On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers - Archive ouverte HAL
Article Dans Une Revue Symmetry Année : 2022

On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers

Résumé

The aim of this paper is to give generating functions for parametrically generalized polynomials that are related to the combinatorial numbers, the Bernoulli polynomials and numbers, the Euler polynomials and numbers, the cosine-Bernoulli polynomials, the sine-Bernoulli polynomials, the cosine-Euler polynomials, and the sine-Euler polynomials. We investigate some properties of these generating functions. By applying Euler’s formula to these generating functions, we derive many new and interesting formulas and relations related to these special polynomials and numbers mentioned as above. Some special cases of the results obtained in this article are examined. With this special case, detailed comments and comparisons with previously available results are also provided. Furthermore, we come up with open questions about interpolation functions for these polynomials. The main results of this paper highlight the existing symmetry between numbers and polynomials in a more general framework. These include Bernouilli, Euler, and Catalan polynomials.
Fichier principal
Vignette du fichier
symmetry-14-00654-v2.pdf (283.31 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04458842 , version 1 (04-04-2024)

Identifiants

Citer

Abdelmejid Bayad, Yilmaz Simsek. On Generating Functions for Parametrically Generalized Polynomials Involving Combinatorial, Bernoulli and Euler Polynomials and Numbers. Symmetry, 2022, 14 (4), pp.654. ⟨10.3390/sym14040654⟩. ⟨hal-04458842⟩
21 Consultations
35 Téléchargements

Altmetric

Partager

More