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Abstract

We analyze a general Implicit-Explicit (IMEX) time discretization for the com-
pressible Euler equations of gas dynamics, showing that they are asymptotic-preserving
(AP) in the low Mach number limit. The analysis is carried out for a general equa-
tion of state (EOS). We consider both a single asymptotic length scale and two length
scales. We then show that, when coupling these time discretizations with a Discontin-
uous Galerkin (DG) space discretization with appropriate fluxes, an all Mach number
numerical method is obtained. A number of relevant benchmarks for ideal gases and
their non-trivial extension to non-ideal EOS validate the performed analysis.
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1 Introduction

The compressible Euler equations of gas dynamics are the standard mathematical
model in several applications such as atmosphere dynamics [51], combustion or astro-
physics. For these equations, one can consider two opposite regimes: one in which the
flow is strongly subsonic, and therefore acoustic waves are much faster than the local
fluid velocity, and the other in which the fluid moves at high speed and compressibility
plays a key role. The relevant non-dimensional number which identifies the regime
is the local Mach number Mloc, defined as Mloc = |u|

c , where |u| is the magnitude of
the local fluid velocity and c is the speed of sound. When the Mach number tends
to zero, under suitable conditions, the compressible Euler equations converge to the
incompressible Euler equations, see [21, 37], and the references therein for the analysis
of singular limits of compressible flows. Weakly compressible flows are an example
of problem with multiple length and time scales. Hence, the design of efficient and
stable numerical schemes for such models is a challenging task and typically requires
specific numerical treatments. For this purpose, the concept of asymptotic-preserving
(AP) schemes has been introduced, see e.g. [28]. Consider a continuous physical model
Mε which involves a perturbation parameter ε, where in general ε ≪ 1. Denote by
M0 the limit of Mε when ε → 0, e.g. the incompressible Euler equations in our
framework. Let now Mε

∆t be a time discretization method which provides a consistent
discretization of Mϵ. The scheme Mε

∆t is said to be asymptotic-preserving (AP) if
its stability condition is independent of ε and if its limit Mε

∆t for ε → 0 provides a
consistent discretization of the continuous limit model M0. We analyze here the Euler
equations of gas dynamics and the parameter ε is represented by the Mach number
M , as defined in Section 2. Since the seminal contribution [38], several AP schemes
for Euler equations have been proposed in the literature, see among many others [1,
7, 13, 16, 17, 40, 41, 44, 56] and the references therein. While a complete review of all
the different approaches for low Mach flows is out of the scope of the present work, we
briefly outline some of the strategies proposed in the literature to deal with low Mach
flows, in order to highlight the main differences with the proposed numerical method.
Following the discussion in [38], a class of AP methods [13, 14] proposes to decouple
acoustic and transport phenomenon, leading to the so-called Lagrange-Projection like
schemes. Hence, an operator splitting is applied, solving first the transport subsystem
and dealing with acoustic effects afterwards. Following again [38], another class of
AP schemes [16, 44] considers a splitting of the fluxes into non-stiff and stiff parts.
More specifically, effects of global compression or long wave acoustics are considered
explicitly and then an implicit pressure correction is applied. Another class of popular
methods are the so-called pressure correction schemes. They extend the projection
techniques widely used for incompressible flows [15, 49, 54] and, starting from [30, 31],
several approaches have been proposed [32, 33, 55]. Finally, a Suliciu type relaxation
scheme [52], splitting the pressure in a slow and a fast acoustic part, has been proposed
in [56], whereas a Jin-Xin type relaxation method, building a linear hyperbolic relax-
ation system with a small dissipative correction to approximate the Euler equations,
has been presented in [1].

We analyze here the AP properties of a general class of Implicit-Explicit (IMEX)
time discretization schemes. The key observation is that, as first proposed in [12],
it suffices to adopt an implicit treatment of the pressure gradient term within the
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momentum equation and of the pressure work term in the energy equation to remove
the acoustic CFL restriction and to decouple acoustic and transport effects (see also
Appendix A). Similar approaches have been proposed e.g. in [7, 10]. Moreover, we
consider a general equation of state (EOS), for which only a small number of studies
have been devoted [1, 16]. We also extend the analysis performed in [38] for two
length scales to the case of a general EOS. Notice that, several low Mach schemes
have been proposed for a barotropic equation of state [8, 26, 34]. As discussed in
[38], the assumption of a barotropic fluid, for which a direct relation between the
pressure and the density exists, restricts the analysis to constant-entropy data and the
limiting case is an incompressible flow with constant density. However, large amplitude
density fluctuations are crucial for an accurate description of reacting flows [38], for
atmospheric applications and for the analysis of relevant fluid dynamics instabilities, as
we will see in Section 5. Finally, we show that an all Mach number numerical method
can be obtained coupling these time discretizations with a Discontinuous Galerkin
(DG) space discretization [23] with appropriate fluxes. The numerical verification is
based on the IMEX-DG method proposed in [46, 47, 48], which represents a particular
case of the IMEX time discretization analyzed in this work. More specifically, a second
order IMEX Additive Runge Kutta (ARK) scheme [36] is employed.

The paper is structured as follows. In Section 2, we derive the limits of the con-
tinuous model considering both a single length scale and two length scales. In Section
3, we show the AP property of a general class of IMEX-ARK methods, whereas in
Section 4 we discuss some details of the DG formulation that allows us to obtain a
numerical scheme effective for all Mach numbers. In Section 5, some numerical results
to verify the robustness of the proposed approach both for M = O(1) and M ≪ 1,
using the numerical method developed in [46, 47, 48], are presented. Finally, some
conclusions and perspectives for future work are discussed in Section 6.

2 Asymptotic analysis for the continuous model

We aim to investigate the limit of the fully compressible Euler equations of gas dy-
namics as the Mach number goes to zero. Let Ω ⊂ Rd, 1 ≤ d ≤ 3 be a connected
open bounded set with a sufficiently smooth boundary ∂Ω and denote by x the spa-
tial coordinates and by t the temporal coordinate. The mathematical model reads as
follows:

∂ρ

∂t
+∇· (ρu) = 0

∂ρu

∂t
+∇· (ρu⊗ u) +∇ p = 0 (1)

∂ρE

∂t
+∇· [(ρE + p)u] = 0.

Here, ρ is the density, u is the fluid velocity, p is the pressure, and E is the total
energy per unit of mass. The previous set of equations has to be completed by an
equation od state (EOS). Notice that no external source terms, such as gravity terms,
are considered in (1). The total energy ρE can be rewritten as ρE = ρe + ρk, where
e is the internal energy and k = 1

2 |u|
2 is the kinetic energy. We also introduce the
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specific enthalpy h = e+ p
ρ and we notice that one can rewrite the energy flux as

(ρE + p)u =

(
e+ k +

p

ρ

)
ρu = (h+ k) ρu. (2)

Hence, (1) can be rewritten as

∂ρ

∂t
+∇· (ρu) = 0

∂ρu

∂t
+∇· (ρu⊗ u) +∇ p = 0 (3)

∂ρE

∂t
+∇· [(h+ k) ρu] = 0.

Introduce reference scaling values T ,L, and U for time, length, and velocity, respec-
tively. We also introduce reference values P for the pressure and R for the density.
The Buckingham π theorem [9] states that there are n − k relevant non-dimensional
parameters that characterize the model, where n is the number of independent physical
variables and k is the rank of the matrix which associates to each physical parameter
its unit of measure. Hence, there are 2 non-dimensional parameters associated to (3).
We assume that the internal energy scales as I ≈ P

R and that the total energy scales
as E ≈ I + U2. Finally, we assume that the specific enthalpy scales as H ≈ I + P

R .
Introduce the following non-dimensional parameters

St =
L
T U

M2 =
RU2

P
(4)

and notice that

I + P
R

E
=

2P
R

P
R + U2

=
2

M2

1
M2 + 1

= O (1) (5)

U2

E
=

U2

P
R + U2

=
1

1 + 1
M2

= O
(
M2
)
. (6)

Hence, the non-dimensional version of (3) reads as follows:

St
∂ρ

∂t
+∇· (ρu) = 0

St
∂ρu

∂t
+∇· (ρu⊗ u) +

1

M2
∇ p = 0 (7)

St
∂ρE

∂t
+∇·

[(
h+ kM2

)
ρu
]

= 0,

where, with a slight abuse of notation, the non-dimensional variables are denoted with
the same symbols of the dimensional ones. Finally, we assume that St ≈ 1, so as to
obtain

∂ρ

∂t
+∇· (ρu) = 0

∂ρu

∂t
+∇· (ρu⊗ u) +

1

M2
∇ p = 0 (8)

∂ρE

∂t
+∇·

[(
h+ kM2

)
ρu
]

= 0.
5



Our goal is to derive the limit of the continuous model both in the case of single length
scale and two-scale length. Before achieving this goal, we present the EOS that will
be employed for the numerical simulations in Section 5.

2.1 The equation of state

System (8) has to be completed with an equation of state (EOS). In this work, we
focus on the ideal gas law, the stiffened gas EOS (SG-EOS) [42] and the general cubic
EOS [57], even though we point out that the analyses which will be carried out in
Sections 2.2, 2.3, and 3 are valid for a general EOS. The equation that links together
pressure, density, and internal energy for an ideal gas is given by [57]

p = (γ − 1) ρe = (γ − 1)

(
ρE − 1

2
M2ρu · u

)
. (9)

Notice that (9) is valid only for a constant value of the specific heats ratio γ [57]. The
analogous relation for the SG-EOS reads as follows:

p = (γ − 1) (ρe− ρq∞)− γπ∞ = (γ − 1)

(
ρE − 1

2
M2ρu · u− ρq∞

)
− γπ∞, (10)

with q∞ and π∞ representing constant parameters which determine the characteristics
of the fluid. Notice that for q∞ = π∞ = 0 in (10), we recover (9). The last relation
that we consider is the general cubic EOS, for which the equation linking together
internal energy, density, and temperature, is given by [47, 57]

e = e#(T ) +
a+ T da

dT

b
U (ρ, b, r1, r2) . (11)

Here, e#(T ) denotes the internal energy of an ideal gas at temperature T , r1 and
r2 are suitable constants, whereas the parameters a, b determine fluid characteristics
[57]. More specifically, a is related to intermolecular forces, while b, the so called co-
volume, takes into account the volume occupied by the molecules. For r1 = r2 = 0 and
U = −bρ, we obtain the van der Waals EOS, whereas for r1 = −1−

√
2, r2 = −1+

√
2

and U = 1
r1−r2

log
(
1−ρbr1
1−ρbr2

)
we get the Peng-Robinson EOS [47, 57]. We consider

here constant coefficients a and b as well as de#

dT = 0. We refer to [47] for the specific

numerical treatment of the general cubic EOS if da
dT ̸= 0 or if de#

dT is not constant.
Finally, the equation linking pressure, density and temperature for the general cubic
EOS can be expressed as follows:

p =
ρRT

1− ρb
− aρ2

(1− ρbr1) (1− ρbr2)
, (12)

with R denoting the specific gas constant. Notice that for a = b = 0, we get the
equation for an ideal gas, namely

p = ρRT. (13)

Hence, the equation that links internal energy, pressure, and density that we consider
is the following

e =
1− ρb

γ − 1

(
p

ρ
+

aρ

(1− ρbr1) (1− ρbr2)

)
+
a

b
U, (14)
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with γ denoting the specific heats ratio associated to e#. We also recall here the
expression of the speed of sound, which will be employed to compute the acoustic
Courant number (see Section 5). The speed of sound is defined for a generic equation
of state as [47, 57]:

c2 =
∂p

∂ρ

∣∣∣∣
s

=

p
ρ2

− ∂e
∂ρ

∂e
∂p

, (15)

with s denoting the specific entropy. Hence, for the ideal gas law (9), we get

c =

√
γ
p

ρ
. (16)

For what concerns the SG-EOS, one obtains

c =

√
γ
p+ π∞
ρ

. (17)

Finally, the speed of sound for the general cubic EOS reads as follows:

c2 = γ
p

ρ

1

1− ρb
− aρ

1− ρb

(
∂U
∂ρ

b
(γ − 1) +

1− 2ρb

(1− ρbr1) (1− ρbr2)

)

− abρ2
r1 (1− ρbr2) + r2 (1− ρbr1)

(1− ρbr1)
2 (1− ρbr2)

2 , (18)

with
∂U

∂ρ
= − b

(1− ρbr1) (1− ρbr2)
. (19)

Notice once more that, (18) is valid only if da
dT = 0 and de#

dT = 0.

2.2 Asymptotic expansion for single length scale

In this Section, we analyze the limit of (8) assuming that the solution depends on a
single length scale. Consider the following expansion for density, momentum, pressure,
and internal energy, respectively:

ρ(x, t) = ρ̄(x, t) +Mρ
′
(x, t) +M2ρ

′′
(x, t) + o(M2) (20)

ρ(x, t)u(x, t) = ρ̄(x, t)ū(x, t) +Mρ
′
(x, t)u

′
(x, t)

+ M2ρ
′′
(x, t)u

′′
(x, t) + o(M2) (21)

p(x, t) = p̄(x, t) +Mp
′
(x, t) +M2p

′′
(x, t) + o(M2) (22)

ρ(x, t)e(x, t) = ρ̄(x, t)ē(x, t) +Mρ
′
(x, t)e

′
(x, t)

+ M2ρ
′′
(x, t)e

′′
(x, t) + o(M2) (23)

From now on, for the sake of simplicity in the notation, we omit the explicit dependence
on space and time for all the variables. Substituting (20) and (21) into the continuity
equation in (8), the leading order term relation is

∂ρ̄

∂t
+∇· (ρ̄ū) = 0. (24)
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For what concerns the momentum balance, the leading order term relation reduces to

∇ p̄ = 0, (25)

meaning that p̄ does not depends on space. Analogously, for the first order term, we
obtain

∇ p
′
= 0. (26)

Moreover, the second order term reads as follows:

∂ρ̄ū

∂t
+∇· (ρ̄ū⊗ ū) +∇ p

′′
= 0, (27)

where p
′′
represents a dynamical pressure [16, 56], namely the standard pressure vari-

able for incompressible flows [38]. Finally, the leading order term for the energy equa-
tion is

∂ρ̄ē

∂t
+∇·

(
ρ̄h̄ū

)
= 0. (28)

Since ρ̄ē = ρ̄h̄− p̄, we obtain

∂ρ̄h̄

∂t
− ∂p̄

∂t
+∇·

(
ρ̄h̄ū

)
= 0, (29)

or, equivalently,
∂ρ̄h̄

∂t
− ∂p̄

∂t
+ ū · ∇

(
ρ̄h̄
)
+ ρ̄h̄ (∇·u) = 0. (30)

Since for a general EOS, h̄ = h̄ (ρ̄, p̄), we get

∂ρ̄h̄

∂ρ̄

(
∂ρ̄

∂t
+ ū · ∇ ρ̄

)
+
∂ρ̄h̄

∂p̄

(
∂p̄

∂t
+ ū · ∇ p̄

)
− ∂p̄

∂t
+ ρ̄h̄ (∇· ū) = 0. (31)

Thanks to (24) and (25), we obtain(
ρ̄h̄− ∂ρ̄h̄

∂ρ̄
ρ̄

)
(∇· ū) +

(
∂ρ̄h̄

∂p̄
− 1

)
∂p̄

∂t
= 0, (32)

or, since ρ̄h̄− ∂ρ̄h̄
∂ρ̄ ρ̄ = −ρ̄2 ∂h̄∂ρ̄ and ∂ρ̄h̄

∂p̄ − 1 = ∂ρ̄ē
∂p̄ , equivalently

−ρ̄2∂h̄
∂ρ̄

(∇· ū) + ∂ρ̄ē

∂p̄

∂p̄

∂t
= 0. (33)

Assuming ∂p̄
∂t = 0 and ∂h̄

∂ρ̄ ̸= 0, as in [16], we recover the incompressibility constraint

∇· ū = 0. (34)

Summing up, the asymptotic limit of (8) is

∂ρ̄

∂t
+∇· (ρ̄ū) = 0

∇ p̄ = 0

∇ p
′

= 0 (35)

∂ρ̄ū

∂t
+∇· (ρ̄ū⊗ ū) +∇ p

′′
= 0

∂ρ̄ē

∂t
+∇·

(
ρ̄h̄ū

)
= 0,
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or, equivalently,

∂ρ̄

∂t
+∇· (ρ̄ū) = 0

∇ p̄ = 0

∇ p
′

= 0 (36)

∂ρ̄ū

∂t
+∇· (ρ̄ū⊗ ū) +∇ p

′′
= 0

−ρ̄2∂h̄
∂ρ̄

(∇· ū) + ∂ρ̄ē

∂p̄

∂p̄

∂t
= 0.

Systems (35)-(36) represent the non-trivial extension to non-ideal gases of the system
of equations derived in [38]. Analogous relations have been derived in [16] for the case
∂p̄
∂t = 0. However, as evident from the last relation in (36), a time dependent pressure
with large amplitude variations leads to a non-incompressible flow, i.e. ∇·u ̸= 0.
Hence, if ∂h̄

∂ρ̄ ̸= 0, as it holds for most EOS, and ∂p̄
∂t = 0, all the equations of state lead

to the same limit, namely the incompressible Euler equations. On the other hand, if
∂p̄
∂t ̸= 0, then ∇· ū depends on the specific EOS. We rewrite the last relation in (36) as
follows:

∇· ū =

∂ρ̄ē
∂p̄

ρ̄2 ∂h̄∂ρ̄

∂p̄

∂t
, (37)

or, equivalently,

∇· ū =

∂ρ̄ē
∂p̄

ρ̄2 ∂h̄∂ρ̄

dp̄

dt
, (38)

since p̄ does not depend on space. For the ideal gas law (9), we obtain

∂ρ̄ē

∂p̄
=

1

γ − 1
ρ̄2
∂h̄

∂ρ̄
= − γ

γ − 1
p̄, (39)

so that (38) reduces to

∇· ū = −1

γ

d log p̄

dt
. (40)

Hence, the compressibility of a fluid described by the ideal gas law (9) is uniform in
space and changes only in time. This is no longer valid for a general EOS and, in
particular, for the general cubic EOS, as we will also show in Section 5.

2.3 Asymptotic expansion for two length scales

In this Section, following [38], we assume that the solution depends also on an acoustic
length scale ξ = Mx. Hence, in a two-scale asymptotic analysis, we consider the
following expansion for any dependent variable:

f (x, ξ, t) = f̄ (x, ξ, t) +Mf
′
(x, ξ, t) +M2f

′′
(x, ξ, t) + o(M2), (41)

so that a second scale spatial derivative operator naturally appears in the asymptotic
expansion. More specifically, we get

∇ f = ∇x f +M ∇ξ f. (42)
9



One can easily notice from (42) that the leading order relations are not modified intro-
ducing ξ, provided that we reinterpret ∇□ and ∇·□ as ∇x□ and ∇x·□, respectively.
Equations (26) and (27) change because of ξ. Indeed, since

∇ p = ∇x p̄+M
(
∇x p

′
+∇ξ p̄

)
+M2

(
∇x p

′′
+∇ξ p

′
)
+ o(M2), (43)

we obtain

∇x p
′
+∇ξ p̄ = 0 (44)

∂ρ̄ū

∂t
+∇· (ρ̄ū⊗ ū) +∇x p

′′
+∇ξ p

′
= 0. (45)

Finally, we consider the first order term of the energy equation, which reads as follows:

∂ρ
′
e
′

∂t
+∇x·

(
ρ
′
u

′
h

′
)
+∇ξ·

(
ρ̄ūh̄

)
= 0, (46)

or, equivalently

−
(
ρ
′
)2 ∂h′

∂ρ′

(
∇x·u

′
)
+∇ξ·

(
ρ̄ūh̄

)
+
∂ρ

′
e
′

∂p′
∂p

′

∂t
= 0. (47)

Summing up, the asymptotic limit of (8) for a two-scale analysis is

∂ρ̄

∂t
+∇x· (ρ̄ū) = 0

∇x p̄ = 0

∇x p
′
+∇ξ p̄ = 0 (48)

∂ρ̄ū

∂t
+∇x· (ρ̄ū⊗ ū) +∇x p

′′
+∇ξ p

′
= 0

∂ρ̄ē

∂t
+∇x·

(
ρ̄h̄ū

)
= 0

∂ρ
′
e
′

∂t
+∇x·

(
ρ
′
u

′
h

′
)
+∇ξ·

(
ρ̄h̄ū

)
= 0,

or, equivalently,

∂ρ̄

∂t
+∇x· (ρ̄ū) = 0

∇x p̄ = 0

∇x p
′
+∇ξ p̄ = 0 (49)

∂ρ̄ū

∂t
+∇x· (ρ̄ū⊗ ū) +∇x p

′′
+∇ξ p

′
= 0

−ρ̄2∂h̄
∂ρ̄

(∇x· ū) +
∂ρ̄ē

∂p̄

∂p̄

∂t
= 0

−
(
ρ
′
)2 ∂h′

∂ρ′

(
∇x·u

′
)
+∇ξ·

(
ρ̄ūh̄

)
+
∂ρ

′
e
′

∂p′
∂p

′

∂t
= 0.

Analogous considerations to those discussed in Section 2.2 are valid for the leading or-
der term relations. Following the discussion in [38], we consider two different regimes.
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In the first regime, one assumes that the characteristic length of the system is compa-
rable to the reference length L. Hence, we recover the single length scale model already
discussed in Section 2.2. We consider now a second regime, for which the characteristic
length of the system is large compared to the reference length L, so that the acoustic
scale carries relevant information. We assume therefore that the flow has variations
only on the large acoustic scale. The x−averaged equations obtained starting from
(48)-(49) read as follows:

∂ρ̄

∂t
= 0

∂ρ̄ū

∂t
+∇ξ p

′
= 0

∇ξ p̄ = 0 (50)

∂p̄

∂t
= 0

∂ρ
′
e
′

∂t
+∇ξ·

(
ρ̄ūh̄

)
= 0.

The relation ∂p̄
∂t = 0 is a direct consequence of the fact that, in the regime of interest,

∇x· ū = 0. Moreover, we notice that p̄ reduces to a constant. In the particular case of
the ideal gas law (9), (50) reduces to

∂ρ̄

∂t
= 0

∂ū

∂t
+

1

ρ̄ (ξ)
∇ξ p

′
= 0

∇ξ p̄ = 0 (51)

∂p̄

∂t
= 0

∂p
′

∂t
+ γp̄∇ξ· ū = 0.

Taking the time derivative of the last equation, we obtain

∂2p
′

∂t2
+∇ξ·

(
c̄2 (ξ)∇ξ p

′
)
, (52)

with c̄2 = γ p̄
ρ̄ . Equation 52 is the wave equation for p

′
already derived in [38]. Relation

(52) is instead no longer valid for a general EOS.

3 Asymptotic analysis for a class of IMEX-ARK

schemes

We analyze now the AP property of a general class of IMEX-ARK schemes, built on
the experience of the numerical method presented in [46, 47, 48] for (8). Following [12,
19], we couple implicitly the energy equation to the momentum one, while the conti-
nuity equation is discretized in a fully explicit fashion. Hence, we obtain a non-linear
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Helmholtz equation for the pressure, which is solved through a fixed point procedure
[19, 47]. We consider an Implicit-Explicit Additive Runge Kutta (IMEX-ARK) scheme
for the time discretization [36]. IMEX-ARK methods are represented compactly by
the following two Butcher tableaux [11]:

c A

bT

c̃ Ã

b̃T

with A = {Aij} ,b = {bi} , c = {ci} , Ã =
{
Ãij

}
, b̃ =

{
b̃i

}
, and c̃ = {c̃i}. Coefficients

Aij , Ãij , ci, c̃i, bi, and b̃i are determined so that the method is consistent of a given
order. In particular, the following relation has to be satisfied [36]:∑

i

bi =
∑
i

b̃i = 1. (53)

Following the Butcher tableaux introduced above, for a time dependent problem

dy

dt
= fE (y, t) + fI (y, t) , (54)

the generic s-stage of an IMEX-ARK method can be defined as

v(n,l) = vn +∆t
l−1∑
m=1

almfE

(
v(n,m), tn + cm∆t

)
+ ∆t

l∑
m=1

ãlmfI

(
v(n,m), tn + c̃m∆t

)
, (55)

where l = 1, . . . , s, ∆t is the time discretization step, vn ≈ y (tn), fE is the spatial
term treated explicitly, and fI is the spatial term treated implicitly. After computation
of the intermediate stages, the updated solution is computed as follows:

vn+1 = vn +∆t
s∑

l=1

blfE

(
v(n,l), tn + cl∆t

)
+∆t

s∑
l=1

b̃lfI

(
v(n,l), tn + c̃l∆t

)
. (56)

The formulation (55)-(56) is valid for an IMEX scheme of arbitrary order. We recall
that implicit methods of order higher than one for hyperbolic problems cannot be
unconditionally total variation diminishing (TVD) [25] and this is valid also when
IMEX methods are employed [7, 18]. In this work, as done e.g. in [7], we do not
focus on this limit imposed by high order schemes and we consider therefore numerical
methods which, in principle, may not guarantee L∞-stability. Notice also that, the
existence of the Hilbert expansion (59) can be justified only for smooth functions [41].
The development of a numerical treatment to avoid this issue goes beyond the scope
of the present work and will be carried out as future development. For our analysis,
we assume c = c̃ and that ∑

j

Aij = ci
∑
j

Ãij = c̃i (57)

Relation (57) is an usual assumption for Runge Kutta schemes [6, 36]. The assumption
c = c̃ is less common, but it has been employed e.g. in [3, 7]. Finally, we also assume
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that the implicit scheme is a Diagonally Implicit Runge Kutta (DIRK) method, namely
Ãij = 0 for i > j. Hence, a generic stage of the Euler equations reads as follows:

ρ(n,l) = ρn −
l−1∑
m=1

alm∆t∇·
(
ρ(n,m)u(n,m)

)
ρ(n,l)u(n,l) +

1

M2
ãll∆t∇ p(n,l) = ρnun

−
l−1∑
m=1

alm∆t∇·
(
ρ(n,m)u(n,m) ⊗ u(n,m)

)
− 1

M2

l−1∑
m=1

ãlm∆t∇ p(n,m) (58)

ρ(n,l)E(n,l) + ãll∆t∇·
(
h(n,l)ρ(n,l)u(n,l)

)
= ρnEn

−
l−1∑
m=1

ãlm∆t∇·
(
h(n,m)ρ(n,m)u(n,m)

)
−

l−1∑
m=1

alm∆tM2∇·
(
k(n,m)ρ(n,m)u(n,m)

)
.

We analyze now the time semi-discretization forM → 0, so as to verify that it provides
a consistent semi-discretization for the two limit models identified in Section 2.2 and
Section 2.3, respectively.

3.1 Asymptotic analysis in the single length scale case

In this Section, we consider the limit model (35)-(36). Following e.g. [41], we make
the assumption that, at each stage, the discrete quantities admit a formal expansion
analogous to the continuous case.

Assumption 3.1. The physical variables ρ, ρu, p, and ρe admit at each stage a formal
Hilbert expansion of the form (written e.g. for ρn)

ρn (x) = ρ̄n (x) +Mρ
′,n (x) +M2ρ

′′,n (x) + o(M2). (59)

We also make the following assumption:

Assumption 3.2. The initial datum p0 is well-prepared, namely ∇ p̄0 = ∇ p
′,0 = 0.

Then, the following result holds:

Lemma 3.3. Under Assumption 3.1 and Assumption 3.2, (58) provides a consistent
discretization of (35)-(36).

Proof. We plug asymptotic expansions of the form (59) into (58). The discrete limit
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system reads therefore as follows:

ρ̄(n,l) = ρ̄n −
l−1∑
m=1

alm∆t∇·
(
ρ̄(n,m)ū(n,m)

)
ãll ∇ p̄(n,l) = −

l−1∑
m=1

ãlm∇ p̄(n,m)

ãll ∇ p
′,(n,l) = −

l−1∑
m=1

ãlm∇ p
′,(n,m) (60)

ρ̄(n,l)ū(n,l) + ãll∆t∇ p
′′,(n,l) = ρ̄nūn

−
l−1∑
m=1

alm∆t∇·
(
ρ̄(n,m)ū(n,m) ⊗ ū(n,m)

)
−

l−1∑
m=1

ãlm∆t∇ p
′′,(n,m)

ρ̄(n,l)ē(n,l) + ãll∆t∇·
(
h̄(n,l)ρ̄(n,l)ū(n,l)

)
= ρ̄nēn

−
l−1∑
m=1

ãlm∆t∇·
(
h̄(n,m)ρ̄(n,m)ū(n,m)

)
,

which, thanks to Assumption (3.2), is clearly a consistent discretization of (35). Nev-
ertheless, we want to show that the last relation yields a consistent discretization
for (33), so as to prove that (60) is a consistent discretization of (36). After a few
manipulations, taking into account that ∇ p̄(n,l) = 0, we get

ρ̄(n,l)h̄(n,l) − p̄(n,l)

+ ãll∆t

[
ρ̄(n,l)h̄(n,l)

(
∇· ū(n,l)

)
+ ū(n,l) · ∇ ρ̄(n,l)

∂ρ̄(n,l)h̄(n,l)

∂ρ̄(n,l)

]
=

ρ̄nh̄n − p̄n

−
l−1∑
m=1

ãlm∆t

[
ρ̄(n,m)h̄(n,m)

(
∇· ū(n,m)

)
+ ū(n,m) · ∇ ρ̄(n,m)∂ρ̄

(n,m)h̄(n,m)

∂ρ̄(n,m)

]
. (61)

The error obtained applying (61) to the exact solution reads therefore as follows:

τ̂ (n,l) = ρ̄ (x, tn + cl∆t) h̄ (x, t
n + cl∆t)− ρ̄ (x, tn) h̄ (x, tn)

− [p̄ (x, tn + cl∆t)− p̄ (x, tn)]

+ ãll∆t
[
ρ̄ (x, tn + cl∆t) h̄ (x, t

n + cl∆t) (∇· ū (x, tn + cl∆t))
]

+ ãll∆t

[
ū (x, tn + cl∆t) · ∇ ρ̄ (x, tn + cl∆t)

∂ρ̄h̄

∂ρ̄
(x, tn + cl∆t)

]
(62)

+
l−1∑
m=1

ãlm∆t
[
ρ̄ (x, tn + cm∆t) h̄ (x, tn + cm∆t) (∇· ū (x, tn + cm∆t))

]
+

l−1∑
m=1

ãlm∆t

[
ū (x, tn + cm∆t) · ∇ ρ̄ (x, tn + cm∆t)

∂ρ̄h̄

∂ρ̄
(x, tn + cm∆t)

]
.
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Since ρ̄h̄ = ρ̄h̄ (ρ̄, p̄), using a Taylor expansion, we get

ρ̄ (x, tn + cl∆t) h̄ (x, t
n + cl∆t) = ρ̄ (x, tn) h̄ (x, tn)

+
∂ρ̄h̄

∂ρ̄
(x, tn) [ρ̄ (x, tn + cl∆t)− ρ̄ (x, tn)]

+
∂ρ̄h̄

∂p̄
(x, tn) [p̄ (x, tn + cl∆t)− p̄ (x, tn)] (63)

+ o (ρ̄ (x, tn + cl∆t)− ρ̄ (x, tn))

+ o (p̄ (x, tn + cl∆t)− p̄ (x, tn)) .

Employing now the discretization of the continuity equation in (60) and the assumption
(57), we obtain

ρ̄ (x, tn + cl∆t) h̄ (x, t
n + cl∆t) = ρ̄ (x, tn) h̄ (x, tn)

− cl∆t
∂ρ̄h̄

∂ρ̄
(x, tn)∇· (ρ̄n (x, tn) ūn (x, tn))

+
∂ρ̄h̄

∂p̄
(x, tn) [p̄ (x, tn + cl∆t)− p̄ (x, tn)] (64)

+ o (ρ̄ (x, tn + cl∆t)− ρ̄ (x, tn))

+ o (p̄ (x, tn + cl∆t)− p̄ (x, tn)) ,

or, equivalently,

ρ̄ (x, tn + cl∆t) h̄ (x, t
n + cl∆t) = ρ̄ (x, tn) h̄ (x, tn)

− cl∆t
∂ρ̄h̄

∂ρ̄
(x, tn) ρ̄n (x, tn) (∇· ūn (x, tn))

− cl∆t
∂ρ̄h̄

∂ρ̄
(x, tn) ūn (x, tn) · ∇ ρ̄n (x, tn)

+
∂ρ̄h̄

∂p̄
(x, tn) [p̄ (x, tn + cl∆t)− p̄ (x, tn)] (65)

+ o (ρ̄ (x, tn + cl∆t)− ρ̄ (x, tn))

+ o (p̄ (x, tn + cl∆t)− p̄ (x, tn)) ,

Using again a Taylor expansion, we get

ρ̄ (x, tn + cl∆t) = ρ̄ (x, tn) + cl∆t
∂ρ̄

∂t
(x, tn) + o(∆t)

ū (x, tn + cl∆t) = ū (x, tn) + cl∆t
∂ū

∂t
(x, tn) + o(∆t) (66)

p̄ (x, tn + cl∆t) = p̄ (x, tn) + cl∆t
∂p̄

∂t
(x, tn) + o(∆t).
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Substituting (65) and (66) into (62), we obtain

τ̂ (n,l) = −cl∆t
∂ρ̄h̄

∂ρ̄
(x, tn) ρ̄ (x, tn)∇· (ūn (x, tn))− cl∆t

∂ρ̄h̄

∂ρ̄
(x, tn) ūn (x, tn) · ∇ ρ̄n (x, tn)

+

(
∂ρ̄h̄

∂p̄
(x, tn)− 1

)
cl∆t

∂p̄

∂t
(x, tn) +

l∑
m=1

ãlm∆t
[
ρ̄ (x, tn) h̄ (x, tn) (∇· ū (x, tn))

]
(67)

+
l∑

m=1

ãlm∆t

[
ū (x, tn) · ∇ ρ̄ (x, tn)

∂ρ̄h̄

∂ρ̄
(x, tn)

]
+ o (∆t) .

Since
l∑

m=1
ãlm = cl (57) and ρ̄ (x, t

n) h̄ (x, tn)−∂ρ̄h̄
∂ρ̄ (x, tn) ρ̄ (x, tn) = −ρ̄2 (x, tn) ∂h̄

∂ρ̄ (x, t
n),

we obtain

τ̂ (n,l) = −cl∆tρ̄2 (x, tn)
∂h̄

∂ρ̄
(x, tn)∇· (ūn (x, tn))

+

(
∂ρ̄h̄

∂p̄
(x, tn)− 1

)
cl∆t

∂p̄

∂t
(x, tn) + o (∆t) = o (∆t) , (68)

thanks to (33).

Moreover, since we are considering an implicit coupling between the momentum
and the energy balance, the stability condition of the numerical method does not de-
pend on M and on the acoustic speed of sound (see e.g. [12, 19, 53]), meaning that
(58) provides an AP scheme for (35)-(36). The numerical method is not in general
strongly asymptotic-preserving, namely it is not asymptotic-preserving for general ini-
tial data. More specifically, we need a well-prepared initial datum for the pressure
(see Assumption 3.2). However, no restrictions are required for the initial datum of
the velocity, as we will also verify numerically in Section 5.2. Hence, we do not need
a divergence-free initial velocity field, unlike the weakly AP scheme developed e.g.
in [44]. This is particularly important because, as already discussed in Section 3.1,
∇· ū = 0 is the asymptotic limit only if ∂p̄

∂t = 0, which is not always valid. Notice

also that, Assumption 3.2 can be removed considering implicit schemes for which Ã is
diagonal, which represent a particular case of the general class of time discretization
schemes discussed in this Section. This goal can be achieved considering, for instance,
the implicit Euler method for a first order scheme, as done in [16], or the second order
Ascher, Ruuth and Spiteri (ARS) method [3], as done in [7].

3.2 Asymptotic analysis for two length scales

In this Section, we consider the limit model (48)- (49). We replace Assumption 3.1
with the following one:

Assumption 3.4. The physical variables ρ, ρu, p, and ρe admit at each stage a formal
Hilbert expansion of the form (written e.g. for ρn)

ρn (x, ξ) = ρ̄n (x, ξ) +Mρ
′,n (x, ξ) +M2ρ

′′,n (x, ξ) + o(M2), (69)

with ξ =Mx.
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Moreover, we replace Assumption 3.2 with the

Assumption 3.5. The initial datum p0 is well-prepared, namely ∇x p̄
0 = ∇x p̄

′
=

∇ξ p
′
= 0.

Then, the following result holds:

Lemma 3.6. Under Assumption 3.4 and Assumption 3.5, (58) provides an AP scheme
for (48)-(49).

Proof. As pointed out for the continuous model, the leading order term relations do
not change considering the length scale ξ = Mx. We plug asymptotic expansion of
the form (69) into the semi-discretized momentum equation, so as to obtain for the
first order term

ãll ∇x p
′,(n,l) + ãll ∇ξ p̄

(n,l) = −
l−1∑
m=1

ãlm∇x p
′,(n,m) −

l−1∑
m=1

ãlm∇ξ p̄
(n,m), (70)

which, thanks to Assumption 3.5, is a consistent discretization of (44). For what
concerns the second order term, we get

ρ̄(n,2)u(n,2) + ãll∆t
(
∇x p

(n,2),′′ +∇ξ p
(n,2),′

)
= ρ̄nūn

−
l−1∑
m=1

alm∆t∇x· (ρ̄nū⊗ ū) (71)

−
l−1∑
m=1

ãlm∆t
(
∇x p

′′,n +∇ξ p
′,n
)
,

which is a consistent discretization of (45). Finally, for the first order term in the
energy equation, we obtain

ρ
′,(n,l)e

′,(n,l) + ãll∆t∇x·
(
h

′,(n,l)ρ
′,(n,l)u

′,(n,l)
)
+ ãll∆t∇ξ·

(
h̄(n,l)ρ̄(n,l)ū(n,l)

)
=

ρ̄nēn −
l−1∑
m=1

ãlm∆t∇x·
(
h

′,(n,m)ρ
′,(n,m)u

′,(n,m)
)

−
l−1∑
m=1

ãlm∆t∇ξ·
(
h̄(n,m)ρ̄(n,m)ū(n,m)

)
, (72)

which is a consistent discretization of (46). Hence, (58) provides an AP scheme for
(48)-(49).

Analogous considerations to those reported in Section 3.1 hold for the initial data.

4 Spatial discretization

In this Section, we briefly outline the spatial discretization for (58), which is based on
the Discontinuous Galerkin (DG) method [23] as implemented in the deal.II library
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[2, 4]. More specifically, the shape functions correspond to the products of Lagrange
polynomials for the support points of (r + 1)-order Gauss-Lobatto quadrature rule in
each coordinate direction, where r is the polynomial degree. However, the proposed
approach can also be applied to tetrahedral meshes and P -spaces. We consider a
decomposition of the domain Ω into a family of quadrilaterals Th and denote each
element by K. We denote by E the set of all the element faces, so that E = EI ∪ EB,
with EI and EB denoting the subset of interior and boundary faces, respectively. A
face Γ ∈ EI shares two elements, K+ with outward unit normal n+ and K− with
outward unit normal n−. Finally, we denote by n the outward unit normal for a face
Γ ∈ EB. Hence, for a scalar function φ, we define the jump as

[[φ]] = φ+n+ + φ−n− if Γ ∈ EI [[φ]] = φn if Γ ∈ EB, (73)

where we define the average as

{{φ}} =
1

2

(
φ+ + φ−) if Γ ∈ EI {{φ}} = φ if Γ ∈ EB. (74)

Analogous definitions apply for a vector function φ. More specifically, we define

[[φ]] = φ+ · n+ +φ− · n− if Γ ∈ EI [[φ]] = φ · n if Γ ∈ EB (75)

{{φ}} =
1

2

(
φ+ +φ−) if Γ ∈ EI {{φ}} = φ if Γ ∈ EB. (76)

For vector functions, it is also useful to define a tensor jump as follows:

⟨⟨φ⟩⟩ = φ+ ⊗ n+ +φ− ⊗ n− if Γ ∈ EI ⟨⟨φ⟩⟩ = φ⊗ n if Γ ∈ EB. (77)

Given these definitions, the weak formulation for the momentum equation at each
stage (58) reads as follows [47, 48]:

A(n,l)U(n,l) +B(n,l)P(n,l) = F(n,l), (78)

with U(n,l) denoting the vector of the degrees of freedom associated to the velocity field
and P(n,l) denoting the vector of the degrees of freedom associated to the pressure.

18



Here, we have set

A
(n,l)
ij =

∑
K∈Th

∫
K
ρ(n,l)φj ·φidΩ (79)

B
(n,l)
ij =

∑
K∈Th

∫
K
−ãll

∆t

M2
∇·φiΨjdΩ+

∑
Γ∈E

∫
Γ
ãll

∆t

M2
{{Ψj}} [[φi]] (80)

F
(n,l)
i =

l−1∑
m=1

∑
K∈Th

∫
K
alm∆t

(
ρ(n,m)u(n,m) ⊗ u(n,m)

)
: ∇φidΩ

+
l−1∑
m=1

∑
K∈Th

∫
K
ãlm

∆t

M2
p(n,m)∇·φidΩ

−
l−1∑
m=1

∑
Γ∈E

∫
Γ
alm∆t

{{
ρ(n,m)u(n,m) ⊗ u(n,m)

}}
: ⟨⟨φi⟩⟩ dΣ

−
l−1∑
m=1

∑
Γ∈E

∫
Γ
alm∆t

λ(n,m)

2

〈〈
ρ(n,m)u(n,m)

〉〉
: ⟨⟨φi⟩⟩ dΣ

−
l−1∑
m=1

∑
Γ∈E

∫
Γ
ãlm

∆t

M2

{{
p(n,m)

}}
[[φi]] dΣ, (81)

with φi and Ψi denoting the basis function of the space of polynomial functions em-
ployed to discretize the velocity and the pressure, respectively. Following the discussion
in [46, 47], one can notice that we employ a centered flux for the quantities defined
implicitly and upwind biased flux for the quantities computed explicitly. In order to
obtain a numerical method effective for all Mach numbers, we take

λ(n,m) = max

[
f
(
M

+,(n,m)
loc

)(∣∣∣u+,(n,m)
∣∣∣+ 1

M
c+,(n,m)

)
,

f
(
M

−,(n,m)
loc

)(∣∣∣u−,(n,m)
∣∣∣+ 1

M
c−,(n,m)

)]
, (82)

with M
±,(n,m)
loc = |u|±,(n,m)

1
M

c±,(n,m) and f (Mloc) = min (1,Mloc). This choice corresponds to

the convex combination between a centered flux and a Rusanov flux [50] discussed in
[1]. More specifically, for a generic flux F̂, we employ

F̂ = (1− f (Mloc))Fc + f (Mloc)FR, (83)

with Fc and FR denoting the centered flux and the Rusanov flux, respectively. Hence,
for Mloc ≈ 1, we obtain the Rusanov flux, whereas for Mloc ≪ 1, we obtain a local
Lax-Friedrichs flux. Analogously, the energy equation in (58) can be expressed as

C(n,l)U(n,l) +D(n,l)P(n,l) = G(n,l), (84)
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with

C
(n,l)
ij =

∑
K∈Th

∫
K
−ãll∆th(n,l)ρn,lφj · ∇ΨidΩ

+
∑
Γ∈E

∫
Γ
ãll∆t

{{
h(n,l)ρ(n,l)φj

}}
· ∇ΨidΣ (85)

D
(n,l)
ij =

∑
K∈Th

∫
K
ρ(n,l)e(n,l)(Ψj)ΨidΩ (86)

G
(n,l)
i =

l−1∑
m=1

∑
K∈Th

∫
K
ρ(n,l)E(n,l)ψidΩ

+

l−1∑
m=1

∑
K∈Th

∫
K
alm∆tM2

(
k(n,m)ρ(n,m)u(n,m)

)
· ∇ΨidΩ

+
l−1∑
m=1

∑
K∈Th

∫
K
ãlm∆t

(
h(n,m)ρ(n,m)u(n,m)

)
· ∇ΨidΩ

−
l−1∑
m=1

∑
Γ∈E

∫
Γ
alm∆tM2

{{
k(n,m)ρ(n,m)u(n,m)

}}
· [[Ψi]] dΣ

−
l−1∑
m=1

∑
Γ∈E

∫
Γ
ãlm∆t

{{
h(n,m)ρ(n,m)u(n,m)

}}
· [[Ψi]] dΣ

−
l−1∑
m=1

∑
Γ∈E

∫
Γ
alm∆t

λ(n,m)

2

[[
ρ(n,m)k(n,m)

]]
· [[Ψi]] dΣ

−
l−1∑
m=1

∑
Γ∈E

∫
Γ
ãlm∆t

λ(n,m)

2

[[
ρ(n,m)e(n,m)

]]
· [[Ψi]] dΣ. (87)

Notice that, the upwind flux has been slightly modified with respect to the one em-
ployed in [47], so as to guarantee the preservation of uniform velocity and pressure
fields (see the discussion in [46]). Formally, one can derive

U(n,l) =
(
A(n,l)

)−1 (
F(n,l) −B(n,l)P(n,l)

)
, (88)

so as to obtain

D(n,l)P(n,l) +C(n,l)
(
A(n,l)

)−1 (
F(n,l) −B(n,l)P(n,l)

)
= G(n,l). (89)

The above system can be solved following the fixed point procedure described in [19,
47]. More specifically, setting P(n,l,0) = P(n,l−1), one solves for L = 0, . . . , L̃(
D(n,l,L) −C(n,l,L)

(
A(n,l)

)−1
B(n,l)

)
P(n,l,L+1) = G(n,l,L)−C(n,l,L)

(
A(n,l)

)−1
F(n,l,L)

(90)
and then updates the velocity solving

A(n,l)U(n,2,L) = F(n,l,L) −B(n,l)P(n,l,L+1). (91)
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Notice that, as discussed for the time discretization in Section 3, the employed spatial
discretization is not TVD for r > 0. A discussion of possible approaches to overcome
this issue is out of the scope of the work. However, a number of approaches have been
proposed to obtain essentially monotone schemes using high order DG methods, see
e.g. [20, 45].

5 Numerical results

The analysis outlined in Sections 3 and 4 is now validated in a number of relevant
benchmarks both for M = O(1) and M ≪ 1. The implementation is carried out in
the framework of the deal .II library [2, 4]. The employed time discretization method
is based on the second order IMEX scheme proposed in [24], for which the coefficients
are reported in the Butcher tableaux Table 1 and Table 2 for the explicit and implicit
method, respectively.

0 0
χ χ 0
1 1− a32 a32 0

1
2
− χ

4
1
2
− χ

4
χ
2

Table 1: Butcher tableau of the explicit ARK2 method

0 0
χ χ

2
χ
2

1 1
2
√
2

1
2
√
2

1− 1√
2

1
2
− χ

4
1
2
− χ

4
χ
2

Table 2: Butcher tableau of the implicit ARK2 method

We consider χ = 2−
√
2, so that the implicit part of the IMEX scheme coincides with

the TR-BDF2 method [5, 35]. Notice also that, as discussed in [47], we take a32 = 0.5,
rather than the value originally chosen in [24], so as to improve the monotonicity of
the method. We set

H = min {diam (K) |K ∈ Th} (92)

and we define two Courant numbers, one based on the speed of sound denoted by C,
the so-called acoustic Courant number, and one based on the local velocity of the flow,
the so-called advective Courant number, denoted by Cu:

C =
1

M
rc

∆t

H
Cu = ru

∆t

H
, (93)

where c is the speed of sound and u is the magnitude of the flow velocity. For the tests
using the ideal gas law (9), γ = 1.4 is employed.
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5.1 Colliding acoustic pulses

This benchmark, proposed in [38], consists of two colliding acoustic pulses in the
domain Ω = (−L,L), namely, a right-running pulse initially located in (−L, 0) and a
left-running pulse initially located in (0, L). Following [38], we set M = 1

11 and we
define the half-length of the domain L = 2

M = 22. Periodic boundary conditions are
prescribed. The initial conditions read as follows:

ρ (x, 0) = ρ̄0 +
1

2
Mρ

′
0

(
1− cos

(
2πx

L

))
ρ̄0 = 0.955 ρ

′
0 = 2 (94)

u (x, 0) = −1

2
sgn (x) ū0

(
1− cos

(
2πx

L

))
ū0 = 2

√
γ (95)

p (x, 0) = p̄0 +
1

2
Mp

′
0

(
1− cos

(
2πx

L

))
p̄0 = 1 p

′
0 = 2γ (96)

The final time is Tf = 1.63. We consider a number of elements Nel = 110 with r = 1,
i.e. polynomial degree of order 1, whereas the time step is ∆t = 0.0163, leading to
a maximum advective Courant number Cu ≈ 0.1 and a maximum acoustic Courant
number C ≈ 0.56. The pressure profiles at t =

Tf

2 = 0.815 and t = Tf are in
agreement with the results present in the literature [16, 38, 44] (Figure 1). One can

easily notice that at t =
Tf

2 , the two pulses are superposed and the pressure reaches
its maximum value. At t = Tf , the pulses are separated from each other and assume
almost the initial configuration. However, as explained in [16, 38], weakly non-linear
acoustic effects start steepening the pulses and distort the final profile, since shocks
are beginning to form around x = ±18.5.

5.2 Density layering

We consider now the test case II proposed in [38] and described also e.g. in [44]. The
domain is Ω = (−L,L), with L = 1

0.02 = 50. The initial conditions read as follows:

ρ (x, 0) = ρ̄0 +Φ(x) ρ̃0 sin

(
40πx

L

)
+

1

2
Mρ1

(
1 + cos

(πx
L

))
(97)

u (x, 0) =
1

2
ũ0

(
1 + cos

(πx
L

))
(98)

p (x, 0) = p̄0 +
1

2
Mp1

(
1 + cos

(πx
L

))
, (99)

with ρ̄0 = 1, ρ̃0 = 1
2 , ρ1 = 2, ũ0 = 2

√
γ = 2

√
1.4, p̄0 = 1, and p1 = 2γ = 2.8. Finally,

the function Φ (x) is given by

Φ (x) =

{
1
2

(
1− cos

(
5πx
L

))
if 0 ≤ x ≤ 2

5L

0 otherwise.
(100)

The initial data describe a density layering of large amplitude and small wavelengths,
which is driven by the motion of a right-moving periodic acoustic wave with long
wavelength. Periodic boundary conditions are prescribed. The final time is Tf = 5.071.
We consider a computational grid composed byNel = 500 elements with r = 1, whereas
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Figure 1: Colliding acoustic pulses test case, pressure profile. Top: t =
Tf

2 . Bottom:
t = Tf . The initial profile is in dashed black line, whereas the solid blue line provides
the results at the corresponding time.

the time step is ∆t = 0.025355. Following [44], we start considering M = 1
50 . Hence,

the advective Courant Cu is around 0.3, while the acoustic Courant number C is around
10.5. A comparison between the initial and the final time for both the density and
the pressure displays a good agreement with the results presented in [38, 44] (Figure
2). One can easily notice that the acoustic wave transports the density layer and
the shape of the layer is undistorted. As in the previous test case, due to weakly
non-linear effects, the pulse starts steepening, leading to shock formation. A reference
solution has been computed using the explicit second order strong stability preserving
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(SSP) scheme described in [25], to which we refer for all the details. The time step
employed for the explicit scheme is ∆t = 0.00025355, namely 100 times smaller than
that used with the IMEX scheme. An excellent agreement is established between the
two solutions.

Figure 2: Density layering test case at M = 0.02 with the ideal gas law (9). Left:
density. Right: pressure. The dashed black line represents the initial condition, the
continuous blue line shows the solution at the final time, whereas the red dots report
the solution obtained with the second order optimal explicit SSP scheme.

For the sake of completeness, we also consider a case even closer to the incompress-
ible regime, taking M = 10−4. The analytical solution of the leading order term of the
limiting model (49) with initial conditions (97)-(99) is

ρ = ρ̄0 +Φ(x− ū (t) t) ρ̃0 sin

(
40π (x− ū (t) t)

L

)
(101)

u = ū (t) (102)

p = p̄0, (103)

ū (t) being a function only of time. Since we are considering periodic boundary con-
ditions, the value of ū is not fixed a priori. The steady value of ū obtained with the
numerical simulation is the mean value of (98), namely ū = 1

2 ũ0 =
√
γ =

√
1.4. A

comparison at t = Tf between the analytical solution as M → 0 with ū =
√
γ =

√
1.4

and the numerical results shows an excellent agreement for both the density and the
pressure profile (Figure 3). Notice that the initial velocity field is not divergence-free,
namely it is not well-prepared. However, the numerical method leads to the incom-
pressible limit, as already discussed in Section 2.2.

We now consider a configuration of this test case for the SG-EOS (10). We take
γ = 4.4, π∞ = 6.8×10−3, and q∞ = 0 in (10). Notice that, we do not modify the initial
conditions (97)-(99), namely we keep ũ0 = 2

√
1.4 and p1 = 2.8. We start considering

M = 1
50 = 0.02. The time step is now ∆t = 0.020284, yielding an acoustic Courant

number C ≈ 15 and a maximum advective Courant number Cu ≈ 0.24. Figure 4
shows a comparison between the initial and the final time for both the density and the
pressure. A reference solution has been computed using the second order explicit SSP
scheme, with a time step ∆t = 0.000126775, namely a time step 160 times smaller than
that employed with the IMEX scheme. One can easily notice that the density layer is
transported without too much damping. Moreover, a reasonable agreement with the
explicit solution is established. Finally, for what concerns the incompressible limit at
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Figure 3: Density layering test case at M = 10−4 with the ideal gas law (9). Left:
density. Right: pressure. The continuous black line represents the analytical solution
of the limiting model (49), while the blue dots report the numerical results.

M = 10−4, since ∂p̄0
∂t = 0, all the equations of state lead to the same limit (see (38)).

This is further confirmed by the density and pressure profiles reported in Figure 5.

. .

Figure 4: Density layering test case atM = 0.02 with the SG-EOS (10). Left: density.
Right: pressure. The dashed black line represents the initial condition, the continuous
blue line shows the solution at the final time, whereas the red dots report the solution
obtained with the second order optimal explicit SSP scheme.

Figure 5: Density layering test case at M = 10−4 with the SG-EOS (10). Left:
density. Right: pressure. The continuous black line represents the analytical solution
of the limiting model (49), while the blue dots report the numerical results.
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5.3 Flow in an open tube

We consider now the test case III proposed in [38] for an ideal gas, which we recall
here for the convenience of the reader. A flow in an open tube represented by the
domain Ω = (0, 10) is analyzed; at the left-end a time dependent density and velocity
are prescribed, whereas at the right-end a time dependent outflow pressure with large
amplitude variation is imposed. More specifically, the initial conditions read as follows:

(ρ, u, p) (x, 0) = (1, 1, 1) , (104)

while the boundary conditions are

ρ (0, t) = 1 +
3

10
sin (4t) (105)

u (0, t) = 1 +
1

2
sin (2t) (106)

p (L, t) = 1 +
1

4
sin (3t) , (107)

with L = 10. The final time is Tf = 7.47. The Mach number is set to M = 10−4.
We consider a number of elements Nel = 100 with r = 1, whereas the time step is
∆t = 0.0018675, leading to a maximum advective Courant number Cu ≈ 0.13 and a
maximum acoustic Courant number C ≈ 310. The results at t = Tf are those expected
by the asymptotic analysis for both the density and velocity profile (Figure 6). The
limit solution as M → 0 has been included for comparison in Figure 6. For an ideal
gas, (33) reduces to

∇· ū = − 1

γp̄

∂p̄

∂t
= − 1

γp̄

dp̄

dt
, (108)

since ∇ p̄ = 0. Hence, forM → 0, in one space dimension, ∂ū
∂x is a function only of time

and, therefore, the velocity is a linear function of space with a given time dependent
slope and boundary value at x = 0. For what concerns the density, we rewrite (24) as
follows:

∂ρ̄

∂t
+ ū · ∇ ρ̄+ ρ̄∇· ū =

∂ρ̄

∂t
+ ū · ∇ ρ̄− 1

γ

ρ̄

p̄

dp̄

dt
= 0, (109)

or, equivalently,
D log ρ̄

Dt
=

1

γ

d log p̄

dt
, (110)

with D
Dt =

∂
∂t + u · ∇ denoting the Lagrangian derivative. Hence, as discussed in [38],

the material elements undergo a quasi-static adiabatic compression and expansion
following the particle paths described by ū. One can easily notice from the density
profile in Figure 6 that mass elements, after entering the domain at the left-end, are
correctly compressed and expanded.

We consider now an extension of this test case for the SG-EOS (10). Equation (33)
reduces to

∇· ū = − 1

γ (p̄+ π∞)

dp̄

dt
. (111)

Hence, the velocity is still a linear function of space with a different time dependent
slope with respect to that of the ideal gas. Analogous considerations hold for the
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Figure 6: Open tube test case with the ideal gas law (9), results at t = Tf = 7.47.
Left: density. Right: velocity. The continuous black line shows the leading order
solution as M → 0, whereas the blue dots report the numerical results.

continuity equation, which reduces to

D log ρ̄

Dt
=

1

γ (p̄+ π∞)

dp̄

dt
=

1

γ

d log (p̄+ π∞)

dt
. (112)

We take γ = 4.4, π∞ = 6.8 × 10−3, and q∞ = 0 in (10). We consider ∆t = 0.001245.
Hence, the maximum advective Courant number is Cu ≈ 0.04, while the maximum
acoustic Courant number is C ≈ 350. A comparison at the final time between the
numerical results and the leading order solution for both the density and the velocity
displays a good agreement for both profiles (Figure 7). The leading order term solution
asM → 0 for the ideal gas has been included in Figure 7. One can easily notice a visible
difference in the behaviour of both density and velocity. Hence, if large amplitude
pressure variations are considered, the limiting regime depends on the equation of
state and does not correspond to the incompressible Euler equations.

Figure 7: Open tube test case with the SG-EOS (10), results at t = Tf = 7.47. Left:
density. Right: velocity. The continuous black line shows the leading order solution
as M → 0, the blue dots report the numerical results, while the red line shows the
leading order solution as M → 0 with the ideal gas.

Finally, we consider the Peng-Robinson EOS (14). The asymptotic analysis be-
comes much more involved. First of all, notice that

∂ρ̄ē

∂p̄
=

1− ρ̄b

γ − 1
. (113)

Moreover, we get
∂h̄

∂ρ̄
= − γ

γ − 1

p̄

ρ̄2
+ g (ρ̄) , (114)
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with

g (ρ̄) =
a (1− 2ρ̄b)

(γ − 1) (1− ρ̄br1) (1− ρ̄br2)

+
abρ̄ (1− ρ̄b) (r1 (1− ρ̄br2) + r2 (1− ρ̄br1))

(γ − 1) (1− ρ̄br1)
2 (1− ρ̄br2)

2 +
a

b

∂U

∂ρ̄
. (115)

Hence, (33) reduces to (
− γ

γ − 1
p̄+ ρ̄2g (ρ̄)

)
∇· ū =

1− ρ̄b

γ − 1

dp̄

dt
, (116)

or, equivalently, to

∇· ū = − 1− ρ̄b

γp̄− (γ − 1) ρ̄2g (ρ̄)

dp̄

dt
. (117)

Notice that, ∇· ū is now a function of both space and time. Hence, in one space
dimension, the velocity is no longer a linear profile. The continuity equation (24)
reads as follows:

D log ρ̄

Dt
= −∇· ū =

1− ρ̄b

γp̄− (γ − 1) ρ̄2g (ρ̄)

dp̄

dt
. (118)

We take γ = 1.4, a = 1, and b = 0.15. The time step is ∆t = 0.0018675, yielding
a maximum advective Courant number Cu ≈ 0.13 and a maximum acoustic Courant
number C ≈ 300. A comparison at the final time between the numerical results and
the leading order solution for both the density and the velocity shows a good agreement
for both profiles (Figure 13). The results are similar to those obtained with the ideal
gas. Weakly non-ideal gas effects are present in particular between x = 4 and x = 6,
namely in correspondence of the peak density.

Figure 8: Open tube test case with the Peng-Robinson EOS (14), results at t = Tf =
7.47. Left: density. Right: velocity. The continuous black line shows the leading
order solution as M → 0, the blue dots report the numerical results.

5.4 Gresho vortex

In this Section, we perform simulations of the so-called Gresho vortex [27, 43], which
is a stationary solution of the incompressible Euler equations. The centrifugal force,
indeed, is balanced by the gradient of the pressure. A rotating vortex is positioned at
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the center (0.5, 0.5) of the computational domain Ω = (0, 1)2. The initial conditions
for dimensional variables read as follows:

ρ (x, 0) = 1 (119)

u (x, 0) = −uφ sin (φ) (120)

v (x, 0) = uφ cos (φ) (121)

p (x, 0) =


p0 +

25
2 ρr

2 if 0 ≤ r < 0.2

p0 +
25
2 ρr

2 + 4ρ (1− 5r − log(0.2) + log(r)) if 0.2 ≤ r < 0.4

p0 − ρ (2− 4 log(2)) if r ≥ 0.4.

(122)

Here, r =
√
(x− 0.5)2 + (y − 0.5)2, φ = arctan

(
y−0.5
x−0.5

)
, p0 =

ρ0u2
φ,max

γM2 , with ρ0 =

1kgm−3 and uφ,max = 1ms−1 for r = 0.2. Finally, uφ is

uφ =


5r if 0 ≤ r < 0.2

2− 5r if 0.2 ≤ r < 0.4

0 if r ≥ 0.4.

(123)

Notice that, as discussed in [29], the pressure p0 is chosen in such a way that the

maximum value of |u|
c matches M , so as to consider low Mach effects. We transform

the initial conditions in non-dimensional quantities by using R = 1kgm−3,L = 1m,
and U = 1ms−1. Periodic boundary conditions are imposed for all the boundaries.
We simulate the flow until Tf = 3, when three full rotations are completed. The
computational grid is composed by 80 × 80 elements with polynomial degree r = 2,
whereas the time step is ∆t = 0.002, leading an advective Courant number Cu ≈ 0.32.
We considerM = 10−3 andM = 10−4. Hence, the acoustic Courant number is C ≈ 320
for M = 10−3 and C ≈ 3200 for M = 10−4. A comparison of the local Mach number
Mloc =

M |u|
c at initial time and the final time for the two tests shows that the numerical

method accurately preserves the shape of the vortex (Figure 9). We also monitor the
behaviour over time of the kinetic energy, which should be conserved. Figure 10 shows
the behaviour over the time of the relative difference of the kinetic energy with respect
to the initial value, namely |Ekin(t)−Ekin(0)|

Ekin(0)
, for M = 10−3. Table 3 reports instead the

total kinetic energy relative to the initial one after each rotation. The kinetic energy is
conserved and these results compare very well with those presented in [1], [56] where
a loss of about 1.5 percent of the initial kinetic energy occurs after one rotation of the
vortex. Analogous results are achieved for M = 10−4. Hence, the preservation of the
kinetic energy holds independently of the Mach number.

M t = 1 t = 2 t = 3

10−3 0.999981 0.999974 0.999968

10−4 0.999981 0.999974 0.999969

Table 3: Total kinetic energy relative to its initial value for different Mach numbers
after each full rotation of the Gresho vortex with the ideal gas law (9).
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Figure 9: Gresho vortex test case with the ideal gas law (9), comparison of local Mach

number Mloc = M |u|
c . From bottom to top: results at M = 10−4 and M = 10−3.

From left to right: initial condition and results at t = Tf = 3, after three full rotations.

We now adapt the standard Gresho vortex test case to a water flow. As discussed
in [1], it suffices to modify p0 for the SG-EOS (10) as follows:

p0 =
ρ0u

2
φ,max

γM2
− π∞, (124)

with M = 10−4, ρ0 = 1000 kgm−3, γ = 4.4, and π∞ = 6.8 × 108 Pa. We also take
q∞ = 0 in (10). The initial density is now ρ (x, 0) = ρ0 and we employR = 1000 kgm−3

to compute the non-dimensional counter part of initial conditions (119)-(122). A com-
parison of Mloc between the initial and the final time shows that the shape of the
vortex is accurately preserved also for a fluid with parameters corresponding to those
of water (Figure 11). Figure 12 shows the behaviour over the time of the relative
difference of the kinetic energy with respect to the initial value, while Table 4 reports
the total kinetic energy relative to the initial one after each rotation, from which we
notice that the kinetic energy is conserved.

Finally, we consider a configuration of the Gresho vortex for the Peng-Robinson
EOS (14). The new expression of the background pressure p0 reads as follows:

p0 =

[
u2φ,max

M2
+ f (ρ0)

]
ρ0 (1− ρ0b)

γ
, (125)
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Figure 10: Gresho vortex test case with the ideal gas law (9), relative difference of
the total kinetic energy with respect to the initial value at M = 10−3.

M t = 1 t = 2 t = 3

10−4 0.999981 0.999974 0.999968

Table 4: Total kinetic energy relative to its initial value after each full rotation of the
Gresho vortex with the SG-EOS (10).

Figure 11: Gresho vortex test case with SG-EOS (10), comparison of local Mach

number Mloc =
M |u|

c . Left: initial condition. Right: results at t = Tf = 3, after three
full rotations.

with

f (ρ0) =
aρ0

1− ρ0b

(
∂U
∂ρ0

b
(γ − 1) +

1− 2ρ0b

(1− ρ0br1) (1− ρ0br2)

)

+ abρ20
r1 (1− ρ0br2) + r2 (1− ρ0br1)

(1− ρ0br1)
2 (1− ρ0br2)

2 . (126)
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Figure 12: Gresho vortex test case with SG-EOS (10), relative difference of the total
kinetic energy with respect to the initial value at M = 10−4.

We take γ = 1.4, ρ0 = 1kgm−3, a = 500m5 s−2 kg−1, and b = 0.001m3 kg−1. Fi-
nally, we consider ρ (x, 0) = 1 kgm−3 and this value is also employed to compute
non-dimensional quantities. Figure 13 shows a comparison of Mloc between the initial
and the final time, Figure 14 shows the behaviour over the time of the relative differ-
ence of the kinetic energy with respect to the initial value, while Table 5 reports the
total kinetic energy relative to the initial one after each rotation. The same consider-
ations done for the ideal gas law (9) and for the SG-EOS (10) are valid also for this
particularly challenging and complex equation of state.

M t = 1 t = 2 t = 3

10−4 0.999981 0.999974 0.999969

Table 5: Total kinetic energy relative to its initial value after each full rotation of the
Gresho vortex with the Peng-Robinson EOS (14).
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Figure 13: Gresho vortex test case with the Peng-Robinson EOS (14), comparison of

local Mach number Mloc =
M |u|

c . Left: initial condition. Top: results at t = Tf = 3,
after three full rotations.

Figure 14: Gresho vortex test case with the Peng-Robinson EOS (14), relative differ-
ence of the total kinetic energy with respect to the initial value at M = 10−4.

5.5 Baroclinic vorticity generation problem

We now consider a test case proposed in [22] and discussed also in [39, 44], which
consists of a right-going acoustic wave crossing a density fluctuation in the vertical
direction. The ideal gas law (9) is employed. The computational domain is Ω =
(−L,L)×

(
0, 25L

)
. Following [39, 44], we set M = 5× 10−2 and we take L = 1

M . The
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initial conditions read as follows:

ρ̄ (x, 0) = ρ̄0 +Mρ
′
0

(
1 + cos

(πx
L

))
+Φ(y) (127)

u (x, 0) = ū0

(
1 + cos

(πx
L

))
(128)

v (x, 0) = 0 (129)

p (x, 0) = p̄0 +Mp
′
0

(
1 + cos

(πx
L

))
, (130)

with ρ̄0 = 1, ρ
′
0 = 0.2, p̄0 = 1.p

′
0 = γ, and ū0 =

√
γ. The function Φ (y) is defined by

Φ (y) =


ρ2

y
2
5
L

if y ≤ 1
5L− ε

ρ2

(
y
2
5
L
− 1

2

)
− 0.4 if y ≥ 1

5L+ ε

ρ2
1
5
L−ε
2
5
L

+ 1
2ε

(
ρ2

( 1
5
L+ε
2
5
L

− 1
2

)
− 0.4− ρ2

1
5
L−ε
2
5
L

) (
y − 1

5L+ ε
)

otherwise,

where ρ2 = 0.8 and ε = 0.01. Notice that, unlike in [39, 44], the function Φ is reg-
ularized to obtain a continuous profile. Periodic boundary conditions are prescribed,
whereas the final time is Tf = 16. The computational grid is composed by 400×80 ele-
ments with r = 1. The time step is ∆t = 0.004, yielding a maximum advective Courant
number Cu ≈ 0.26 and a maximum acoustic Courant number C ≈ 2.5. Figure 15 shows
a comparison of the density between the initial and the final time. The initial density
profile consists of two layers with different acceleration. Hence, a rotational motion is
induced along the separating layer and a Kelvin-Helmholtz instability develops. This
test case illustrates the non trivial interaction between large-scale acoustic waves and
small-scale density fluctuations. Following the discussion in [38, 39] and in Section
3.2, we notice that the x-averaged mass and momentum balance for (48)-(49) read as
follows:

∂ρ̄

∂t
= 0 (131)

∂ρ̄ū

∂t
+∇ξ p

′
= 0. (132)

Suppose now that two neighbouring mass elements characterized by densities ρ1 and
ρ2, with ρ1 ̸= ρ2 as in the present test case, are accelerated by a common large-
scale acoustic pressure gradient. Since the time derivative of the momentum is the
same for both mass elements, their velocities must differ by a factor of ρ2

ρ1
. As a

consequence of different accelerations, vorticity is generated. This phenomenon is also
known as baroclinic effect and it is the result of mutual interaction between the quasi-
incompressible small-scale and the large-scale acoustic flow.

Finally, we consider for this test case the SG-EOS (10). We take γ = 4.4, π∞ =
6.8×10−3, and q∞ = 0. The same initial conditions of the configuration with the ideal
gas law are employed. The time step is ∆t = 2.5× 10−3, yielding a maximum acoustic
Courant number C ≈ 3.5 and a maximum advection Courant number Cu ≈ 0.23. One
can easily notice that the development of the Kelvin-Helmholtz instability depends on
the EOS and on the fluid parameters (Figure 16).
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Figure 15: Baroclinic vorticity generation with the ideal gas law (9), contour plot of
the density. Top: t = 0. Bottom: t = Tf = 16.

Figure 16: Baroclinic vorticity generation with the SG-EOS (10), contour plot of the
density at t = Tf = 16.

6 Conclusions

We have presented the asymptotic-preserving (AP) analysis of a general IMEX ap-
proach for the time discretization of the compressible Euler equations. Based on the
results of [12, 19], these approaches consider an implicit coupling between the momen-
tum and the energy balance, while treating the density explicitly. The second order
method proposed in [24], in combination with a Discontinuous Galerkin (DG) for the
space discretization, has been employed for numerical simulations. The AP property
of the proposed method is valid for a general equation of state as well as for two length
scales models. A number of classical benchmarks for ideal gases and their non trivial
extension for equations of state of real gases, in particular for the general cubic equa-
tion of state, validate the proposed method in the low Mach number regime and in
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the limit of incompressible flows. Notice that, no operator splitting, flux splitting or
relaxation techniques have been employed, unlike the approaches proposed e.g. in [1,
13, 14, 38, 44]. In future work, we aim to consider gravity effects, so as to perform an
asymptotic analysis in the limit of low Froude numbers, and to consider an extension
for two-phase flows.

A Eigenvalues of the implicit and explicit part

In this Appendix, we analyze the eigenvalues for the Euler equations (8). More specif-
ically, we compute the eigenvalues for the two subsystems obtained considering the
IMEX approach described in Section 3. For the sake of simplicity, we focus on 1D
case, so that the equations can be written as follows:

∂ρ

∂t
+
∂q

∂x
= 0 (133)

∂q

∂t
+

∂

∂x

(
q2

ρ

)
+

1

M2

∂p

∂x
= 0 (134)

∂Ê

∂t
+
∂hq

∂x
+

1

2
M2 ∂

∂x

(
q3

ρ2

)
= 0, (135)

with q = ρu and Ê = ρE. Hence, considering the time discretization reported in
Section 3, the system can be written in the following quasi-linear form:

∂W̃

∂t
+ ÃI

∂W̃

∂x
+ ÃE

∂W̃

∂x
= 0, (136)

with

W̃ =

ρq
Ê

 (137)

ÃI =

 0 0 0
1

M2
∂p
∂ρ

1
M2

∂p
∂q

1
M2

∂p

∂Ê
q ∂h∂ρ q ∂h∂q + h q ∂h

∂Ê

 (138)

ÃE =

 0 1 0
−u2 2u 0

−M2u3 3
2M

2u2 0

 . (139)

Here, ÃI and ÃE denote matrices related to the fluxes discretized implicitly and
explicitly, respectively. After some manipulations (see [47]), we can rewrite (136) as
follows:

∂W

∂t
+AI

∂W

∂x
+AE

∂W

∂x
= 0, (140)
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with

W =

ρu
p

 (141)

AI =


0 0 0
0 0 1

ρM2

0
p
ρ
−ρ ∂e

∂ρ
∂e
∂p

u

 (142)

AE =

u ρ 0
0 u 0
0 0 0

 . (143)

The eigenvalues of AI are

u

2
−
√

c2

M2
+
u2

4
0

u

2
+

√
c2

M2
+
u2

4
, (144)

while the eigenvalues of AE are

0 u u. (145)

Notice that, the eigenvalues of AE are always real, meaning that the subsystem dis-
cretized explicitly is always hyperbolic, and no acoustic effect is taken into account.
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