An asymptotic-preserving scheme for Euler equations I: non-ideal gases - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

An asymptotic-preserving scheme for Euler equations I: non-ideal gases

Résumé

We analyze a general Implicit-Explicit (IMEX) time discretization for the compressible Euler equations of gas dynamics, showing that they are asymptotic-preserving (AP) in the low Mach number limit. The analysis is carried out for a general equation of state (EOS). We consider both a single asymptotic length scale and two length scales. We then show that, when coupling these time discretizations with a Discontinuous Galerkin (DG) space discretization with appropriate fluxes, an all Mach number numerical method is obtained. A number of relevant benchmarks for ideal gases and their non-trivial extension to non-ideal EOS validate the performed analysis.
Fichier principal
Vignette du fichier
AP_Euler.pdf (2.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04458836 , version 1 (15-02-2024)
hal-04458836 , version 2 (19-11-2024)

Identifiants

Citer

Giuseppe Orlando, Luca Bonaventura. An asymptotic-preserving scheme for Euler equations I: non-ideal gases. 2024. ⟨hal-04458836v1⟩
22 Consultations
22 Téléchargements

Altmetric

Partager

More