Wind turbine components' life cycle assessment for eco-design purposes: state of the art

Rabie Aloui^{1,2}, Barbara Lafarge¹, Rouadha Gaha¹, Berk Celik²

Université de Technologie de Compiègne – CS 60319 - 60203 Compiègne Cedex - France

1 - Roberval, Centre de recherche Royallieu

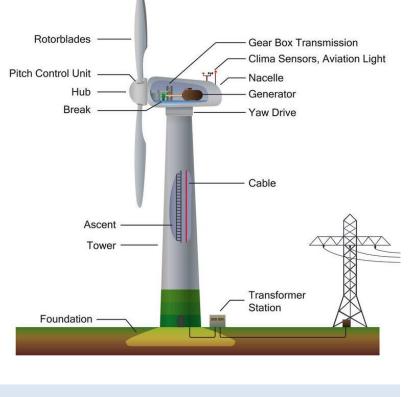
2 - Avenues, Centre Pierre Guillaumat

des systèmes technologiques

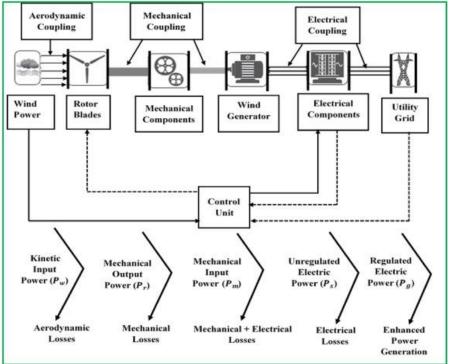
https://collogue-ts3.sciencesconf.org

"Life cycle analysis of piezoelectric energy harvesters for wind power: environmental assessment and contributions to the sustainable energy transition"

Keywords: Life cycle analysis, ecodesign, energy harvesting, piezoelectric materials, green energy, wind turbine, environment, sustainability, security


Content

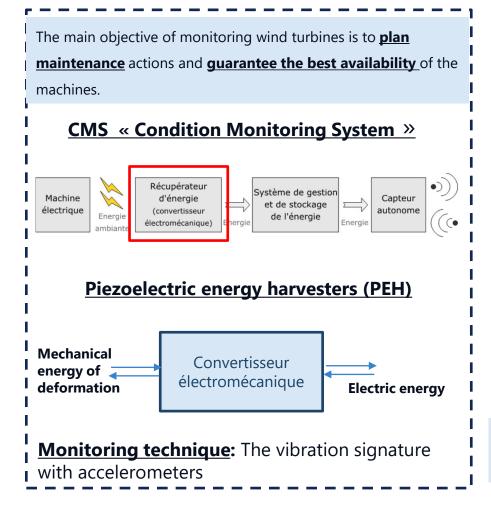
- 1. Introduction
- 2. Life cycle assessment A prior art
- 3. Piezoelectric materials IoT features
- 4. Case study : synthesis of KNN nanoblocks
- 5. Conclusions & prospectives


1

Introduction

A wind turbine is a mechanical structure that uses the kinetic energy of the wind to generate electricity.

<u>Typical wind energy conversion networks and power</u> <u>transformation phases for enhanced electricity generation.</u>

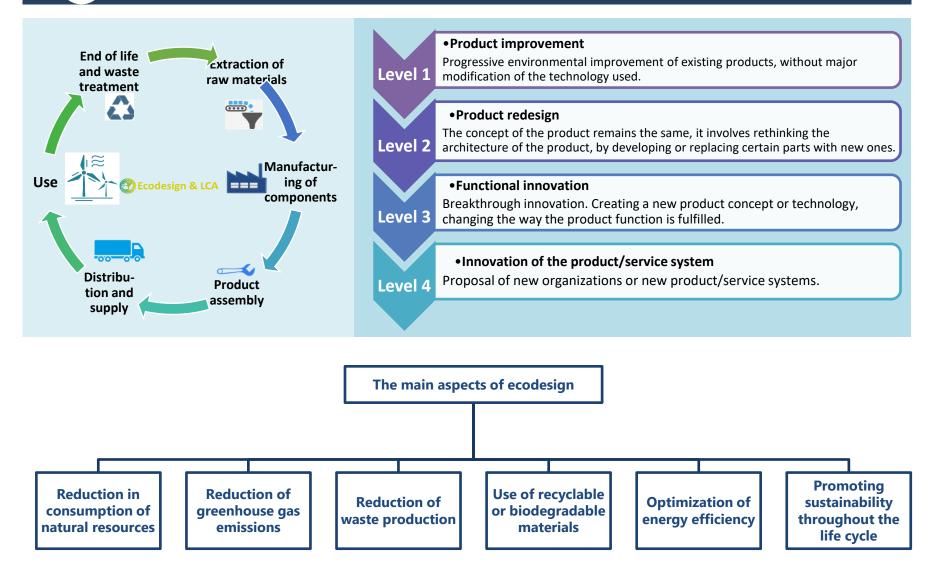

Reference: (B. Desalegn, 2022)

Introduction

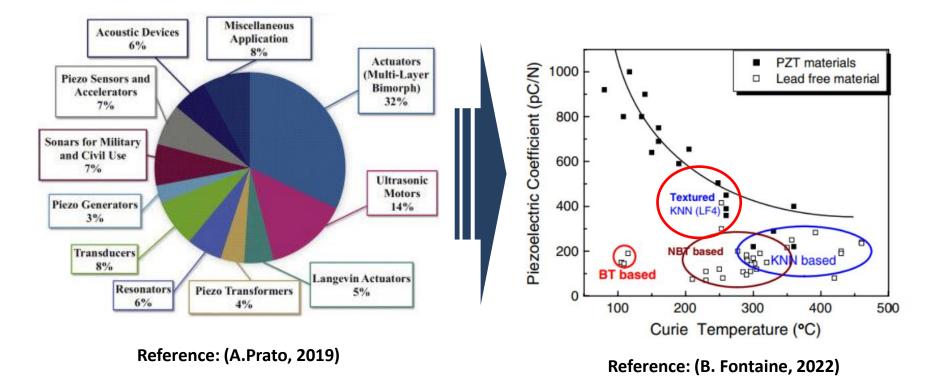
Structural monitoring of wind turbine

A wind turbine is a mechanical structure that uses the kinetic energy of the wind to generate electricity.

Introduction : Regulatory and normative texts


Reference	Common Name	Integration or Transposition into French law
REGULATION (EC) No. 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, of 18 December 2006, concerning the registration, evaluation and authorization of chemical substances, as well as restrictions applicable to these substances (REACH)	REACh	Order No. 2009-229 of February 26, 2009
DIRECTIVE 2011/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of June 8, 2011 relating to the limitation of the use of certain dangerous substances in electrical and electronic equipment	RoHS	Articles R543-172 to 206 of the Environmental Code
DIRECTIVE 2012/19/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of July 4, 2012 on waste electrical and electronic equipment (WEEE)	DEEE ou WEEE	Articles R543-172 to 206 of the Environmental Code
DIRECTIVE 2006/66/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6 September 2006 on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC	Batteries and accumulators	Articles R543-124 to 134 of the Environmental Code

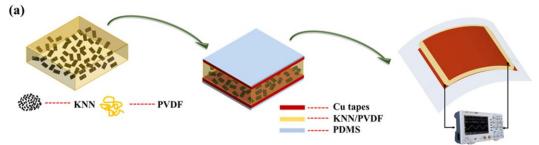
Reference	Title		
ISO 14 001	Environmental management systems Requirements and guidelines for its use		
ISO 14 006	Environmental management systems Guidelines for integrating ecodesign		
ISO 14 040	Environmental management. Life cycle analysis: principles and framework		
ISO 14044	Environmental management. Life Cycle Analysis – Requirements and Guidelines		


2

Life cycle assessment - A prior art

2017 Piezoelectric Market share (%)

<u>Comparison between the properties of</u> <u>Piezoelectrics with and without lead</u>


Standard UtC Recherche Roberval

3



Case study

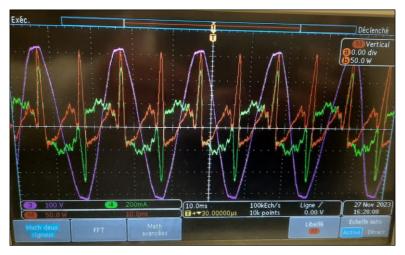
Study of the environmental impact of sensors and electromechanical energy harvesters used as IOT sensors; (a) Schematic of the fabrication procedure of KNN/PVDF-based nanogenerator, (b & c) KNN/PVDF nanocomposite film with high flexibility and (d) fabricated flexible nanogenerator wrapped with PDMS.

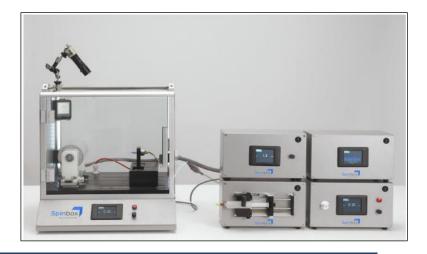
Case study : synthesis of KNN nanoblocks

Reference: (K.S. Nair, 2022)

Case study - Piezoelectric patch

Manufacturing process : electrospinning


- Deposition of a thin layer of PVDF by centrifugation
- Power measurements made at the UTC Research Center


Power \rightarrow sum of two periodic signals:

- A sinusoidal signal with zero mean
- A signal composed of a power peak at 150 W over 2ms

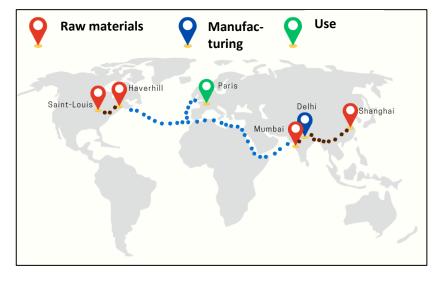
$$P = \frac{1}{T} \int_{t}^{t+T} p(t) dt = \frac{2 \times 150}{10} = 30 W$$

Voltage (purple), current (green) and power (red) signals for operation at 500 rpm

1. Modeling and Hypotheses

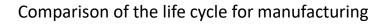
Raw materials :

- Quantity
- Origin → location of suppliers (US, India and China)

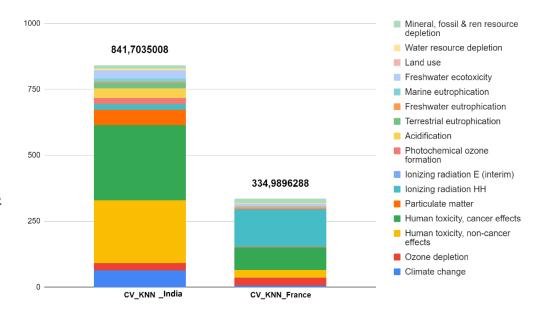

Transportation : Road and Maritime

Two scenarios:

- → Manufacturing in India
- → Manufacturing in France


Scenario 2: Manufacturing in France

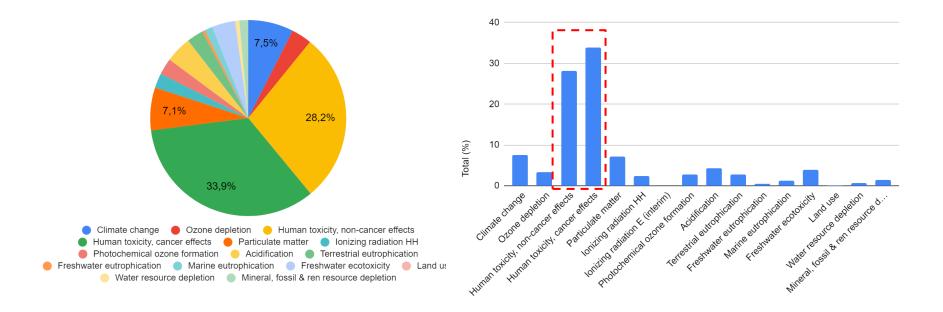
Scenario 1: Manufacturing in India



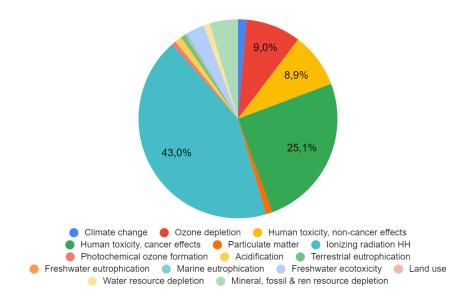
in India VS in France:

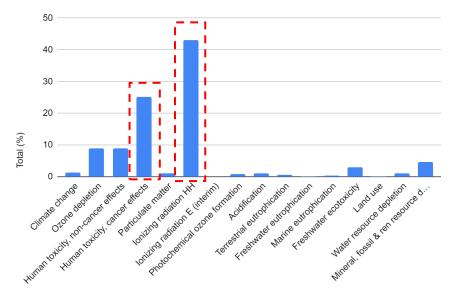
- different energy mix
- different transport
- → Manufacturing in India : life cycle 2.5 times

more impactful

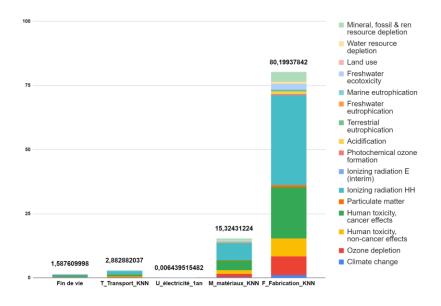

<u>Comparison in unique score (µPt) of the life cycle of KNN nanoblocks</u> <u>according to their place of production (India VS France)</u>

Distribution of environmental impacts over the entire life cycle of the KNN nano-blocks **manufactured in India**




Human toxicity, cancer effects	Human toxicity, non- cancer effects	Climate change	Particulate matter
33,9%	28,2%	7,5%	7,1%
- Human health hazards - Cancer effects	 Human health hazards Non-cancer effects Substances released from electricity production 	 Climate change Greenhouse gas emissions 	 Ingestion of fine particles Consequences on human health

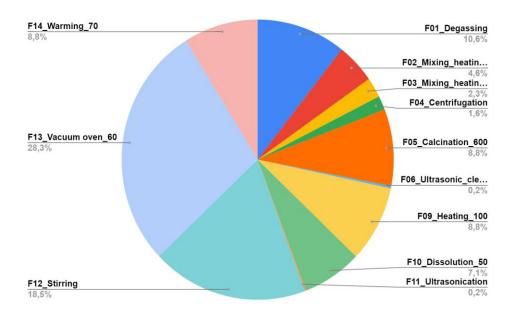
Distribution of environmental impacts over the entire life cycle of the KNN nano-blocks **manufactured in France**


Human toxicity, cancer effects	Human toxicity, non- cancer effects	Climate change	Particulate matter
33,9%	28,2%	9%	8,9%
- Ionic radiation due to the radioactivity of uranium	 Human health hazards Cancer effects Emissions from thermal power plants, waste management. 	 Depletion of the ozone layer Exposure to harmful ultraviolet rays 	 Human health hazards Non-cancer effects Oxides of sulfur, nitrogen, etc.

Environmental impacts of the manufacturing process

Breakdown of the environmental impacts of the KNN nanoblock manufactured in France by phase of the life cycle

Breakdown of the environmental impacts of the KNN nanoblock manufactured in India by phase of the life cycle



Environmental impacts of the manufacturing process

Breakdown of the total environmental impact of the KNN nanoblocks manufacturing process by manufacturing stage

Most impactful stages of the process:

- Heating empty at 60°C 4h (28.3%)
- Stirring in the heated mixer 4 h (18.5%)
- Degassing in the empty oven 1.5 hours (10.6%)
- Calcination 1 hour (8.8%)
- ➔ It is the longest stages or those requiring heating or maintaining vacuum pressure which consume the most energy.

Conclusions

- The material KNN has been studied as a lead-free piezoelectric material.
- A complete< life cycle analysis of this material is carried out with hypotheses using Simapro.
- Manufacturing is the most important phase in the product life cycle, regardless of the manufacturing location, due to the energy-intensive nature of its process.
- PDM is the most important, it is in fact a polymer having strong repercussions on the ozone layer, according to our LCA.

Prospects

- Conduct a similar LCA for a classic PZT using the same analysis method, database, and software.
- Rigorous comparison between the two technologies, thus offering more robust perspectives on their respective environmental impact.

Thank you for your attention

