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Abstract

We present the derivation of the boundary-value pressure problem governing the nor-
mal modes of an incompressible fluid, which is rotating and stratified in density under the
Bousinesq approximation. Next, we discuss for which conditions this is an elliptic boundary-
value problem (using microlocal analysis). Applications to ellipsoidal vortices with a constant
Brunt-Väisälä frequency are then considered. Finally, we introduce a boundary-layer analysis
to determine the (leading-order) diffusive decay rates of the normal modes in an ellipsoid.

1 Boundary-value pressure problem

We consider a diffusionless and incompressible fluid, which is enclosed in a smooth bounded
domain V (whose boundary is denoted by ∂V ). The fluid is rotating at the angular velocity
Ω = (Ωx,Ωy,Ωz)

⊤ with respect to an inertial frame, and is stratified in density under the imposed
gravity field g = −g(z)1z within the Boussinesq approximation. At rest, the pressure P0 and the
density satisfy the hydrostatic balance ∇P0 = [ρ∗ + ρ0(z)]g, where ρ∗ is the typical (mean) den-
sity of the fluid within the Boussinesq approximation. Then, we seek small-amplitude oscillatory
perturbations (where ω ∈ R is the angular frequency) for the velocity u exp(iωt), the pressure
Φ exp(iωt), and the density ζ exp(iωt) upon the hydrostatic basic state. These perturbations are
governed in the rotating frame by the incompressible Euler equations

iωu+ 2 (Ω× u) = −∇Φ− (ζ/ρ∗)g(z)1z, ∇ · u = 0, (1a,b)

and the buoyancy equation

iωζ =
ρ∗N

2(z)

g(z)
(u · 1z) , N2(z) := −g(z)

ρ∗

dρ0
dz

, (2a,b)

where N(z) is the Brunt-Väisälä (BV) frequency. The latter equations can be reduced, as long as
ω ̸= 0, to a quadratic equation in ω for the velocity given by

−ω2u+ iω (2Ω× u) +N2(z) (u · 1z)1z = −iω∇Φ. (3)
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BOX 1.1: Poincaré problem

When N = 0, the velocity is given by (see formula 2.7.2 in Greenspan [1])

(4|Ω|2 − ω2)u = −iω∇Φ− 4

iω
(Ω ·∇Φ)Ω+ 2Ω×∇Φ. (B1.1.1)

The divergence of the latter equation yields the so-called Poincaré equation [1]

ω2∇2Φ = (2Ω · ∇)2Φ. (B1.1.2)

The associated BC, obtained from equation (15) below, is given by

ω2∇Φ · n = iω(2Ω× n) ·∇Φ + 4(Ω ·∇Φ)(Ω · n) on ∂V , (B1.1.3)

which is identical to equation (2.7.4) in Greenspan [1].

Finally, equation (3) is supplemented with the no-penetration boundary condition (BC) given by
u · n|∂V = 0 (i.e. u is tangent to ∂V ), where n is the unit vector normal to the boundary.

Our goal is to find an alternative formulation of the problem in terms of the pressure Φ. An
equation for the pressure can be obtained by taking the divergence of equation (3), which gives

−iω∇2Φ = iω∇ · (2Ω× u) + (u · 1z)∂zN
2 +N2(z)∂z(u · 1z). (4)

The associated boundary condition (BC) is then obtained by taking the scalar product of equation
(3) with n, which gives

−iω(∇Φ · n) = iω(2Ω× u) · n+N2(z)(u · 1z)(1z · n) on ∂V . (5)

However, equations (4)-(5) still depend on u. Therefore, an expression of u in terms of Φ only is
required before obtaining the equation for the pressure (e.g. the Poincaré problem, see Box 1.1).
We will give below the explicit formula(s) accounting for misaligned rotation and gravity with a
varying BV frequency N(z).

1.1 Second-order equation in the volume

To find the equation satisfied by the pressure Φ in V , we first find the equation relating u and Φ
(Proposition 1.1). Then, we enforce the incompressibility condition to obtain the pressure equation
(Proposition 1.2). Finally, we give in Proposition 1.3 the pressure equation when N is constant.
It will be of prime importance for the microlocal analysis presented in Section 2.

Proposition 1.1. The velocity u is related to the pressure Φ by the equation Dω(z)u = f when
Dω(z) = (ω2 − ω2

+)(ω
2 − ω2

−) ̸= 0 with

ω2
± =

1

2
(N2(z) + 4|Ω|2)±

√
1

4
(N2(z) + 4|Ω|2)2 − 4N2(z)(Ω · 1z)2, (6)

and with

f = iω3∇Φ− 2ω2(Ω×∇Φ)− 4iω(Ω ·∇Φ)Ω

+N2(z) [(2Ω · 1z)(1z ×∇Φ) + iω1z × (1z ×∇Φ)] . (7)
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Proof. We recast Euler equation (1a) and buoyancy equation (2) as a linear system given by

M


ux

uy

uz

ζ/ρ∗

 = −


∂xΦ
∂yΦ
∂zΦ
0

 , M :=


iω −2Ωz 2Ωy 0
2Ωz iω −2Ωx 0
−2Ωy 2Ωx iω g(z)
0 0 −N2(z)/g(z) iω

 , (8a,b)

and with u = (ux, uy, uz)
⊤. The system admits non-zero solutions when det(M) := Dω(z) ̸= 0. In

this case, we can invert the linear system and the result follows. Note that it reduces to equation
(2.7.2) in Greenspan [1] when N = 0. ■

Proposition 1.2. When Dω(z) ̸= 0, the pressure obeys the second-order equation given by

∇ · (f/Dω) = 0 ⇐⇒ ∇ · f − (1/Dω) fz∂zDω = 0, (9)

with ∂zDω = −(ω2 − ω2
−)∂zω

2
+ − (ω2 − ω2

+)∂zω
2
−.

When N(z) is variable and Ω = Ωz1z, equation (9) reduces to

∇2Φ +
∂

∂z

(
N2 − 4Ω2

z

ω2 −N2

∂Φ

∂z

)
= 0, (10)

which is identical to equation (5.1) in Friedlander & Siegmann [2]. For oscillatory motions with
ω ̸= 0, equation (11) is thus equivalent to equation (3) when |ω| ̸= ω±(z). However, the pressure
must obey another equation Dω(z) = 0 (see below).

Proposition 1.3. When N is constant, equation (9) reduces to Pω(Φ) = 0 with

Pω := −∇2 − N2

ω2 −N2
(1z ·∇)2 +

4

ω2 −N2
(Ω ·∇)2 . (11)

The operator Pω is elliptic when 0 < |ω| < |ω−, and its principal symbol p is given by

p := Ak2
x +Bk2

y + Ck2
z + 2Dkykz + 2Ekxkz + 2Fkxky (12)

with

A =
ω2 −N2 − 4Ω2

x

ω2 −N2
, B =

ω2 −N2 − 4Ω2
y

ω2 −N2
, C =

ω2 − 4Ω2
z

ω2 −N2
,

D =
−4ΩyΩz

ω2 −N2
, E =

−4ΩxΩz

ω2 −N2
, F =

−4ΩxΩy

ω2 −N2
.

Finally, it is worth explicitly writing the Cartesian components of f = (fx, fy, fz)
⊤ when N is

constant (as we will reuse them below). They are given by

fx
ω2 −N2

= iω[A∂xΦ + F∂yΦ + E∂zΦ] − 2ω2Ωy

ω2 −N2
∂zΦ + 2Ωz∂yΦ, (13a)

fy
ω2 −N2

= iω[F∂xΦ +B∂yΦ +D∂zΦ] +
2ω2Ωx

ω2 −N2
∂zΦ − 2Ωz∂xΦ, (13b)

fz
ω2 −N2

= iω[E∂xΦ +D∂yΦ + C∂zΦ] +
2ω2

ω2 −N2
(Ωy∂xΦ− Ωx∂yΦ). (13c)

where the coefficients (A,B,C,D,E, F ) appear in the principal symbol of Pω (Proposition 1.3).
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BOX 1.2: Aligned case

When Ω = Ωz1z and N is constant, pressure equation (10) simplifies into

−∇2Φ− N2 − 4Ω2
z

ω2 −N2
(1z ·∇)2Φ = 0, (B1.2.1)

which is identical to equation (2.21) in Friedlander & Siegmann [3]. If required, the velocity
is related to the pressure as

[4Ω2
z − ω2]u = −iω∇Φ +

iω

ω2 −N2
[4Ω2

z −N2](1z ·∇Φ)1z + 2Ωz(1z ×∇Φ). (B1.2.2)

To find the pressure BC, we rearrange equation (15) as

iω
[
ω2 −N2

]
∇Φ · n = 2Ωz

[
ω2 −N2

]
(1z ×∇Φ) · n+ iω

[
4Ω2

z −N2
]
(1z · n)

∂Φ

∂z
,

which simplifies into

∇Φ · n =
2Ωz

iω
(n× 1z) ·∇Φ−

[
N2 − 4Ω2

z

ω2 −N2

]
(1z · n)

∂Φ

∂z
on ∂V . (B1.2.3)

BC (B1.2.3) is identical to formula (2.22) in Friedlander & Siegmann [3].

1.2 Boundary condition

Proposition 1.4. The pressure BC is given by f · n|∂V = 0, where the components of f are
given in equations (13a-c).

For the sake of comparison with prior studies, the pressure BC can be rewritten as

iω3∇Φ · n = 2ω2(Ω×∇Φ) · n+ 4iω(Ω ·∇Φ)(Ω · n)
−N2(z) [(2Ω · 1z)(1z ×∇Φ) + iω1z × (1z ×∇Φ)] · n. (14)

Since we have 1z × (1z ×∇Φ) = (1z ·∇Φ)1z −∇Φ, we can rewrite the pressure BC as

iω
[
ω2 −N2(z)

]
∇Φ · n = 2

[
ω2(Ω×∇Φ)−N2(z)(Ω · 1z)(1z ×∇Φ)

]
· n

+ iω
[
4(Ω ·∇Φ)Ω−N2(z)(1z ·∇Φ)1z

]
· n. (15)

BC (15) can be strongly simplified in some cases (see Box 1.2).

1.3 First-order equation when Dω(z) = 0

The pressure is no longer given by equation (9) when Dω(z) = 0. The latter defines the equation
of turning surfaces, on which the mathematical problem change of type. Onto such surfaces, the
pressure obeys another partial differential equation. Assuming that the field unknowns remain
non-singular across such surfaces, this equation is found by using vector manipulations of the
primitive equations (Proposition 1.5).
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Proposition 1.5. When Dω(z) = 0 (i.e. on turning surfaces), the pressure is given by the first-
order equation

(2Ω · 1z)(2Ω ·∇Φ) + 2iωΩ · (1z ×∇Φ)− ω2(1z ·∇Φ) = 0, (16)

which is a particular case of equation (3.5) in Friedlander & Siegmann [2].

Proof. We apply 2Ω× to equation (1a), which gives

iω(2Ω× u) = −2Ω× (2Ω× u)− 2Ω×∇Φ− g(z)(ζ/ρ∗)(2Ω× 1z),

= −4
[
(Ω · u)Ω− |Ω|2u

]
− 2Ω×∇Φ− g(z)(ζ/ρ∗)(2Ω× 1z).

The latter equation can be rearranged to give

(
4|Ω|2 − ω2

)
u = −iω∇Φ + 4(Ω · u)Ω+ 2Ω×∇Φ +

N2(z)

iω
(1z · u) [2Ω× 1z − iω1z] , (17)

where we have used equation (1a) to simplify 2Ω × u and used equation (2a) to simplify the
buoyancy term. Thus, it only remains to express Ω ·u and 1z ·u as a function of Φ only. We take
the scalar product of equation (1a) with iωΩ, which gives

ω2(Ω · u) = iω(Ω ·∇Φ) +N2(z)(Ω · 1z)(1z · u). (18)

Then, we take the scalar product of equation (1a) with iω1z to obtain[
N2(z)− ω2

]
(1z · u) = iω 2Ω · (1z × u)− iω(1z ·∇Φ). (19)

Since we have also from equation (1a)

iω(1z × u) = −1z × (2Ω× u)− 1z ×∇Φ = −2 [(1z · u)Ω− (1z ·Ω)u]− 1z ×∇Φ, (20)

we combine equations (18) to (20) to obtain

−Dω(z)(1z · u) = iω(2Ω · 1z)(2Ω ·∇Φ)− 2ω2Ω · (1z ×∇Φ)− iω3(1z ·∇Φ). (21)

From equation (21), we see that the pressure must satisfy equation (16) when Dω(z) = 0. ■

2 Microlocal analysis of boundary-value problems

We investigate, using microlocal analysis, under which conditions a quite general boundary-value
scalar problem is elliptic in §2.1. Then, we revisit the ellipsoidal model with a constant N in §2.2
to prove that the low-frequency spectrum σ2 is essential.

2.1 Elliptic boundary-value problem

Remark. In this subsection, the Cartesian coordinates are denoted by (x1, x2, x3) to make use of
index notations.
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We consider a smooth bounded domain V in Rd, and a symmetric elliptic differential operator
Pω of order 2 with smooth coefficients and of principal symbol p. We also assume that the Dirichlet
extension of Pω is > 0. The scalar Φ is governed by the boundary-value problem given by

Pω(Φ) = 0 in V , B(Φ) := n⋆ ·∇Φ + V(Φ) = 0 on ∂V , (22a,b)

where n⋆ is the unit vector normal computed with respect to the metric g induced on ∂V by the
principal symbol of Pω (see Box 2.1), and V is a differential operator of degree 1 tangent1 to ∂V .
To solve system (22), we introduce the Dirichlet-to-Neumann operator N in Proposition 2.1.

Proposition 2.1. If Ψ : ∂V → C is a field defined on the boundary, then the Dirichlet-to-
Neumann operator is defined by N (Ψ) := ∂n⋆Φ where ∂n⋆ = n⋆ ·∇ is the normal derivative with
respect to the vector n⋆, and where Φ is the solution of the Dirichlet problem in V given by
Pω(Φ) = 0 in V and Φ|∂V = Ψ on ∂V .

Note that N is a self-adjoint operator acting on functions defined in the space L2(∂V, dσ) for
the area dσ defined by the metric g restricted on ∂V [5]. To solve problem (22), we first solve the
boundary problemN (Ψ)+V(Ψ) = 0 on ∂V , and then consider the Dirichlet problem in V given the
boundary field Ψ. In practice, this amounts to solving the problem on the boundary ∂V and, then,
propagating the boundary solution in the interior V by using the Dirichlet problem. Actually, the
nature of the boundary-value problem crucially depends on the nature of the boundary equation
N (Ψ) + V(Ψ) = 0 on ∂V . This can be analysed using microlocal analysis. Indeed, N is a nice
pseudo-differential operator of principal symbol is given in Proposition 2.2. The ellipticity of
boundary-value problem (22) is then given by Proposition 2.3. Finally, the nature is given by
Proposition 2.4 below.

Proposition 2.2. The principal symbol of the Dirichlet-to-Neumann operator N , defined for an
elliptic operator with a positive principal symbol p > 0, is given by

√
g⋆|∂V , where g⋆|∂V is the

dual of the restriction on ∂V of the metric g induced by p in V .

Proof. It is given in the Appendices of Taylor’s book [6]. Note that the principal symbol is defined
as −

√
− g|∂V in [6]. The first minus sign comes from the fact that an inward vector n⋆ was

considered, and the second from the fact that the other convention p ≤ 0 was used. ■

Proposition 2.3. Let us denote by v the principal symbol of V . Then, boundary-value problem
(22) is elliptic if and only if the principal symbol

√
g⋆|∂V + v is elliptic on ∂V , that is if it does

not vanish for non-zero covectors k ∈ R2 on the boundary ∂V .

Proof. See Chapter 9 in [7]. This is also known as the Shapiro-Lopatinskii condition [7]. ■

Proposition 2.4. If boundary-value problem (22) is elliptic in the interval [ω1, ω2], then its spec-
trum is discrete (or empty) in this interval. Otherwise, the spectrum is essential in [ω1, ω2].

Proof. If the boundary-value pressure problem is elliptic, the operator Pω admits a parametrix
L (i.e. an approximate inverse) such that Pω ◦ L = Id + R, where R is a pseudo-differential
operator of degree −1. Hence, R is a compact operator. Moreover, Pω and R are also analytic
functions. Then, the result follows from the Fredholm analytic theorem (see Theorem VI.14 in
[9]). Otherwise, the values ω ∈ [ω1, ω2] belong to the essential spectrum [10]. ■

1tangent is here understood in the language of differential geometry [4]. For instance, if ∂V is described by
q1 = constant for a set of curvilinear coordinates (q1, q2, q3), then V only involves derivatives (∂q2 , ∂q3) on the
tangent plane at a given point.
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BOX 2.1: Normal vector induced by the metric on ∂V

The normal vector n̂ defined from the metric on ∂V is computed as follows. The principal
symbol p defines a metric given by g⋆ := (g⋆)ijkikj for the covectors k ∈ R3 in the cotangent
space, whose inverse g := (g⋆)−1 induces a metric in V defined by g := gijdxidxj. Then,
the normal vector n⋆ computed with respect to g⋆ is given by

n⋆ ∝ g⋆n, gijn
⋆
in

⋆
j = 1,

where n = (n1, n2, n3)
⊤ is the unit vector normal to ∂V in Cartesian coordinates with

n2
1 + n2

2 + n2
3 = 1. The constant of proportionality is such that n⋆ has a unit norm with

respect to the metric g. The vector n⋆ is also called the conormal vector (with respect to
g⋆) in the study of partial differential equations [8]. Note that g⋆ is a contravariant metric
tensor associated with the operator (g⋆)ij∂xi

∂xj
. Thus, the conormal n⋆ is the contravariant

description (in the space with the metric defined by g) of the covariant normal vector n to
∂V (in the space with the Euclidean metric).

In practice, the difficult step is to evaluate the principal symbol of the Dirichlet-to-Neumann
operator (Proposition 2.2). In practice, this can be done as follows. The principal symbol p
induces a metric in V given by g := gijdxidxj. Let us assume that xi = xi(qj) with the curvilinear
coordinates (q1, q2, q3) such that the boundary ∂V is given by q1 = constant (for instance). Then,
we can rewrite the two-dimensional metric restricted on ∂V as g|∂V = g̃ijdqidqj. Then, the dual

of the metric induced by g on ∂V is given by g⋆|∂V = (g̃
⋆
)ijkikj with g̃

⋆
= g̃

−1
.

2.2 Back to the pressure equation

We aim to apply the above microlocal analysis to the boundary-value pressure problem when N
is constant, which is elliptic in V when 0 < |ω| < ω−. The principal symbol p, defined in equation
(12), induces the metric g in V and its dual g⋆ characterised by the metric tensors

g⋆ =

A F E
F B D
E D C

 , g =
1

det(g⋆)

 BC −D2 −CF +DE −BE +DF
−CF +DE AC − E2 −AD + EF
−BE +DF −AD + EF AB − F 2

 , (23a,b)

with det(g⋆) = ABC −AD2 −BE2 −CF 2 + 2DEF . For a given normal vector n = (n1, n2, n3)
⊤

in Cartesian coordinates, the conormal vector n⋆ is thus given by

n⋆ =
1

α

n1

A
F
E

+ n2

F
B
D

+ n3

E
D
C

 , (24)

with α = [An2
1 + Bn2

2 + Cn2
3 + 2(Dn2n3 + En1n3 + Fn1n2)]

1/2 such that gijn
⋆
in

⋆
j = 1. Thanks to

expression (24), we clearly see that the conormal naturally appears in equations (13a-c). Thus, we
can apply Proposition 2.3 to determine the nature of the boundary-value pressure problem.

Let us consider here the aligned case with Ω = (0, 0,Ωz)
⊤, for which the equations are then

greatly simplified (see Box 1.2). In this case, the two metrics reduce to

g⋆ = k2
x + k2

y + Ck2
z , g = dx2 + dy2 + C−1dz2, (25a,b)
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and the conormal vector is given by n⋆ = (1/α) (n1, n2, n3C)⊤ with α =
√

1 + n2
3(C − 1), where

the Euclidian normal vector is n = (n1, n2, n3)
⊤ with n2

1 + n2
2 + n2

3 = 1. To demonstrate that
the pressure problem is not elliptic for a given frequency 0 < |ω| < ω−, it is sufficient to find one
location on ∂V where Proposition 2.3 is not valid. We look at the behaviour at the equator, where
the tangent plane is vertical with n = 1x (for instance) such that the pressure BC is simply fx = 0.
The restriction of the metrics on ∂V gives

g|∂V = dy2 + C−1dz2, g⋆|∂V = k2
y + Ck2

z , (26a,b)

and the conormal vector is simply given by n⋆ = 1x. The principal symbol of the pressure BC is
then given by √

k2
y + Ck2

z = −2Ωz

ω
ky, (27)

which reduces to (
4Ω2

z − ω2

ω2

)
︸ ︷︷ ︸

≥0

k2
y = C︸︷︷︸

≥0

k2
z (28)

where the two prefactors are positive when 0 < |ω| < ω− = min(N, 2Ωz) in the aligned case.
Therefore, we can find a real-valued covector k = (0, ky, kz)

⊤ such that the principal symbol of
the BC vanishes. The boundary-value pressure problem is thus not elliptic in this case (Proposi-
tion 2.2), and the low-frequency spectrum is essential (Proposition 2.4). Similarly, we conjecture
that the spectrum is always essential when 0 < |ω| < ω− when Ω and 1z are misaligned. The
corresponding calculations (which are more lengthy) will be included in a forthcoming paper [5],
in which we will also further explore the properties of the low-frequency (surface) modes.

3 Boundary-layer analysis

We introduce diffusion in the problem to investigate the diffusive decay rates of IGMs for a constant
BV frequency in an ellipsoid. We use the same model as in the main text except that, here, the fluid
has a non-zero kinematic viscosity ν and diffusivity κ. We employ boundary-layer theory (BLT) to
approach the low-diffusive regime (relevant for geophysical vortices), and introduce dimensionless
variables below. We take Ω−1

s as the time scale, L as the length scale (e.g. either a or c), and
ρ∗LN

2/g as the density scale. For the sake of concision, the dimensionless variables are written
below using the same symbols as the dimensional variables in the main text. We seek modal
solutions as [v, π, ρ](r, t) = [u,Φ, ζ](r) exp(λt), where λ ∈ C is the diffusive eigenvalue. The
dimensionless linearised Navier-Stokes equations are then given in the rotating frame by

λu+ 2(1Ω × u) = −∇Φ− Ñ2ζ1z + E∇2u, λζ = (u · 1z) + Eκ∇2ζ, (29a,b)

with the (dimensionless) Ekman number E = ν/(ΩsL
2) and Eκ = E/Pr where Pr = ν/κ is the

Prandtl number, and with the normalised BV frequency Ñ = N/Ωs. Multiplying equation (29a)

by u† and the complex-conjugate of equation (29b) by Ñ2ζ, we obtain after volume integration

λ||u||2 + λ†Ñ2||ζ||2 = E⟨u,∇2u⟩+ Ñ2Eκ⟨∇2ζ, ζ⟩, (30)

where the scalar product between two scalar quantities is defined as ⟨ζ1, ζ2⟩ =
∫
V
ζ†1 · ζ2 dV . Note

that formula (30) is also valid in a sphere with a radial gravity [11]. Finally, the problem is
supplemented with BC. We assume that the velocity field satisfies the stress-free BCs

u · n|∂V = 0, [ϵ(u) · n]× n|∂V = 0 (31a,b)
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where ϵ(u) = (1/2)
[
∇u+ (∇u)⊤

]
is the strain-rate tensor. SF-BCs (31a,b) allow the tangential

velocity to slip on ∂V . For the density perturbation, we enforce a Neumann BC ∇ζ · n|∂V = 0. A
density jump is thus possible between the vortex and the ambient fluid (as considered in idealised
models [12, 13, 14]), but without exchange of mass between the two fluids.

We can simplify equation (31) using BLT when E ≪ 1. Formally, classical BLT for rotating

fluids is not expected to be strongly modified by stratification when Ñ is not too large (e.g. for
rigid boundaries [15]). Moreover, it is known that the boundary-layer flow is E1/2 smaller than the
bulk flow for SF-BCs [16, 17]. This considerably simplifies the BLT, because explicit expressions
for the boundary-layer solutions are no longer required to estimate the decay rate of the modes.
We seek the variables at the leading order in E for the SF-BCs as

λ ≃ iω0 + Eλ1, [u, ζ] ≃ [u0, ζ0] + E1/2 [u1, ζ1] , (32a,b)

where [ω0,u0] is the eigenvalue-eigenvector pair of a diffusionless IGM, λ1 ∈ C is the first-order
correction of the eigenvalue, and [u1, ζ1] are the first-order corrections within the boundary layer
such that u0+E1/2u1 satisfies SF-BCs (31a,b) and ζ0 + E1/2ζ1 satisfies the Neumann BC for the
density. We substitute the above asymptotic expansions into equation (30) and we obtain

λ1||u0||2 + λ†
1Ñ

2||ζ0||2 ≃ −

(
2

∫
V

ϵ(u0) : ϵ(u
†
0) dV +

Ñ2

Pr

∫
V

(∇ζ0)
2 dV

)
(33)

at the order E, where we have used the SF-BCs and the Neumann BC to simplify the volume
integrals on the right-hand side. Since the latter is real-valued and negative, there is no frequency
correction at the leading order in E due to SF-BCs such that ℑm(λ1) = 0 and ℜe(λ1) = τ1 ≤ 0.
We recover from equation (33) the viscous decay rate of pure inertial modes with SF-BCs [17].

Finally, we can crudely estimate whether forced IGMs would quickly decay or not in large-
scale stratified vortices by plugging geophysical estimates into equation (33). Typical values for
the kinematic viscosity are ν ∼ 10−6 m2.s−1 for water and ν ∼ 4 × 10−7 m2.s−1 for gas giants
(according to ab-initio simulations [18]). Using Table 1 in the main text, typical values for the
Ekman number are thus E ∼ 10−8 − 10−12 for Mediterranean eddies and E ∼ 10−12 − 10−17 for
Jovian vortices. Estimating the Prandtl number depends on whether the stratification is due to
thermal effects or compositional ones (for which Pr ≫ 1 in both water and gas giants). Heat
diffusion in Mediterranean eddies is characterised by Pr ≃ 0.7, and typical values Pr ∼ 10−2 − 1
are expected for thermal diffusion in gas giants [18]. Hence, we have ÑEκ ∼ 10−4 − 10−8 for

Mediterranean eddies and ÑEκ ∼ 10−6−10−11 for Jovian vortices. Consequently, the largest-scale
IGMs are not expected to be strongly damped by diffusion in stratified vortices.
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