rj) ,

where the first inequality stems from UComp (·) ≥ UColl (·) and the second one from (A.7).
Hence, UA > UComp (rj) for any rj deterring collusion, implying that buyer j’s best-
response is to accommodate collusion and set rj = rA.

• Uniqueness. Let rN be an equilibrium. By deviating to rA, each buyer could obtain
UA if the deviation induces collusion, and UComp

(
rA
)
≥ UA otherwise. Both buyers

must therefore obtain at least UA = maxr U
Coll (r). It then follows from (A.7) that

accommodation must arise in equilibrium, and from the strict quasi-concavity of the
buyers’ payoffs that rN =

(
rA, rA

)
. �

A.8 Proof of Proposition 5
We focus on the intermediate range in which costly deterrence is uniquely optimal for
an integrated buyer: δ ∈

(
δC , δA

)
. Let rC =

(
rC , rC

)
, rA =

(
rA, rA

)
, and rD (δ) =(

rD1 (δ) , rD2 (δ)
)
denote the pairs of competitive, collusive, and optimal deterrence re-

serves, and UC ≡ UComp
(
rC
)
, UA ≡ UColl

(
rA
)
, and UD (δ) ≡ ŪComp

(
rD (δ)

)
denote the

associated payoffs.
By construction, UD

(
δC
)

= UC > UA; furthermore, from Proposition 3, UD (δ) is
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continuous in δ. It follows that, for δ greater than but close enough to δC , UD (δ) remains
close to UC . Because UC is the maximal payoff that a buyer can achieve, this implies
that both buyers’ payoffs remain close to UC , and therefore exceed UA. This, in turn,
ensures that the optimal deterrence reserves constitute an equilibrium: by definition, no
buyer could benefit from a unilateral deviation maintaining deterrence, and no buyer can
benefit from accommodating collusion, which would yield at most UA.

Before moving to the other two claims of the proposition, we first establish some
properties of the optimal deterrence reserves. Recall that, in the range r1 ≤ r2, collusion
is deterred if and only if

φ̄ (r2, δ) ≥ φ (r1, δ) ,

where φ̄ (r, δ) and φ (r, δ) are defined by (A.5) and (A.6) in Appendix A.5, and φ (r, δ) is
strictly increasing in r by Assumption L. It follows that rD (δ) =

(
rD1 (δ) , rD2 (δ)

)
is the

solution to:

max
r
UComp (r1) + UComp (r2) s.t. φ̄ (r2, δ) ≥ φ (r1, δ) and r2 ≥ r1.

Furthermore, from Proposition 3, the second constraint is not binding. By contrast,
because δ > δC , the first constraint is binding; hence, rD(δ) lies on the boundary, which
can be characterized as φ̄ (r2, δ) = φ (r1, δ) or r1 = r̂ (r2, δ), where

∂r̂

∂r
(r, δ) =

∂φ̄
∂r

(r, δ)
∂φ

∂r
(r̂ (r, δ) , δ)

. (A.8)

Denoting by λ > 0 the Lagrangian multiplier associated with the first constraint, the
first-order conditions are:

dUComp

dr

(
rD1 (δ)

)
= λ

∂φ

∂r

(
rD1 (δ) , δ

)
, (A.9)

dUComp

dr

(
rD2 (δ)

)
= −λ∂φ̄

∂r

(
rD2 (δ) , δ

)
, (A.10)

where λ > 0 (as the constraint is binding), ∂φ/∂r > 0 (from Assumption L) and, from
the strict quasi-concavity of the buyer’s payoff:

dUComp

dr
(r) R 0 ⇐⇒ r Q rC . (A.11)

It follows that dUComp

dr

(
rD1 (δ)

)
> 0 and rD1 (δ) < rC . Furthermore, combining (A.8) with
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the first-order conditions (A.9) and (A.10) yields:

∂r̂

∂r

(
rD2 (δ) , δ

)
= −

dUComp

dr

(
rD2 (δ)

)
dUComp

dr
(rD1 (δ))

.

Combined with dUComp

dr

(
rD1 (δ)

)
> 0, (A.8) and ∂φ/∂r > 0, this leads to:

∂r̂

∂r

(
rD2 (δ) , δ

)
R 0⇐⇒ ∂φ̄

∂r

(
rD2 (δ) , δ

)
R 0⇐⇒ rD2 (δ) R rC . (A.12)

The following lemma will be useful:

Lemma A.6. We have:

(i) Generically over G (·), UComp
(
rD2 (δ)

)
6= UComp

(
rD1 (δ)

)
for any δ > δC.

(ii) Generically over δ, rD2 (δ) 6= rC.

Proof. See Online Appendix OA-A.6.

We now proceed to prove the two assertions of the proposition, focusing on the generic
cases in which (i) UComp

(
rD2 (δ)

)
6= UComp

(
rD1 (δ)

)
and (ii) rD2 (δ) 6= rC .

• Part (i). Suppose that the optimal deterrence reserves rD(δ) =
(
rD1 (δ) , rD2 (δ)

)
consti-

tute an equilibrium outcome. We must then have

min
{
UComp

(
rD1 (δ)

)
, UComp

(
rD2 (δ)

)}
≥ UA, (A.13)

otherwise at least one buyer would profitably deviate to rA, so as to obtain at least
min

{
UColl

(
rA
)
, UComp

(
rA
)}

= UColl
(
rA
)

= UA.

To conclude the argument, we consider in turn the two generic cases, rD2 (δ) < rC and
rD2 (δ) > rC .

If rD2 (δ) < rC , which implies that rD1 (δ) < rD2 (δ) < rC , then, from the strict quasi-
concavity of the buyers’ payoffs and (A.13), we have

UA ≤ UComp
(
rD1 (δ)

)
< UComp

(
rD2 (δ)

)
.

Furthermore, from (A.12), we have ∂r̂
∂r

(
rD2 (δ) , δ

)
< 0 and ∂φ̄

∂r

(
rD2 (δ) , δ

)
< 0. It follows

that (r1, r2) =
(
r̂
(
rD2 (δ)− ε, δ

)
, rD2 (δ)− ε

)
is a Nash equilibrium for ε positive but small

enough to maintain ∂φ̄
∂r

(r2, δ) < 0 and UComp
(
rD2 (δ)− ε

)
> UA:
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• By construction, r2 = rD2 (δ) − ε < rD2 (δ) < rC and r1 = r̂ (r2) ≤ r2 < rC ; hence,
profitable deviations to deterrence would require an increase in the reserve. But, as
r1 = r̂ (r2), which amounts to φ̄ (r2, δ) = φ (r1, δ), a unilateral increase in r1 would
violate the deterrence constraint and thus trigger collusion (as φ (r1, δ) is strictly
increasing from Assumption L, and here ∂φ̄

∂r
(r2, δ) < 0).

• By construction, r1 = r̂ (r2, δ), where r2 = rD2 (δ) − ε < rD2 (δ)
(
< rC

)
and r̂ (r, δ)

satisfies r̂ (r, δ) ≤ r is here strictly decreasing in r; hence, rD1 (δ) < r1 ≤ r2 <

rD2 (δ) < rC and UComp (r2) > UComp (r1) > UComp
(
rD1 (δ)

)
≥ UA, which rules out

deviations to accommodation.

If instead rD2 (δ) > rC , then from (A.12), ∂r̂
∂r

(
rD2 (δ) , δ

)
> 0 and ∂φ̄

∂r

(
rD2 (δ) , δ

)
> 0.

Two cases can then be distinguished, depending on which buyer has the lower payoff.

• If UComp
(
rD1 (δ)

)
> UComp

(
rD2 (δ)

)
≥ UA, then (r1, r2) =

(
r̂(rD2 (δ)− ε, δ), rD2 (δ)− ε

)
(implying ri < rDi (δ) for i ∈ {1, 2}) is a Nash equilibrium for ε positive but small
enough to maintain r2 > rC , ∂φ̄

∂r
(r2, δ) > 0 and UComp (r1) > UA:

– because r1 < rD1 (δ) < rC and r2 > rC , profitable deviations to deterrence
would require an increase in r1, which would trigger collusion as φ̄ (r2, δ) =

φ (r1, δ) and φ (r, δ) is strictly increasing in r, or a decrease in r2, which would
also trigger collusion because φ̄ (r, δ) is here strictly decreasing in r;

– the conditions UComp (r1) > UA and UComp (r2) > UComp
(
rD2 (δ)

) (
≥ UA

)
(as

rD2 (δ) > r2 > rC) rule out deviations to accommodation.

• If instead UComp
(
rD2 (δ)

)
> UComp

(
rD1 (δ)

)
≥ UA, then (r1, r2) = (r̂(r + ε, δ), r + ε)

(implying ri > rDi (δ) for i = 1, 2) is a Nash equilibrium for ε positive but small
enough to maintain r1 < rC , ∂φ̄

∂r
(r2, δ) > 0 and UComp (r2) > UA:

– because r1 < rC and r2 > rD2 (δ) > rC , profitable deviations to deterrence
would require again either an increase in r1 or a decrease in r2, both of which
would trigger collusion;

– the conditions UComp (r1) > UComp
(
rD1 (δ)

) (
≥ UA

)
(as rD1 (δ) < r1 < rC) and

UComp (r2) > UA rule out deviations to accommodation.

• Part (ii). We start with (suboptimal) deterrence, before turning to accommodation.

Define

δ̃
D

N ≡ max
{
δ ∈ (0, 1) | min

{
UComp

(
rD1 (δ)

)
, UComp

(
rD2 (δ)

)}
≥ UA

}
.
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By construction, for δ > δ̃
D

N , optimal deterrence cannot constitute an equilibrium because
the buyer with the lower payoff would strictly benefit from deviating to accommodation.
Furthermore, by continuity of the deterrence region, we have:

min{UComp(rD1 (δ̃
D

N)), UComp(rD2 (δ̃
D

N))} = UA.

In addition, it follows from the above analysis that for δ = δ̃
D

N , there exists r2 such
that, starting from (r1, r2) = (r̂(r2, δ̃

D

N), r2), each buyer strictly prefers not to deviate; by
continuity, there exists a deterrence equilibrium for δ slightly above δ̃

D

N . Specifically:

• if UComp(rD1 (δ̃
D

N)) > UComp(rD2 (δ̃
D

N)) = UA, then (r1, r2) = (r̂(rD2 (δ̃
D

N)−ε, δ̃DN), rD2 (δ̃
D

N)−
ε) is a strict Nash equilibrium for ε positive but small enough;

• if instead UComp(rD2 (δ̃
D

N)) > UComp(rD1 (δ̃
D

N)) = UA, then (r1, r2) = (r̂(rD2 (δ̃
D

N) +

ε, δ̃
D

N), rD2 (δ̃
D

N) + ε) is a strict Nash equilibrium for ε positive but small enough.

In both cases, by continuity there exists δ̂
D

N ∈ (δ̃
D

N , δ
A) such that for δ ∈ (δ̃

D

N , δ̂
D

N ], (r1, r2) =

(r̂(r2, δ), r2) is a suboptimal deterrence Nash equilibrium.
We now turn to accommodation. For δ = δA, the optimal deterrence reserves rD (δ)

gives the buyers an average deterrence payoff of UA and, from Lemma A.6, the two buyers
obtain different payoffs; hence, the buyer with the lower payoff obtains strictly less than
UA. Furthermore, for any other pair of deterrence reserves, the average buyer payoff is
strictly less than UA, implying that at least one of the buyers obtains strictly less than
UA. It follows that, starting from any pair of deterrence reserves, at least one buyer has
a strict incentive to deviate to accommodation. By continuity (see Lemma A.4), there
exists δ̂

A

N < δA such that deterrence cannot be an equilibrium outcome for δ ∈ (δ̂
A

N , δ
A).

To establish existence, we first note that, for δ = δA, starting from (rA, rA), no buyer can
obtain UA or more by deviating to deterrence; that is, for any r,

(r; rA) ∈ D(δA) =⇒ UComp(r) < UA. (A.14)

Indeed, if there existed r̃ satisfying (r̃; rA) ∈ D(δ) and UComp(r̃) ≥ UA, then setting
(r̃; rA) would enable an integrated buyer to obtain

UComp(r̃) + UComp(rA) ≥ UA + UComp(rA) > 2UA,

contradicting the fact that, for δ = δA, the integrated buyer is indifferent between de-
terrence and accommodation. By continuity, condition (A.14) holds for δ slightly below
δA. Hence, there exists δ̃

A

N < δA such that (rA, rA) constitutes a Nash equilibrium in the
range δ ∈ (δ̃

A

N , δ
A). It follows that, in the range δ ∈

(
δAN , δ

A
)
, where δAN ≡ max{δ̂

A

N , δ̃
A

N},
there is a unique equilibrium, which entails accommodation. �
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B Comparative statics
Below we provide comparative statics results, assuming that the suppliers’ costs are dis-
tributed over [0, 1] according to G(c) = c1/s. A larger s thus corresponds to a better cost
distribution in the first-order stochastic dominance sense. We first consider the case of
integrated buyers, before turning to the case of independent buyers.

B.1 Integrated buyers
Figure B.1(a) depicts the evolution of the reserves as a function of the buyer’s value v (for
a particular strength of the suppliers, namely, s = 1). It shows that buyers with higher
values, who have more to lose from a failure to trade, are more likely to accommodate
collusion; conversely, collusion is more likely to be blockaded if the buyer’s value is low.
Furthermore, in the range of buyer values where deterrence is optimal, the gap between
the two asymmetric deterrence reserves increases with v.

Figure B.1(b) focuses instead on the evolution of the reserves as a function of the
sellers’ strength s (for a particular buyer’s value, namely, v = 1). It shows that, as
suppliers become stronger, implying that collusion is more valuable to them, the reserves
required to deter collusion decrease, until eventually the buyer prefers to accommodate.
Weaker suppliers are thus more likely to be blockaded, whereas stronger suppliers are
more likely to be accommodated.

(a) Reserves as a function of v with s = 1

rC(v)

rA(v)

r2
D(v,δ)

r1
D(v,δ)

0.5 1. 1.5 2.
v

0.2

0.4

0.6

deterrence accommodationblockade

(b) Reserves as a function of s with v = 1

rC(v;s)

rA(v;s)

r2
D(v,δ;s)

r1
D(v,δ;s)

0.6 0.8 1. 1.2 1.4 1.6
s

0.2

0.4

0.6

0.8

1.

deterrence accommodationblockade

Figure B.1: Optimal reserves for an integrated buyer assuming G(c) = c1/s for s > 0. (As s increases the
cost distribution becomes “better”.) Both panels assume that δ = 0.94.

B.2 Independent buyers
As shown in Figure B.2, the range of discount factors in which independent buyers deter
collusion only with suboptimal reserves, and the range of discount factors that fail to
deter collusion, are both expanding in v and in s. Thus, here, coordination failure is a
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greater concern when buyers have larger values and when suppliers draw their costs from
better distributions.

(a) Threshold discount factors varying v for s = 1

0.25 0.5 0.75 1. 1.25 1.5 1.75 2.
v

0.9

0.95

1.

blockaded

accommodated

D1

D2

δA(v)

δN(v)

δC(v)

(b) Threshold discount factors varying s for v = 1

0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5
s

0.9

0.95

1.

blockaded

accommodated

D1

D2

δA(v;s)

δN(v;s)

δC(v;s)

Figure B.2: Effects of changes in the buyer’s value and the suppliers’ distributional strength on threshold
discount factors. Assumes that costs are distributed over [0, 1] with distribution G(c) = c1/s. Panel (a)
assumes s = 1 and varies v; panel (b) assumes v = 1 and varies s. In the region labeled “accommodated,”
both integrated and independent buyers accommodate collusion with the optimal collusive reserve rA. In
the regions labeled D1 and D2, an integrated buyer would deter collusion. In D1, the optimal deterrence
reserves are among the multiple Nash equilibria of the reserve-setting game with independent buyers,
but in D2 they are not. In the region labeled “blockaded,” both integrated and independent buyers deter
collusion with the optimal competitive reserve rC .
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In this Online Appendix, we provide in Section OA-A the proofs of the auxiliary
lemmas used in the main Appendix. We then address three points raised in the paper.
First, in Section OA-B, we provide an extension of the model to allow more than two
markets, as mentioned in footnote 13 in the paper. Second, in Section OA-C, we show
that our monotonicity assumptions are satisfied when costs are distributed according to
the power distribution, as mentioned in footnote 35 in the paper. Third, in Section
OA-D, we provide additional illustrations of coordination and coordination failure with
independent buyers, as mentioned in footnote 40 in the paper.

OA-A Proofs of auxiliary lemmas

OA-A.1 Proof of Lemma A.1
We have: B (r) + C (r) = πm(r) − πn(r) = G(r)πm (r) , where G(r) and πm (r) are both
positive for r > c, and strictly increasing; it follows that B (r) + C (r) is also positive
and strictly increasing. Likewise, using S (r) = πm (c)− πn (c) = G(r)πm (c; r), we have:
S (r)−B (r)− C (r) = G(r) [πm (c; r)− πm (r)] , where G(r) and

πm (c; r)− πm (r) = (r − c)−
∫ r

c

G(c)dc =

∫ r

c

[1−G(c)] dc

are both positive for r > c, and strictly increasing. The conclusion follows. �



OA-A.2 Proof of Lemma A.2
Part (i). Let Ψ ≡

(
1− δ2

)
{[L(r, r, δ)− S(r)]− [L(r, r, δ)− S(r)]} . Straightforward ma-

nipulations yield:

Ψ =
{
δ [B (r)− C (r)] + δ2 [B (r)− C (r)]−

(
1− δ2

)
S (r)

}
−
{
δ [B (r)− C (r)] + δ2 [B (r)− C (r)]−

(
1− δ2

)
S (r)

}
= (1− δ) {(1 + δ)S (r)− δ [B (r) + C (r)]}
− (1− δ) {(1 + δ)S (r)− δ [B (r) + C (r)]}

= (1− δ) [ψ (r)− ψ (r)] ,

where ψ (r) ≡ (1 + δ)S (r) − δ [B (r) + C (r)] is strictly increasing in r, that is ψ′ (r) =

(1 + δ)S ′ (r)−δ [B′ (r) + C ′ (r)] > 0, where the inequality follows from δ ≥ 0 and Lemma
A.1. Therefore, Ψ ≥ 0, implying that the more stringent condition in (6) is L(r, r, δ) ≥
S(r).

Part (ii). We have:

∂L (r, r, δ)

∂δ
=

2δ2(
1− δ2

)2 {B(r)− C(r) + δ [B(r)− C(r)]}

+
1

1− δ2 {B(r)− C(r) + 2δ [B(r)− C(r)]}

=
(1− δ)2 [B(r)− C(r)] + 2δ [B(r)− C(r) +B(r)− C(r)]

1− δ2

> 0,

where the second equality rearranges, and the inequality follows from Lemma A.1 and
r ≤ r, which together imply B (r) > C (r) and B (r) ≥ B (r) > C (r). �

OA-A.3 Proof of Lemma A.3
We first establish the existence and properties of the deterrence thresholds rDS (δ) and
rDU (δ) ≡ δ̂

−1

U (δ). From Assumption S and Lemma 3, δ̂S (r) = δ̂ (r, r) is strictly decreasing
in r and tends to 1 as r tends to c. Hence, with symmetric reserves, collusion is an issue
if δ > δ̂S (min {c̄, v}), in which case setting the reserves to r deters it if and only if
r ≤ rDS (δ) ≡ δ̂

−1

S (δ). Assumption S moreover ensures that rDS (δ) is strictly decreasing in
δ.

Similarly, Assumption U and Lemma 3 together ensures that δ̂S (r) is also strictly
decreasing in r, and tends to 1 as r tends to c. Hence, in the case of a unique market,
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collusion is an issue if δ > δ̂U (min {c̄, v}), in which case setting the reserve equal to r
deters it if and only if r ≤ rDU (δ) ≡ δ̂

−1

U (δ), where rDU (δ) is strictly decreasing in δ.
By construction, δ̂

(
c, rDU (δ)

)
= δ and rDU (δ) > c (as δ̂ (c, c) = 1). Hence, from As-

sumption L, δ̂S
(
rDU (δ)

)
= δ̂

(
rDU (δ), rDU (δ)

)
< δ; that is, symmetric reserves equal to rDU (δ)

would not deter collusion. It then follows from Assumption S that

rDU (δ) > rDS (δ).

The rest of the proof proceeds in three steps. We start by checking that any r ≤ rDS (δ)

deters collusion (step 1), before characterizing the other deterrence reserves (step 2), and
establishing the monotonicity of D (δ) in δ (step 3).

• Step 1. Fix r ≤ rDS (δ), and let r̄ = max {r1, r2} denote the higher of the two reserves.
Because rDS (δ) ∈ (δ) and r̄ ≤ rDS (δ), it follows from Assumption S that (r̄, r̄) ∈ D (δ).
And because r ≤ (r̄, r̄), it follows from Assumption L that r ∈ D (δ).

• Step 2. Fix r > rDU (δ), which amounts to δ > δ̂U (r); collusion would thus be sustainable
if there were a unique market with reserve r. We thus have S(r) < L(c, r, δ) and, from
Assumption L, S(r) < L(r′, r, δ) for any r′ ≥ c; that is, collusion is sustainable, regardless
of the reserve set in the other market. Hence, all deterrence reserves lie below rDU (δ).

Fix now r ∈ (rDS (δ), rDU (δ)], implying that (c, r) deters collusion (i.e., δ̂ (c, r) ≥ δ)
whereas (r, r) does not (i.e., δ̂ (r, r) < δ). From Assumption L, in the range r′ ≤ r,
δ (r′, r) is strictly decreasing in r′. Hence, for any δ, conditional on setting the reserve r
in one market and a lower reserve r′ ≤ r in the other market, collusion is deterred if and
only if r′ ≤ r̂(rj, δ), where r̂(r, δ) is the unique solution in r′ to δ̂ (r′, r) = δ in the range
r′ ≤ r. Assumption L moreover ensures that r̂(r, δ) is strictly decreasing in δ.

• Step 3. As δ increases, the deterrence set D (δ) shrinks: for any δ ∈ (0, 1), r ∈ D (δ)

amounts to δ̂ (r) ≥ δ, which in turn implies δ̂ (r) > δ′ for any δ′ < δ; hence, D (δ) ⊆
D (δ′) for any δ′ < δ. Furthermore, D (δ) is strictly shrinking as δ increases: as r̂ (r, δ)

is strictly decreasing in δ, in the range rj ≤ ri, any r such that ri ∈
[
rDS (δ), rDU (δ)

]
and

rj = r̂ (ri, δ) deters collusion for δ, but no longer does so for any δ′ > δ. Finally, D (δ)

shrinks continuously as δ increases. In particular, for any δ and any r = (r1, r2) ∈ D (δ),
there exists a nearby r′ that belongs to D (δ′) for δ′ higher but sufficiently close to δ: for
instance, in the range r2 ≤ r1, if r2 > c, then r′ = (r1, r

′
2) would do, for r′2 slightly below

rj; and if instead r2 = c, then r′ = (r′1, r2) would do, for r′1 slightly below r1. �

OA-A.4 Proof of Lemma A.4
That UD (δ) is continuous follows directly from the Maximum Theorem, as the buyer’s
competitive payoff ŪComp (r)is continuous in (r) and the deterrence set is compact and
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continuous in δ.1 That UD(δ) is strictly decreasing follows from the fact that rD(δ) lies
in the boundary of the deterrence set, which is strictly shrinking in δ.2 By construc-
tion, UD

(
δC
)

= UComp
(
rC
)

= maxr U
Comp (r) > UComp

(
rA
)
> UColl

(
rA
)
. Finally,

limδ−→1 U
D (δ) = 0, as the deterrence set converges to {(c, c)} as δ tends to 1. �

OA-A.5 Proof of Lemma A.5

We have: ∂φ̄(r,δ)
∂r

+
∂φ(r,δ)

∂r
= (1− δ) {(1 + δ)S ′(r)− δ [B′(r) + C ′ (r)]} > 0, where the

inequality uses 0 < δ < 1, and Lemma A.1 (in Appendix A.2). �

OA-A.6 Proof of Lemma A.6
The proof proceeds in two parts:

• Part (i). The derivatives involved in the first-order conditions (A.9) and (A.10) are
given by:

dU

dr

Comp

(r) = 2 [1−G (r)] g (r) (v − r)−G (r) ,

∂φ̄

∂r
(r, δ) =

(
1− δ2

)
[G (r) + g (r) (r − c)]−δ

[
G2(r)− δg(r)Γ (r)

]
,

∂φ

∂r
(r, δ) = δ

[
δG2(r)− g(r)Γ (r)

]
,

where Γ (r) ≡
∫ r
c
G(c)dc. It follows that the first-order conditions (A.9) and (A.10) depend

on the cost distribution only through {g(rDi (δ)), G(rDi (δ)),Γ(rDi (δ))}i=1,2.
Let

rD (δ) ≡ rD1 (δ) + rD2 (δ)

2
and ∆D (δ) ≡ rD2 (δ)− rD1 (δ),

respectively, denote the mean of and the difference in the optimal deterrence reserves.
From Proposition 3, ∆D (δ) > 0. Suppose now that UComp(rD2 (δ)) = UComp(rD1 (δ)) for
some δ ∈ (δC , 1), and consider an arbitrary small change in the distribution G that affects
g(·), G(·), and Γ(·) only in the interval (rD (δ)− ε, rD (δ) + ε), for some ε ∈ (0,∆D(δ)/2),
in such a way that:3

∆U
ε (δ) ≡

∫ rD(δ)+ε

rD(δ)−ε
(v − c) [gε(c)Gε(c)− g(c)G(c)] dc 6= 0,

where Gε and gε are the distribution and density associated with the change, respectively.
1Recall that D(δ) = DS(δ) ∪ D1(δ) ∪ D2(δ), where DS(δ) and each Di(δ) are compact subsets of

[c,min {c̄, v}]2. For continuity, see step 3 in Appendix A.3.
2Specifically, rD2 (δ) = r̂(rD1 (δ), δ), where r̂(·, δ) is strictly decreasing in δ; it follows that rD(δ) /∈ D(δ′)

for any δ′ > δ.
3We construct an example of such a change in Online Appendix OA-A.7.
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By construction, such a change does not affect {g(rDi (δ)), G(rDi (δ)),Γ(rDi (δ))}i=1,2

(and, thus, does not affect the first-order conditions (A.9) and (A.9)); hence, the op-
timal deterrence reserves rD1 (δ) and rD2 (δ) remain unchanged. The payoff UComp

(
rD1 (δ)

)
is also unaffected, as it depends on G only in the range r ≤ rD1 (δ) < r − ε. By contrast,
by altering G in the range

(
rD (δ)− ε, rD (δ)− ε

)
⊂
(
rD1 (δ) , rD2 (δ)

)
, the change affects

UComp
(
rD2 (δ)

)
by an amount that, using (3), is equal to ∆U

ε (δ) 6= 0. Hence, following
the change, the optimal deterrence reserves yield different payoffs in the two markets.

• Part (ii). Fix δ such that rD2 (δ) = rC . From (A.10) and (A.11), this amounts to:

0 =
∂φ̄

∂r
(rC , δ) =

(
1− δ2

)
S ′(rC)− δ

[
B′(rC)− δC ′(rC)

]
. (OA-A.1)

Because ∂2φ̄
∂r∂δ

(r, δ) = B′(r) + 2δ [S ′(r)− C ′(r)] > 0, it follows that, for any δ′ 6= δ, the
equality (OA-A.1) is violated, implying that the first-order condition (A.10) cannot be
satisfied for r2 = rC and λ > 0. Hence, generically over δ, rD2 (δ) 6= rC . �

OA-A.7 Example of a generic alteration of the cost distribution
We construct here an example of a change in the cost distribution, from G to Gε, satisfying
the conditions required in the proof of Lemma A.6 (see footnote 3 in Section OA-A.7),
namely:

(i) the change is continuous and affects g, G, and Γ (the primitive of G) in the range(
rD (δ)− ε, rD (δ) + ε

)
(and only in that range), where

rD (δ) ≡ rD1 (δ) + rD2 (δ)

2

and ε is an arbitrary number satisfying

0 < ε <
∆D (δ)

2
,

where
∆D (δ) rD2 (δ)− rD1 (δ)

denotes the difference in the two deterrence reserves, which is positive from Propo-
sition 3.

(ii) the change affecs buyer 2’s payoff, which boils down to

∆U
ε (δ) ≡

∫ rD(δ)+ε

rD(δ)−ε
(v − c) [gε(c)Gε(c)− g(c)G(c)] dc 6= 0.
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Consider the following baseline function f (·), defined over
[
rD (δ)− ε, rD (δ) + ε

]
:

f (c) =



4 + 4 c−r
D(δ)
ε

for c ∈
[
rD (δ)− ε, rD (δ)− 3ε

4

]
,

−2− 4 c−r
D(δ)
ε

for c ∈
[
rD (δ)− 3ε

4
, rD (δ)− ε

4
,
]
,

4 c−r
D(δ)
ε

for c ∈
[
rD (δ)− ε

4
, rD (δ)

]
,

−4 c−r
D(δ)
ε

for c ∈
[
rD (δ) , rD (δ) + ε

4

]
,

4 c−r
D(δ)
ε
− 2 for c ∈

[
rD (δ) + ε

4
, rD (δ) + 3ε

4

]
,

4− 4 c−r
D(δ)
ε

for c ∈
[
rD (δ) + 3ε

4
, rD (δ) + ε

]
.

In words, the function f (·) is continuous and, in all segments, its slope is constant and
has the same absolute value; furthermore, dividing the interval

[
rD (δ)− ε, rD (δ) + ε

]
into

four sub-intervals of equal length, the function f (·) oscillates between −1 and 1 as follows:
in the first and last intervals,

[
rD (δ)− ε, rD (δ)− ε/2

]
and

[
rD (δ) + ε/2, rD (δ) + ε

]
, it

first jumps up from 0 to 1, before going back to 0; by contrast, in the two middle intervals[
rD (δ)− ε/2, rD (δ)

]
and

[
rD (δ) , rD (δ) + ε/2

]
, it first jumps down from 0 to −1, before

going back to 0. It is straightforward to check that this function satisfies (with F denoting
the primitive of f , and Φ denoting the primitive of F ):

f
(
rD (δ)− ε

)
= F

(
rD (δ)− ε

)
= Φ

(
rD (δ)− ε

)
= 0,

f
(
rD (δ) + ε

)
= F

(
rD (δ) + ε

)
= Φ

(
rD (δ) + ε

)
= 0.

It thus satisfies condition (i) above. It follows that any scaled-down function ρf (·), for
any arbitrary small (positive or negative) ρ, also satisfies condition (i)—and for ρ small
enough, the modified cost distribution still has a strictly monotone hazard rate.

We now turn to condition (ii). Integrating by parts yields:

∫ rD(δ)+ε

rD(δ)−ε
(v − c)g(c)G(c)dc =

[
(v − c)G

2(c)

2

]rD(δ)+ε

rD(δ)−ε
+

∫ rD(δ)+ε

rD(δ)−ε

G2(c)

2
dc,

∫ rD(δ)+ε

rD(δ)−ε
(v − c)gε(c)Ge(c)dc =

[
(v − c)G

2
ε(c)

2

]rD(δ)+ε

rD(δ)−ε
+

∫ rD(δ)+ε

rD(δ)−ε

G2
ε(c)

2
dc.
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It follows that ∆U
ε (δ) can be expressed as, for Gε (·) = G (·) + ρF (·):

∆U
ε (δ) =

1

2

∫ rD(δ)+ε

rD(δ)−ε

[
G2
ε(c)−G2(c)

]
dc

=
1

2

∫ rD(δ)+ε

rD(δ)−ε

{
[G(c) + ρF (c)]2 −G2(c)

}
dc

= ρ

∫ rD(δ)+ε

rD(δ)−ε
G(c)F (c) dc+

1

2

∫ rD(δ)+ε

rD(δ)−ε
F 2 (c) dc,

where the first equality stems fromGe

(
rD (δ)− ε

)
= G

(
rD (δ)− ε

)
andGe

(
rD (δ) + ε

)
=

G
(
rD (δ) + ε

)
, implying that the bracketed terms coincide in the previous expressions.

In the last expression, the second term is positive. Hence, if∫ rD(δ)+ε

rD(δ)−ε
G(c)F (c) dc ≥ 0,

we have ∆U
ε (δ) > 0. If instead ∫ rD(δ)+ε

rD(δ)−ε
G(c)F (c) dc < 0,

then ∆U
ε (δ) > 0 for any ρ < 0. Hence, in both cases there exists a change satisfying

condition (ii).

OA-B Extension to more than two markets
In this section, we consider an extension that allows for n ≥ 2 markets. We continue to
assume that there are two suppliers and focus on the case with one integrated buyer.

OA-B.1 Setting
Let N ≡ {1, . . . , n} denote the set of markets and r = (r1, . . . , rn) the vector of reserves
in these markets, with the convention that markets are labeled by decreasing order of the
reserves: that is, r1(n) ≥ · · · ≥ rn(n). As before, each market is characterized by the
same value v for the buyer and the same distribution G over [c, c] for the sellers’ constant
marginal costs, where cost draws are independent across suppliers and time.

Because symmetry facilitates collusion, for the sake of exposition we focus on market
allocation that are as balanced as possible. Hence, if n is even, then each supplier is the
designated winner in n/2 markets, alternating each period. For example, with n = 4, the
markets might be divided up as {1, 2} and {3, 4}, with supplier 1 designated for {1, 2} in
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one period and for {3, 4} in the next period. If n is odd, then suppliers alternate being
the designated winner in (n + 1)/2 and in (n − 1)/2 markets. For example with n = 3,

the markets might be divided up as {1, 2} and {3}, with supplier 1 designated for {1, 2}
in one period and for {3} in the next period.4

Consider a supplier facing the lowest cost and designated for the markets other than
M ⊂ N . By deviating, the supplier can get the monopoly payoff rather than the non-
designated supplier payoff in all markets inM; the associated short-term stake is thus:

SM(r) ≡
∑
j∈M

S(rj).

Although SM(r) only depends on (rj)j∈M , it is notationally convenient to write it as a
function of the entire vector r.

The long-term stake for a supplier that would forever be designated for the markets
inM is instead given by

LM(r, δ) ≡ δ

1− δ

∑
i∈M

B(ri)−
∑

j∈N\M

C(rj)

 ,
where B(·) and C(·) denote the benefit and cost of collusion, given by (1) and (2). Then
the long-term stake for a supplier that is designated for the markets in M next period,
accounting for the rotation over the set of designated markets, is

LRM(r, δ) ≡ 1

1 + δ
LM(r, δ) +

δ

1 + δ
LN\M(r, δ).

Define k to be half the number of markets if there is an even number of markets and that
number rounded up if there is an odd number of markets:

k ≡

{
n/2 if n is even,

(n+ 1)/2 if n is odd.

Collusion is not incentive compatible if a supplier has an incentive to deviate in k markets
when it is designated for n−k markets. Thus, given reserves r, the suppliers are deterred
from collusion if and only if for allM∈ P(N , k), where P(N , k) is the set of permutations
of subsets ofN containing k elements, either LRM(r, δ) ≤ SM(r) or LRN\M(r, δ) ≤ SN\M(r).
For example, if n = 4, then a market allocation in which each supplier alternates between

4It can be shown that these market allocations do indeed maximize the scope for collusion for the
optimal accommodation and deterrence reserves.
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markets {1, 2} and {3, 4} is deterred if either

LR{1,2}(r, δ) ≤ S{1,2}(r) or LR{3,4}(r, δ) ≤ S{3,4}(r).

OA-B.2 Optimal reserves
The buyer’s optimal reserves conditional on deterrence satisfy:

max
r

∑
i∈N

UComp(ri)

subject to, for allM∈ P(N , k), either LRM(r, δ) ≤ SM(r) or LRN\M(r, δ) ≤ SN\M(r). The
buyer then compares this payoff to nUColl(rColl) to determine whether to accommodate
or deter collusion.

We first note that, as long as the number of markets remains even, asymmetric reserves
still help to reduce the cost of deterrence:

Proposition OA-B.1. If the number of markets is even and collusion is not blockaded,
then an integrated buyer’s optimal deterrence reserves are asymmetric.

Proof. Suppose that there are n = 2k markets. We first show that, for symmetric
reserves, the scope for collusion is maximized when each supplier is designated for half of
the markets. Let r denote the symmetric reserve and suppose without loss of generality
that a supplier is currently designated for n− h markets, for some h ∈ N . The supplier’s
short-term stake from a deviation in the remaining h markets is then given by

S (r, h) ≡ hS (r) ,

whereas its long-term stake is:

L (r, h, δ) ≡ δ [hB (r)− (n− h)C (r)] + δ2 [(n− h)B (r)− hC (r)]

1− δ2 .

Hence, the supplier has no incentive to deviate if φ(r, h, δ) ≥ 0, where

φ(r, h, δ) ≡
(
1− δ2

)
[L(r, h, δ)− S (r, h)]

= δ [hB (r)− (n− h)C (r)] + δ2 [(n− h)B (r)− hC (r)]−
(
1− δ2

)
hS (r) ,

which is decreasing in h, that is,

∂φ(r, h, δ)

∂h
= (1− δ) [δB (r) + δC (r)− (1 + δ)S (r)] < 0,
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where the inequality stems from Lemma A.1. Collusion is sustainable if no supplier has
an incentive to deviate, that is, if

min{φ(r, h, δ), φ(r, n− h, δ)} ≥ 0.

It follows that collusion is easiest to sustain when h = n − h = k(= n/2). In particular,
collusion is blockaded if φ

(
rC , k, δ

)
≥ 0.

Suppose now that collusion is not blockaded. Because the buyer’s payoff UComp (r)

is concave in r, the optimal symmetric deterrence reserve, rDS (δ), is then such that
φ
(
rDS (δ) , k, δ

)
= 0. Starting from rDS (δ) =

(
rDS (δ) , ..., rDS (δ)

)
, consider now a small

change in reserves in which r1 is slightly increased by dr1 = (n− 1) dr > 0, whereas all
other reserves are reduced by dr. By construction, this small change in the reserves has
no first-order effect on the buyer’s overall payoff, as the net impact is given by

∑
i∈N

∂U

∂ri

Comp

(ri) dri

∣∣∣∣
ri=rDS (δ)

=
∂U

∂r

Comp

(r)

∣∣∣∣
r=rDS (δ)

[dr1 − (n− 1) dr] = 0.

However, for the supplier currently not designated for market 1, the short-term stake
becomes (where r ≡ rDS (δ)− dr)

Ŝ (r) ≡ S (r1) + (k − 1)S (r) ,

whereas its long-term stake is

L̂R (r, δ) ≡ δ [B (r1) + (k − 1)B (r)− kC (r)] + δ2 [kB (r)− C (r1)− (k − 1)C (r)]

1− δ2 .

The supplier thus has an incentive to deviate if φ̂ (r, δ) ≡
(
1− δ2

) [
L̂R (r, δ)− Ŝ (r)

]
< 0.
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A first-order approximation yields:

φ̂ (r, δ) ' φ̂
(
rDS (δ) , δ

)
+

δ
{
B′
(
rDS (δ)

)
[dr1 − (k − 1) dr]− kC ′

(
rDS (δ)

)
(−dr)

}
+δ2

{
kB′

(
rDS (δ)

)
(−dr)− C ′

(
rDS (δ)

)
[dr1 − (k − 1) dr]

}
−
(
1− δ2

)
S ′
(
rDS (δ)

)
[dr1 − (k − 1) dr]

= δ
[
B′
(
rDS (δ)

)
+ C ′

(
rDS (δ)

)]
kdr

−δ2
[
B′
(
rDS (δ)

)
+ C ′

(
rDS (δ)

)]
kdr

−
(
1− δ2

)
S ′
(
rDS (δ)

)
kdr

= (1− δ)
{
δ
[
B′
(
rDS (δ)

)
+ C ′

(
rDS (δ)

)
− (1 + δ)S ′ (r)

]}
kdr

< 0,

where the first equality follows from φ̂
(
rDS (δ) , δ

)
= φ

(
rDS (δ) , k, δ

)
= 0 and dr1 = (2k −

1)dr, whereas the inequality stems from δ ∈ (0, 1), dr > 0 and Lemma A.1. It follows
that the change in reserves strictly deters collusion while maintaining the buyer’s total
payoff. By continuity, there exists a neighboring change in reserves that keeps deterring
collusion and enhances the buyer’s payoff. �

To go further, we now focus on the case in which v = 1 and costs are uniformly dis-
tributed over [0, 1]. Table OA-B.2 reports the buyer’s optimal reserve policy for different
numbers of markets (from n = 1 to n = 6) and a given value of the discount factor
(δ = 0.94).

Table OA-B.2: Optimal deterrence reserves rD for δ = 0.94

n n even n odd
1 r1 = 0.5 (blockaded)
2 r1 = 0.4894, r2 = 0.3937

3 r1 = · · · = r3 = 0.4953

4 r1 = 0.4849, r2 = · · · = r4 = 0.3894

5 r1 = · · · = r5 = 0.4512

6 r1 = 0.4834, r2 = · · · = r6 = 0.3875

Note: Assumes v = 1 and uniformly distributed costs.

Several features can be noted. First, for even numbers of markets, the asymmetry
established by Proposition OA-B.1 takes a specific form, where a single reserve is set
above the others. Intuitively, treating n−1 markets equally enhances the buyer’s expected
payoff because UComp(r) is concave in r, and also limits the suppliers’ ability to restore
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symmetry by optimizing over the composition of designated packages.5 Second, for odd
numbers of markets, the optimal reserve policy is instead symmetric.6 This is because
the market allocation itself is necessarily imbalanced (with one supplier designated for
(n+ 1)/2 and the other for (n− 1)/2 markets), to an extent such that there is no need to
introduce further asymmetry.7 Third, for each type of situation, collusion becomes easier
as the number of markets increases, which in turn calls for more aggressive reserves. That
is, letting rD(n) = (rD1 (n), . . . , rDn (n)) denote the optimal deterrence reserves, we have
rD(n+ 2) < rD(n). To see why, consider first the case of even numbers of markets. If the
buyer were restricted to symmetric reserves, then increasing the number of markets would
raise proportionally the short-term and long-term stakes, and thus have no impact on the
scope for collusion.8 However, the buyer finds it optimal to introduce an asymmetry by
setting one reserve above the others and, given the optimal level of asymmetry, to adjust
the overall level of the reserves so as to ensure that the supplier not designated for that
market has an incentive to deviate. As the number of markets increases, however, the
long-term stake increases proportionally, which in turn calls for more aggressive reserves.

For odd numbers of markets, the optimal deterrence reserves are symmetric (at least
for up to six markets), as the market allocation is itself sufficiently asymmetric. However,
as the number of markets increases, the relative asymmetry of the market allocation is
reduced, which calls again for more aggressive reserves.

5For instance, if n = 4 and r1 > r2 > r3 > r4, the suppliers can maintain some symmetry by
designating one supplier for markets 1 and 4 and the other for markets 2 and 3. By contrast, with
r1 > r2 = r3 = r4, one supplier necessarily ends up with a better designated packaged and the buyer
moreover perfectly controls the level of asymmetry.

6It could therefore be implemented as well by independent buyers, the symmetry of the optimal
reserves ensuring that the preference for accommodation versus deterrence is the same for all buyers,
integrated or not—and conditional on deterrence, the optimal reserves constitute a Nash equilibrium of
the reserve-setting game.

7As the number of markets increases, this imbalance however tends to become relatively small; asym-
metric reserves may thus become again optimal.

8The optimal symmetric reserve is δ̂
−1

(δ), where the condition determining the threshold δ̂(·) is given
by δ̂(r)

1−δ̂(r)
= S(r)

B(r)−C(r) , as increasing the number of markets from 2 to n = 2k leads to multiply both the
numerator and denominator of the right-hand side by k.
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Table OA-B.3: Threshold discount factor between deterrence and accommodation (δA)

n n even n odd
1 0.9714

2 0.9541

3 0.9586

4 0.9501

5 0.9545

6 0.9489

Note: Assumes v = 1 and uniformly distributed costs.

It follows from the last observation that, for each type of situation (i.e., even or odd
number of markets), deterrence becomes more costly as the number of markets increases,
and is thus less likely to be optimal. This intuition is confirmed by Table OA-B.3, which
reports, for the same numbers of markets as before, the discount factor threshold δA(n)

above which accommodation dominates deterrence. We have:

δA(n+ 2) < δA(n).

Thus, as the number of markets increases, deterrence is optimal for a smaller range of
discount factors.

In contrast, increasing the number of markets from an even to an odd number in-
troduces an intrinsic asymmetry in the market allocation and can make collusion more
fragile, and thus easier to deter. Indeed, deterrence is optimal for a wider range of dis-
counts factors with n = 3 or even with n = 5 than with n = 2.

OA-C Illustration of monotonicity assumptions
In this section, we show that our monotonicity assumptions are satisfied when costs are
distributed over [0, 1] according to the power distribution G (c) = c1/s with s > 0 and
v ≥ 1. Specifically, we show that the unique-market discount factor threshold, δ̂U(r) is
decreasing in r.

For this setup, we have:

B (r) =

∫ r

0

G2 (c) dc =
sr1+ 2

s

2 + s
, (OA-C.2)

C (r) =

∫ r

0

[G (r)−G (c)]G (c) dc =
sr1+ 2

s

(1 + s) (2 + s)
, (OA-C.3)

S (r) = G (r) (r − c) = r1+ 1
s .

13



We first show that the critical discount factors thresholds δ̂S (r) = δ̂ (r, r) and δ̂U (r) =

δ̂(c, r) are decreasing in r, before turning to the monotonicity of the long-term stake. For
symmetric reserves equal to r, the threshold δ̂S (r), given by (A.1), is equal to

δ̂S (r) =
1

1 + B(r)−C(r)
S(r)

=
1

1 + s2r
1
s

(1+s)(2+s)

,

which is strictly decreasing in r over the relevant range r ∈ [0, 1]. For a unique market,
the threshold δ̂U (r), given by (A.2), is equal to

δ̂U (r) =
√

S(r)
S(r)−C(r)

+ B2(r)

4[S(r)−C(r)]2
− B(r)

2[S(r)−C(r)]

=

√
(1+s)(2+s)

(1+s)(2+s)−sr
1
s

+

[
1+s

2
sr

1
s

(1+s)(2+s)−sr
1
s

]2

− 1+s
2

sr
1
s

(1+s)(2+s)−sr
1
s
.

Using

x (r) ≡ 1 + s

2

sr
1
s

(1 + s) (2 + s)− sr 1
s

, (OA-C.4)

this threshold can be expressed as δ̂U (r) = δU (x (r)), where:

δU (x) ≡
√

1 +
2x

1 + s
+ x2 − x (OA-C.5)

is strictly decreasing in x:

δ′U (x) =
1

1+s
+ x√

1 + 2z
1+s

+ x2
− 1 =

√
1

(1+s)2
+ 2x

1+s
+ x2√

1 + 2x
1+s

+ x2
− 1 < 0.

Because x (r) is strictly increasing in r, it follows that δU (x) is strictly decreasing in x.

We now show that the long-term stake L (rj, ri, δ) is strictly increasing in rj the relevant
range δ > δ ≡ infr∈[c,min{v,c}]2 δ̂(r). We have:

∂L (rj, ri, δ)

∂rj
=

δ

1− δ2 [δB′(rj)− C ′(rj)] .

It follows that L (rj, ri, δ) is strictly increasing in rj if and only if δB′(rj) > C ′(rj), which
amounts to

δ >
C ′(rj)

B′(rj)
.
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From (OA− C.2) and (OA− C.3), the right-hand side is constant and equal to:

B (r)

C (r)
=

sr1+
2
s

(1+s)(2+s)

sr1+
2
s

2+s

=
1

1 + s
.

To conclude the argument, we now show that δ > 1/ (1 + s). The argument relies on
four steps.

• Step 1. For any r ∈ [c,min{v, c}], δ̂ (r, r) > 1/ (1 + s). Fix r ∈ [c,min{v, c}]. From the
above observations, the threshold δ̂ (r, r) = δ̂S (r) is strictly decreasing in r; furthermore,
for r = 1 it is equal to

δ̂S (1) =
1

1 + s2

(1+s)(2+s)

>
1

1 + s
.

The conclusion follows.

• Step 2. For any r ∈ [c,min{v, c}], δ̂ (c, r) > 1/ (1 + s). Fix r ∈ [c,min{v, c}]. From
the above observations, the threshold δ̂ (c, r) = δ̂U (r) can be expressed as δU (x), for
x = x (r) (≥ 0) given by (OA− C.4). Furthermore,

δU (x) >
1

1 + s
⇐⇒

√
1 +

2x

1 + s
+ x2 > x+

1

1 + s

⇐⇒ 1 +
2x

1 + s
+ x2 >

(
x+

1

1 + s

)2

⇐⇒ 1 >
1

(1 + s)2 ,

where the first equivalence stems from (OA− C.5) and the second one from x > 0 (ensur-
ing that 1 + 2x

1+s
+x2 and x+ 1

1+s
are both positive), and the last inequality holds trivially

as s > 0. The conclusion follows.

• Step 3. For any r ∈ [c,min{v, c}] and any r̃ ∈ [c, r], δ̂ (r, r̃) is weakly decreasing in r̃.
Fix r ∈ [c,min{v, c}] and r̃ ∈ [c, r]. From Lemma 2, L (r̃, r, δ) is strictly increasing in δ
and δ̂ (r, r̃) is the unique solution in δ to

L (r̃, r, δ) = S (r) .

As L (r̃, r, δ) is twice continuously differentiable in δ and r̃, δ̂ (r, r̃) is continuously differ-
entiable in r̃ and:

∂δ̂ (rj, r)

∂rj

∣∣∣∣∣
rj=r̃

= −

∂L(rj ,r,δ)

∂rj

∣∣∣
rj=r̃,δ=δ̂(r,r̃)

∂L(rj ,r,δ)

∂δ

∣∣∣
rj=r̃,δ=δ̂(r,r̃)

,
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where ∂L (rj, r, δ) /∂δ|rj=r̃,δ=δ̂(r,r̃) > 0 and:

∂L (rj, r, δ)

∂rj

∣∣∣∣
rj=r̃,δ=δ̂(r,r̃)

=
δ̂ (r, r̃)

1− δ̂
2

(r, r̃)

[
δ̂ (r, r̃)B′ (r̃)− C ′ (r̃)

]
=
δ̂ (r, r̃)B′ (r̃)

1− δ̂
2

(r, r̃)

[
δ̂ (r, r̃)− 1

1 + s

]
.

It follows that:

∂δ̂ (rj, r)

∂rj

∣∣∣∣∣
rj=r̃

Q 0⇐⇒ ∂L (rj, r, δ)

∂rj

∣∣∣∣
rj=r̃,δ=δ̂(r,r̃)

R 0⇐⇒ δ̂ (r, r̃) R
1

1 + s
. (OA-C.6)

Suppose now by way of contradiction that ∂δ̂ (rj, r) /∂rj

∣∣∣
rj=r̃

> 0 for some r̃ ∈

(c, r], and let r̃ ≡ inf

{
ř ∈ [c, r̃] | ∂δ̂ (rj, r) /∂rj

∣∣∣
rj=ř

> 0

}
. From (OA− C.6), δ̂ (r, ř) <

1/ (1 + s) for any ř ∈ (r̃, r̃]. Furthermore, from step 2, δ̂ (r, c) > 1/ (1 + s). Hence, r̃ > c

and, by continuity, δ̂ (r, r̃) = 1/ (1 + s) > δ̂ (r, r̃). It follows that ř ∈ (r̃, r̃] such that
δ̂ (r, ř) < 1/ (1 + s) (by continuity) and ∂δ̂ (rj, r) /∂rj

∣∣∣
rj=ř

< 0 (by definition of r̃), con-

tradicting (OA− C.6). It follows that ∂δ̂ (rj, r) /∂rj

∣∣∣
rj=r̃
≤ 0 δ̂ (r, r̃) ≥ 1/ (1 + s) for any

r̃ ∈ [c, r].

• Step 4. δ > 1/ (1 + s). Fix r = (r1, r2) and let r̄ ≡ max {r1, r2}. We have:

δ̂ (r) ≥ δ̂ (r̄, r̄) = δ̂S (r̄) ≥ δ̂S (1) ,

where the first inequality stems from step 3 and the symmetry of δ̂ (·) (namely, δ̂ (r1, r2) =

δ̂ (r2, r1)), and the second one stems from the monotonicity of δ̂S (r). Hence:

δ = δ̂S (1) =
2 + 3s+ s2

2 + 3s+ 2s2
=

1

1 + s2

2+3s+s2

>
1

1 + s

where the inequality stems from s < 2 + 3s+ s2.

It follows from the above that, for any δ ≥ δ, the long-term stake L (rj, ri, δ) is strictly
increasing in rj. This, in turn, implies that the threshold δ̂ (ri, rj) is strictly increasing in
rj in the range rj ≤ ri.

Example: uniform distribution. For s = 1, we have:

C ′(·)
B′(·)

=
1

2
< δ =

6

7
,
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and:

δ̂U (r) =

√
36− 6r + r2 − r

6− r
and δ̂S (r) =

6

6 + r
,

which, as r increases, strictly decrease from δ̂S (0) = δ̂U (0) = 1 to, respectively, δ̂U (1) =(√
31− 1

)
/5 ' 0.91 and δ̂S (1) = δ = 6/7 ' 0.86.

OA-D Illustrations of coordination and coordination
failure with independent buyers

To illustrate two ways in which one obtains no coordination failure, Figure D.1 considers
the example in which costs are uniformly distributed over [0, 1] and v = 1. The panels
depict the deterrence boundary and the buyers’ best-responses for different values of the
discount factor. Interestingly, the scope for coordination failure is not monotonic in the
discount factor. From Proposition 4, when the discount factor is sufficiently high that an
integrated buyer accommodates collusion, δ > δA, then the unique Nash equilibrium of
the reserve-setting game also involves accommodation, as illustrated in Figure D.1(a). At
the other extreme, as illustrated in Figure D.1(b), when the discount factor is sufficiently
low that collusion is blockaded, δ < δC , the unique Nash equilibrium of the reserve-setting
game has independent buyers both setting a reserve of rC , just as an integrated buyer
would do.

(a) δ = 0.975

r1

r2

competition

collusion

rC

rA

rD(δ)

ℬ(δ)

BR2(r1)

BR1(r2)

(b) δ = 0.92

r1

r2

competition

collusion

rC

rA

ℬ(δ)

BR1(r2)

BR2(r1)

Figure D.1: No coordination failure: an integrated buyer’s optimal reserves, rA in the case of panel (a)
and rC in the case of panel (b), are the unique Nash equilibrium of the reserve-setting game. The panels
depict the deterrence boundaries and the buyers best-responses over the full relevant range ri ∈ [0, 1].
Assumes that costs are uniformly distributed over [0, 1], v = 1, and δ is as indicated. In this setup,
δC = 0.9231 and δA = 0.9540, so an integrated buyer accommodates collusion in panel (a), and collusion
is blockaded in panel (b).

There exists a threshold discount factor δDN ∈ (δC , δA) such that coordination failure
arises for sure, that is, for δ ∈ (δDN , δ

A), an integrated buyer would deter collusion using
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the optimal deterrence reserves, but those optimal deterrence reserves do not constitute
a Nash equilibrium of the reserve-setting game with independent buyers.9 For instance,
in Figure 3(a) in the body of the paper, which has δ ∈ (δDN , δ

A) but close to δA, the only
Nash equilibrium involves accommodation. Considering a lower δ, but still in the range
(δDN , δ

A), Figure D.2(a) shows a case in which there exists an accommodation equilibrium
and also a continuum of deterrence equilibria, all of which are suboptimal. For still lower
δ, Figure D.2(b) shows a case in which there only exist deterrence equilibria, all of which
are suboptimal.

(a) δ = 0.94827

r1

r2

competition

collusion

rC

rA
rD(δ)

{NE

︸
NE

ℬ(δ)

BR2(r1)

BR1(r2)

(b) δ = 0.94800 (detail)

r1

r2 {

︸

rC

rA

rD(δ)

NE

(r2
D(δ), r1D(δ))

NE

BR2(r1)

BR1(r2)

Figure D.2: Coordination failure: an integrated buyer deters collusion with optimal deterrence reserves
rD(δ), but in the reserve-setting game with independent buyers, those optimal reserves are not a Nash
equilibrium. Panel (a) depicts the deterrence boundaries, buyers’ best-responses, and the diagonal; but
to reduce clutter, panel (b) shows only the best responses and diagonal. Both panels assume that costs
are uniformly distributed over [0, 1] and v = 1. The discount factor δ is as indicated above the panels.
In this setup, δC = 0.9231 and δA = 0.9540, so we have δ ∈ (δC , δA).

9In the examples of Figure 3 in the body of the paper and Figure D.2 here, we have δC = 0.9231,
δDN = 0.9475, and δA = 0.9540.
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