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The vast majority of research works on low aspect ratio rotating wings report that, at high angle of attack, the leading edge vortex that forms on the upper surface of the wing is stable. This 'trick' is used by insects and auto-rotating seeds, for example, to achieve the desirable amount of lift. Yet, a few experimental studies suggest that leading edge vortices might be unstable under similar, low Rossby number, conditions. While it is unclear what causes vortex shedding in these studies, the present communication explores the sensitivity of leading edge vortex attachment to perturbations of the rotating speed and demonstrates that shedding can be triggered even for very small perturbations, corresponding to wing tip displacements lower than 1% of the wing chord.

Introduction

Rotating wings may experience large sustained lift due to the presence of a large scale, stable leading edge vortex (LEV) that forms on their upper surface. The stability of this LEV is promoted at low Rossby numbers (typically below Ro ≈ 3 ) where rotational accelera- tions induce relatively strong spanwise velocities, hence spanwise vorticity drainage within the vortex core [START_REF] Ellington | Leading-edge vortices in insect flight[END_REF][START_REF] Lentink | Rotational accelerations stabilize leading edge vortices on revolving fly wings[END_REF]. Together with other mechanisms like vorticity diffusion and annihilation [START_REF] Wojcik | Vorticity transport in the leading-edge vortex on a rotating blade[END_REF], spanwise drainage balances vorticity production at the leading edge such that the LEV rapidly reaches a quasi-steady state, say after 90 • rotation. This 'trick' is used by insects and autorotating seeds to achieve flight and echoes the existence of stall delay in the inboard sections of wind turbine blades (i.e. where local Rossby numbers are low) [START_REF] Dumitrescu | Inboard stall delay due to rotation[END_REF] at large Reynolds numbers.

While there is a general consensus in the scientific literature that LEV stability is ensured for wings with Rossby number below 3 [START_REF] Eldredge | Leading-edge vortices: mechanics and modeling[END_REF], a few studies, including those by [START_REF] Tarascio | Flow visualization of micro air vehicle scaled insectbased flapping wings[END_REF] and [START_REF] Jones | Three-dimensional effects on sliding and waving wings[END_REF], suggest that LEVs might be unstable under similar conditions. [START_REF] Tarascio | Flow visualization of micro air vehicle scaled insectbased flapping wings[END_REF] performed smoke visualization of the flow past a flapping wing robot and observed LEV shedding, even in spanwise sections close to the wing root where the local Rossby number is most probably well below 3. [START_REF] Jones | Three-dimensional effects on sliding and waving wings[END_REF] conducted PIV measurements of the flow past rotating wings with Rossby numbers around 4.4 and 2.4 and also revealed the existence of LEV shedding along most of the wing span. While it is unclear what causes vortex shedding in these studies, the latter raise the question of the robustness of LEV attachment on rotating wings.

On the other hand, because it is ubiquitous in nature, one may speculate that the stability of the LEV on low Rossby number wings, hence insects and auto-rotating seeds flight, is sufficiently robust to aerological perturbations. Despite the recent study by [START_REF] Engels | Bumblebee flight in heavy turbulence[END_REF] where it was demonstrated that the LEV on bumblebee wings was not significantly affected by freestream turbulence (with intensities as high as 99% of the freestream veloc- ity), there is virtually no work that support (or not) this hypothesis.

In this short communication, direct numerical simulations of a rotating wing are performed to assess the influence of unsteady perturbations on the stability of the LEV. Perturbations are introduced as oscillations in rotating speed, also referred to as surging oscillations, and the response of the flow in the ( ,N) parameter space is analyzed, where and N are the non-dimensional amplitude and frequency of the perturbation.

Numerical Setup

The numerical setup is similar to that detailed in [START_REF] Jardin | Root cutout effects on the aerodynamics of a low-aspect-ratio revolving wing[END_REF]. A rotating, rectangular wing with 4% flat plate profile is considered. The aspect ratio is set to R∕c = 4 , where c and R are the chord and the tip radius of the wing, respectively. The wing rotates about its root, i.e. there is no root cut out, and hence the wing Rossby number based on c and R is 4, which ensures LEV stability over most of the wing span in a non-perturbed rotating case. The Reynolds number based on c and ωR is set to 1000, where ω is the time- averaged rotating speed (i.e. time-averaged angular frequency). The instantaneous rotating speed is defined as 𝜔(t) = ω(1 + 𝜎 sin 𝜔 � t) , where t is time and ω𝜎 and ′ are the amplitude and angular frequency of the sinusoidal perturbation. The non-dimensional perturbation frequency reads N = 𝜔 � ∕ ω . The angle of attack is 15 • , similar to that used in [START_REF] Jones | Three-dimensional effects on sliding and waving wings[END_REF].

The flow around the wing is computed through direct numerical resolution of the Navier-Stokes equations under their incompressible form. A cell-centred finite volume method is employed to solve the momentum and continuity equations (cast in the non-rotating, inertial reference frame) in an uncoupled way, using a predictor-corrector approach. Specifically, a colocated variable arrangement and a Rhie-Chow-type pressure-velocity coupling combined with a SIMPLE-type algorithm are used. Second-order schemes are employed for both spatial (upwind) and temporal discretizations. The numerical method is further detailed in the works by [START_REF] Muzaferija | Adaptive finite volume method for flow prediction using unstructured meshes and multigrid approach[END_REF] and [START_REF] Demirdžić | Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology[END_REF].

The wing is embedded in a cylindrical, rotating computational domain with diameter 30c and length 40c. The domain is spatially discretized using approximately 10 million polyhedral cells. The typical cell size in the vicinity of the wing is s∕c = 0.02 in all three spatial directions, which ensures that the solution is converged with respect to spatial resolution [START_REF] Jardin | Root cutout effects on the aerodynamics of a low-aspect-ratio revolving wing[END_REF][START_REF] Jardin | Coriolis effect and the attachment of the leading edge vortex[END_REF][START_REF] Jardin | On the lift-optimal aspect ratio of a revolving wing at low Reynolds number[END_REF]. The equations are advanced in time with a time step corresponding to at least = 0.25 • rotation angle (0.125 • in higher frequency cases) which, here again, ensures that the solution is converged with respect to temporal resolution. Table 1 reports variations in instantaneous and time-averaged lift coefficients with spatial and temporal resolutions. Variations are obtained with respect to the case with s∕c = 0.01 and = 0.25 • and for a similar wing to that addressed here (i.e. aspect ratio 4, no root cut out, tip Reynolds number 1000) but at a larger angle-of-attack of 45 • . Instantaneous variations correspond to the maximum variations observed during the 180 • rotating motion. Time-averaged variations are computed from the time-averaged lift over the motion.

In addition, the present approach has been validated in a number of previous studies at similar Reynolds number, including bluff bodies [START_REF] Bury | Transitions to chaos in the wake of an axisymmetric bluff body[END_REF], rotating wings (Jardin and David 2017; Jardin 2017) and pitching airfoils (Jardin and Doué 2019) configurations. Comparison with data from the literature [START_REF] Garmann | Three-dimensional flow structure and aerodynamic loading on a revolving wing[END_REF]) obtained for a rotating wing with aspect ratio 1, root cut out 0.52c and midspan Reynolds number 500 is provided in Fig. 1 which plots time-averaged lift and drag coefficients as a function of angle-of-attack. Note that time-averaging is here performed over rotation angles

∈ [45 • -315 • ].

Results

Figure ≈ 90 • (also see video in supplementary material). Quasi-steady state is observed along most of the wing span, specifically in regions where LEV growth saturates before LEV size exceeds the wing chord. As previously mentioned, saturation results from the presence of a spanwise core flow, directed toward the tip, that drains vorticity out of the LEV core and, together with other mechanisms like vorticity diffusion and annihilation, balances vorticity production at the leading edge. This stabilizing mechanism is dependent on the local Rossby number and is promoted inboard where rotational effects are strong [START_REF] Jardin | Coriolis effect and the attachment of the leading edge vortex[END_REF][START_REF] Jardin | On the lift-optimal aspect ratio of a revolving wing at low Reynolds number[END_REF].

Figure 3 displays similar snapshots to those in Fig. 2 for a perturbed case with = 0.4 and N = 32 at rotation angles corresponding to 0, 0.25, 0.5 and 0.75 times the surging period (during the last period before = 180 • ). Differently from the non-per- turbed case, the flow is characterized by multiple leading edge vortices. The latter form and shed within one cycle of oscillation, i.e. vortex shedding locks on the frequency of oscillation (also see video in supplementary material). It can be seen that this dynamics occurs along all the wingspan, even in inboard regions where the LEV is presumably increasingly stable given the low, local Rossby number. Due to vortex shedding lock-on, LEVs are found to have characteristic, non-dimensional size proportional to r and 1/N, where r is the local radius. Specifically, the LEV on an impulsively started airfoil covers the whole surface after a non-dimensional distance of travel on the order of 2. That Fig. 2 2 -criterion iso-surfaces and contours obtained on the reference, non-perturbed case Fig. 3 2 -criterion iso-surfaces and contours obtained on the perturbed case with = 0.4 and N = 32 is, the non-dimensional size of the LEV is ∕c ≈ 1 at tU∕c ≈ 2 , where U is the airfoil speed [START_REF] Wang | Vortex shedding and frequency selection in flapping flight[END_REF]. Here, the non-dimensional distance of travel of the wing depends on r and is equal to ∫ T 0 ω(1 + 𝜎 sin 𝜔 � t)r∕c = ωrT∕c = 2𝜋r∕Nc over one surging period. Hence, ∕c scales with r∕Nc . Overall, the flow topology resembles experimental flow fields obtained by [START_REF] Jones | Three-dimensional effects on sliding and waving wings[END_REF] where the LEV on a rotating wing was observed to be unstable.

The dependence of LEV size on the perturbation frequency can further be assessed on Fig. 4 which depicts 2 -criterion iso-surfaces and contours obtained for different values of N (8, 16, 32 and 64), with = 0.4 , at = 180 • . In all cases vortex shedding occurs and locks on the frequency of oscillation. That is, the amplitude of the perturbation is sufficiently large that vortex lock-on does not depend on the perturbation frequency, within the range tested. Here the characteristic non-dimensional size of the LEVs decreases with increasing N and, again, is found to be correlated with r∕Nc . That is, the size of the LEV could be used to estimate the frequency of the perturbation encountered by the wing. The perturbation amplitude considered here ( = 0.4 ) is relatively strong, as can be observed in the supplementary material (video). Specifically, the nondimensional, perturbation displacement at the wing tip is x∕c = 2( ∕N)(R∕c) = 0.4 , 0.2, 0.1 and 0.05 for N = 8 , 16, 32 and 64, respectively.

Figure 5 displays 2 -criterion iso-surfaces and contours obtained for different values of (0.02, 0.04, 0.06 and 0.1), with N = 32 , at = 180 • . These setups lead to perturba- tions that would most probably not (or hardly) be observed on a small scale flapping wing robot subjected to wing parasitic oscillations (potentially induced by fluid-structure interactions and promoted by challenging mechanical adjustment at these scales). Specifically, the non-dimensional, perturbation displacement at the wing tip is in these cases x∕c = 2( ∕N)(R∕c) = 0.005 , 0.01, 0.015 and 0.025 for = 0.02 , 0.04, 0.06 and 0.1, respectively. It can be observed from Fig. 5 that while LEV shedding occurs outboard in all cases, it is not observed inboard at sufficiently low values of . This is consistent with LEVs being increasingly stable inboard where rotational effects are strong, hence more robust to local perturbations in surging velocity. Yet, it is striking that LEV shedding is observed in regions near the midspan for local wing tip displacements as low as 0.015 ( = 0.06 and N = 32 case, also see video in supplementary material). In fact, LEV shedding can be observed for even lower tip displacements (e.g. = 0.1 and N = 64 , see video in supplementary material). This further questions previous hypothesis by [START_REF] Lentink | Rotational accelerations stabilize leading edge vortices on revolving fly wings[END_REF] who suggested that angular acceleration, which scales with cN∕ r , does not play a significant role in LEV stability.

Conclusion

Most studies on high angle of attack low aspect ratio rotating wings (characterized by low Rossby numbers for limited root cutoff) report the presence of a stable leading edge vortex that promotes lift production. Yet, few works have reported that the LEV may shed under similar configurations where its stability is expected to be promoted by strong rotational effects [START_REF] Tarascio | Flow visualization of micro air vehicle scaled insectbased flapping wings[END_REF][START_REF] Jones | Three-dimensional effects on sliding and waving wings[END_REF], thus raising the question of the robustness of the LEV to small perturbations. Here, direct numerical simulations of the flow past a rotating wing perturbed by oscillations in rotating speed were conducted for different amplitudes and frequencies of the perturbation. Overall it was shown that the latter can trigger vortex shedding, even for amplitudes corresponding to wing tip displacements of the order of 1% of the wing chord. For lower amplitudes, vortex shedding may be observed only in outboard regions, consistent with the enhanced stability of the LEV with decreasing local Rossby number. These results provide evidence that the LEV on wings of natural species may be significantly affected by aerological perturbations and wing vibrations.

  Figure 2 displays snapshots of 2 -criterion iso-surfaces and contours obtained on the reference, non-perturbed case at rotation angles = 45 • , 90 • , 135 • and 180 • . Contours are shown in 8 spanwise sections equally spaced from wing root to wing tip and are clipped above * 2 = -0.4 , where superscript * denotes values non-dimensionalized with respect to wing chord and wing tip velocity. Iso-surfaces are shown in transparent for * 2 = -1 . A conical LEV progressively develops and eventually reaches a quasi-steady state, say around

Fig. 4 2

 4 Fig. 4 2 -criterion iso-surfaces and contours obtained on perturbed cases with = 0.4 and N = 8 , 16, 32 and 64 at = 180 •

Table 1

 1 Percentage variations in instantaneous/time-averaged lift coefficient with time step and cell size (with respect to the reference solution)

		s∕c = 0.01	0.015	0.02	0.025
	t = 0.25 •	reference	0.92%∕0.04%	0.92%∕0.10%	1.87%∕0.52%
	0.50 •			1.05%∕0.16%	
	1.00 •			1.87%∕0.52%	
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