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Pancake-like vortices are often generated by
turbulence in geophysical flows. Here, we study
the inertia-gravity oscillations that can exist within
such geophysical vortices, due to the combined
action of rotation and gravity. We consider a fluid
enclosed within a triaxial ellipsoid, which is stratified
in density with a constant Brunt-Väisälä frequency
(using the Boussinesq approximation) and uniformly
rotating along a (possibly) tilted axis with respect
to gravity. The wave problem is then governed
by a mixed hyperbolic-elliptic equation for the
velocity. As in the rotating non-stratified case
considered by Vantieghem (2014, Proc. R. Soc. A, 470,
20140093, doi:10.1098/rspa.2014.0093), we find that
the spectrum is pure point in ellipsoids (i.e. only
consists of eigenvalues) with smooth polynomial
eigenvectors. Then, we characterise the spectrum
using numerical computations (obtained with a
bespoke Galerkin method) and asymptotic spectral
theory. Finally, the results are discussed in light of
natural applications (e.g. for Mediterranean eddies or
Jupiter’s vortices).

1. Introduction
Geophysical flows are often influenced by the action
of density stratification and rotation. In particular,
buoyancy supports the propagation of internal (gravity)
waves in stratified fluids [1]. Similarly, the Coriolis force
sustains inertial waves in homogeneous rotating fluids
[2]. Combining density stratification and global rotation
then gives birth to a new wave family [3], usually called
inertia-gravity waves (IGWs). Such various waves, which
are ubiquitous in rotating and stratified environments,
are often believed to be key for understanding the
(turbulent) dynamics of geophysical flows [4,5].
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Figure 1. (a) Cross-section of the temperature anomaly (acoustic tomography) in a Mediterranean eddy offshore in the

Eastern Atlantic. Adapted from figure 3 in [6]. (b) Picture of Jupiter’s Great Red Spot (GRS) taken on 21 April 2014 with

Hubble. Credits: NASA, ESA and A. Simon (Goddard Space Flight Center). Jupiter’s axis of rotation is Ω.

Another characteristic of rotating stratified fluids is that long-lived coherent vortices are often
observed in geophysical conditions. This is a direct manifestation of the high-Reynolds-number
turbulence of geophysical flows. Rotating turbulence can sustain vortices with a large vertical
extent without stratification (due to a nearly geostrophic balance [7]). However, such vortices
become strongly flattened when density stratification is strong enough, leading to a pancake-
like ellipsoidal shape [8]. Notably, the elliptical shape strongly depends on the interplay between
rotational effects, background shear, and the difference between the vortex’s stratification and that
of the ambient medium [9–11]. For instance, Mediterranean eddies are long-lived anticyclones of
lenticular shape, with radii 10− 100 km and thicknesses of less than 1 km (figure 1a), formed by
the accumulation of warm salty water flowing from the Mediterranean Sea in the Atlantic Ocean
[12]. Flattened vortices are also observed in planetary atmospheres. The most striking example is
Jupiter’s Great Red Spot (GRS, figure 1b), which has persisted for more than a century [13].

The origin of the long-term stability of such (nearly) isolated vortices has thus received much
attention in geophysical fluid dynamics. For mathematical tractability, the quasi-geostrophic
approximation is often employed to model a geophysical vortex by a fluid ellipsoid with
spatially uniform potential vorticity [14]. It has also been reported that such quasi-geostrophic
vortices are often quite stable over time [15,16]. However, various hydrodynamic instabilities
could exist in geophysical vortices [17,18] Ultimately, these instabilities may sustain (small-scale)
bulk turbulence, which would likely affect the long-term vortex stability (because of additional
dissipation). In particular, the strong elliptical shape of geophysical vortices may trigger the
so-called elliptical instability [19]. This is a parametric instability, due to nonlinear couplings
between an elliptical flow and two waves (e.g. inertial or internal gravity waves). Yet, it remains
unclear whether the elliptical instability could be triggered for realistic parameters in rotating
stratified fluids [20–23]. Before assessing the relevance of this mechanism for geophysical vortices,
a preliminary step is to understand the wave properties in rotating stratified fluids.

Although IGWs have been extensively studied in unbounded fluids [3], the properties
of the global oscillations in bounded domains (e.g. the inertia-gravity modes, IGMs) are far
from being fully understood. First insight into the mathematical problem can be obtained by
considering the non-stratified regime, which has been extensively examined after Greenspan [2].
For homogeneous fluids viewed in a frame rotating at angular velocity Ω (with respect to an
inertial frame), inertial modes in a bounded domain V are governed by the Poincaré problem
(called after Cartan [24] who revisited Poincaré’s pioneering paper [25]). The latter is given by

ω2∇2Φ= (2Ω · ∇)2Φ, ∇Φ · n|∂V = n · (u ∧ 2Ω)|∂V , (1.1a–b)

where u is the incompressible fluid velocity, Φ is the (reduced) hydrodynamic pressure and
n is the unit vector normal to the fluid boundary ∂V . Time dependence was assumed to be
exp(iωt), where |ω|< 2|Ω| is the real-valued angular frequency [2]. Equation (1.1a) is hyperbolic,
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Figure 2. Sketch of the mathematical model for geophysical vortices (not to scale). (a) Meridional cross-section of a vortex

centred at colatitude θ, which is embedded within an ocean or an atmosphere (blue region). (b) Front view of a flattened

ellipsoidal vortex of semi-axes a≫ b≫ c, which is stratified under the uniform planet’s gravity g (i.e. the background

density ρ0 decreases with increasing z).

but boundary condition (1.1b) is neither of Dirichlet-type or Neumann-type (it is a mixed-typed
condition, sometimes called oblique condition). Hence, problem (1.1) is an ill-posed Cauchy
problem [26]. Nonetheless, it admits smooth polynomial eigenvectors when the geometry is a
triaxial ellipsoid [27,28]. Moreover, these eigenvectors form a complete set in the Hilbert subspace
of complex-valued divergenceless fields tangent to the boundary with the L2 norm in ellipsoids
[29]. Given the formal analogy between rotation and stratification [30], internal (gravity) modes
also obey an ill-posed problem in non-rotating stratified fluids [31]. In the presence of stratification
and rotation, the mathematical problem becomes even more complicated because IGMs obey a
mixed hyperbolic-elliptic operator [32]. As for pure inertial [33,34] and internal (gravity) waves
[35], IGWs can also converge after multiple reflections on solid boundaries to wave attractors [36].
Attractors are interesting geometrical structures [37], which are capable of focusing the wave
energy at small length scales.

This work builds upon and extends previous studies of IGMs in confined geometries. Allen
[38] and Friedlander & Siegmann [39] paid attention to IGMs in spherical (and cylindrical)
containers when gravity is constant and parallel to the rotation axis. Misaligned cases were later
considered in [32] with arbitrary gravity fields. Here, we aim to study IGMs using a simple
model retaining the key ingredients to describe pancake-like geophysical vortices. Briefly, we
consider a fluid ellipsoid subject to a constant (ambient) gravity field and uniformly rotating
along an axis that is tilted with respect to gravity (to account for the full planetary rotation).
This setup allows us to extend prior results about pure inertial modes in ellipsoids [27–29],
while preserving polynomial eigenvectors with stratification. Finally, we characterise the wave
spectrum using the mathematical theory recently presented in Colin de Verdière & Vidal [40] for
inertial modes in ellipsoids. The manuscript is divided as follows. We first formulate the wave
problem for general fluid volumes in §2. Then, we assume that the domain is an ellipsoid in §3
to model geophysical vortices. The wave spectrum for an ellipsoid is mathematically described
and compared to numerical solutions in §4. The results are discussed in light of geophysical
applications in §5, and we end the paper in §6. Additional (technical) details are provided in
the Electronic Supplementary Material (ESM).

2. Formulation of the general model

(a) Primitive fluid dynamics equations
As illustrated in figure 2(a), we model a vortex by a fluid domain of volume V and (fictive)
boundary ∂V , embedded within an ambient fluid (e.g. a planetary atmosphere or ocean) that
is rotating at the angular velocity Ω =Ωs1Ω with respect to an inertial frame (where 1Ω is a unit
vector). We work in the frame rotating at angular velocity Ω, and denote the position vector by
r= (x, y, z)⊤ using the Cartesian coordinates. The vortex is internally stratified in density under
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the action of gravity g. The vortex’s stratification is quantified by the Brunt-Väisälä (BV) frequency
N . Homogeneous fluids are such that N2 = 0, whereas stably stratified fluids are characterised
by N2 > 0. As a starting point, we employ the Boussinesq approximation to account for density
variations [41]. The vortex is differentially rotating with respect to the ambient fluid outside V ,
which can be modelled by a background flow U0. Laboratory experiments [10,11] and numerical
calculations [9] show that, for incompressible fluids, U0 is often close to a uniform-vorticity flow.
The latter can be sought as U0 =ω × r +∇Ψ , where ω is the vortex’s rotation vector (either
cyclonic or anticyclonic) and Ψ is a scalar ensuring that the flow does not cross ∂V (e.g. [42] in
an ellipsoid). The amplitude of U0 is characterised by the Rossby number Ro= |ω|/Ωs, and we
are interested in modelling stratified vortices in the regime |Ro| ≪ (N/Ωs)

2. Thus, we neglect
the effects of U0 onto the background density and pressure. We further simplify the model by
discarding baroclinic (and centrifugal effects), the very weak vortex’s self-gravity, and the (weak)
lateral variations of the planet’s gravity at the size of a vortex. Hence, the fluid is only subject to
the ambient gravity g=−g(z)1z within V , where 1z is the unit vector along the vertical z−axis.
We denote by ρ∗ + ρ0(z) the reference density within V (with the mean density ρ∗), which is
given by the hydrostatic equilibrium ∇P0 = (ρ∗ + ρ0)g where P0 is the hydrostatic pressure.

Now, we seek small-amplitude perturbations around the reference state [U0, ρ0, P0]. Without
diffusion, the velocity v(r, t) obeys the linearised Euler equation given in the rotating frame by

∂tv + (U0 ·∇)v + (v ·∇)U0 + 2Ω × v=−∇π + (ρ/ρ∗) g (2.1)

together with the incompressible condition ∇ · v= 0 for an incompressible fluid, and where π=

p/ρ∗ is the reduced pressure. The density ρ(r, t) is then governed by

∂tρ/ρ∗ +U0 · ∇ρ/ρ∗ = (v · 1z)N2(z)/g(z), (2.2)

where N2(z) = g ·∇(ρ0/ρ∗) is the BV frequency within the Boussinesq approximation. The
background flow has two main effects in the linear theory. First, it is responsible for a shift in
frequency of the wave motions (e.g. see in [43] for a discussion in unbounded fluids). Second,
it can be responsible for the onset of hydrodynamic instabilities. In particular, when U0 is an
elliptical flow [10,11], the so-called elliptical instability could develop [19] and be responsible for
the transition towards a wave turbulence regime [44]. For mathematical simplicity, we assume
U0 = 0 in equations (2.1)-(2.2) to focus on the free wave motions given by

∂tv + 2Ω × v=−∇π −N(z)ξ 1z , ∇ · v= 0, ∂tξ = (v · 1z)N(z), (2.3a–c)

where we have introduced ξ = (ρ/ρ∗) g(z)/N(z). The background flow will be reintroduced in
future work (to investigate the outcome of the elliptical instability).

Finally, equations (2.3a-c) are supplemented with boundary conditions (BCs). We impose that
the fields are regular at r= 0. Then, realistic conditions would be to couple the dynamics inside
the vortex with the exterior flow on ∂V . This would amount to considering continuity conditions
across ∂V , and decaying solutions at infinity (e.g for Rankine [45] or Lamb-Oseen [46] vortices).
For mathematical simplicity, we here neglect the coupling with the exterior fluid and assume that
∂V is a rigid boundary. Consequently, the velocity obeys the no-penetration BC v · n|∂V = 0 on
∂V , where n is the unit (outward) vector normal to the boundary. Without diffusion, no other
physical BCs have to be explicitly enforced in the model. Indeed, the density and pressure BCs
automatically follow from the velocity BC. In practice, the pressure satisfies a mixed BC that is
given by the continuity of the normal component of equation (2.3a) on ∂V (see the ESM).

(b) Mixed hyperbolic-elliptic problem
We seek modal solutions of equations (2.3a-c) given by

[v, π, ξ] (r, t) = [u, Φ, ζ] (r) exp(iωt), (2.4)

where [u, Φ, ζ] are complex-valued amplitudes depending on space, and with ω ∈C. The wave
properties are deeply tied to the nature of the mathematical problem. Instead of solving the
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primitive equations, it is worth considering a master equation that governs the evolution of either
u or Φ. If we multiply Euler equation (2.3a) by iω and replace iωζ by buoyancy equation (2.3c),
we obtain for ω ̸= 0

−ω2u+ 2Ω × (iωu) +N2(z)(u · 1z)1z =−iω∇Φ, ∇ · u= 0, (2.5a,b)

Equations (2.5a,b) and the no-penetration BC u · n|∂V = 0 show that the velocity is an
appropriate variable to explore the wave properties. Note that a similar equation can be obtained
for the fluid particle displacement vector [47]. On the contrary, non-oscillatory modes with ω= 0

require a specific consideration. For unstratified fluids with N = 0, they are called geostrophic
modes because they obey the geostrophic balance 2Ω × u=−∇Φ. When N(z)> 0, the steady
modes are two-dimensional (2D) such that u · 1z = 0, and the density perturbation obeys the
diagnostic equation ρ∗ (2Ω ·∇u) = ∇ζ × 1z (resulting from the thermal wind balance).

Because of historical reasons (dating back to Poincaré [25]), the problem is generally recast into
a scalar equation for the pressure Φ [32,39]. As shown in the ESM, the pressure is governed in V
by a second-order equation whose higher-order terms are given by

[ω2 −N2(z)]∇2Φ+N2(z) (1z ·∇)2 Φ− (2Ω ·∇)2 Φ+ · · ·= 0 (2.6)

when |ω| ≠ ω±(z) with

2ω2
±(z) = [N2(z) + 4|Ω|2]±

√
[N2(z) + 4|Ω|2]2 − 16N2(z)(Ω · 1z)2. (2.7)

The lower-order terms in equation (2.6), which vanish when N is constant, are here omitted for
concision but are given in the ESM. When |ω|= ω±(z), the pressure instead obeys a first-order
equation (see the ESM). Finally, the pressure obeys a mixed BC on ∂V (i.e. neither a pure Dirichlet
nor Neumann BC), which is difficult to take into account for numerical computations. However,
the nature of the mathematical problem can be simply determined from the pressure equation by
using microlocal analysis [48]. This is a branch of mathematics, which studies the solutions of PDE
using (notably) asymptotic geometric techniques. Microlocal tools have already proven useful in
physics to study wave problems [49,50]. In particular, the nature of equation (2.6) is governed
by a scalar quantity that is called the principal symbol. The latter is obtained from the equation
by freezing the variable coefficients and keeping only the highest-degree terms. In practice, it
amounts to transforming the derivatives as ∇↔ ik, where k= (k1, k2, k3)

⊤ is a real-valued
wave vector at the position (x, y, z). The principal symbol is then a homogeneous polynomial in
k, which encapsulates many properties of the spectral problem [37,51]. The problem is elliptic
when the principal symbol is invertible, and hyperbolic when the principal symbol vanishes. The
vanishing condition on the principal symbol gives

|k|2ω2 −
[
N2(z)|1z × k|2 + (2Ω · k)2

]
= 0, (2.8)

which is the dispersion relation of IGWs in unbounded fluids when N is constant [3]. The wave-
like equation is thus hyperbolic when equation (2.8) is satisfied for some non-zero wave vectors
k ∈R3. Otherwise, it is elliptic (except when ω= 0). Next, the bounds for the hyperbolic domain
can be obtained from equation (2.8). The latter defines a quadric cone given by (g⋆)ijkikj = 0

(using Einstein notation) when ω ̸= 0, where g⋆ is the associated metric tensor. The nature of
this quadric cone depends on the eigenvalues of g⋆, which are given by µ0 = ω2 −N2(z) and
µ± = ω2 − ω2

±(z). When the eigenvalues are non-zero and of the same sign, the surface is elliptic.
On the contrary, the surface is hyperbolic when the eigenvalues are non-zero but of different signs.
The above microlocal description agrees with the analysis presented in Section 3 of Friedlander
& Siegmann [32]. The wave-like equation is thus hyperbolic in V when ω−(z)< |ω|<ω+(z),
whereas it is elliptic in V when 0< |ω|<ω−(z) or |ω|>ω+(z).
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(c) Spectral problem for the velocity
Further wave properties can be obtained by considering the velocity equation. We introduce the
Hilbert space V spanned by complex-valued vector fields that are square-integrable in V . The
complex-valued inner product in this Hilbert space is given by

⟨u,v⟩ :=
∫
V
u† · v dV, (2.9)

where † is the complex conjugate. The associated norm is ||u||= ⟨u,u⟩1/2. Then, we denote by
V0 ⊂V the closed subspace that is orthogonal, with respect to inner product (2.9), to the space
spanned by vector fields made of gradients of smooth functions. A smooth element in V0 is
divergenceless and tangent to the boundary [29], that is

V0 := {u∈V | ∇ · u= 0 in V, u · n= 0 on ∂V }. (2.10)

Finally, we introduce the orthogonal projector L from V onto V0 (called Leray projector after [52]).
For any vector e∈V written as e=∇Ψ +∇×A (using a Helmholtz decomposition) for some
potentials [Ψ,A], the projected vector is defined by L(e) := e−∇Ψ . This projector is used in the
mathematical analysis of incompressible flows [53], but also in some numerical studies [54].

Equipped with the above definitions, we can seek solutions of equation (2.5) with u∈V0 in
ellipsoids. We apply the orthogonal projector to the equation to remove the pressure term, and
find that (ω,u) obey a quadratic eigenvalue problem (QEP). The latter is given by

Qω(u) = 0, Qω :=−ω2I + ωiC +K, (2.11a,b)

where I is the identity operator, and with the two operators

iC(u) := iL[2Ω × u], K(u) :=L[N2(z)(u · 1z)1z ]. (2.12a,b)

The operator iC, called the Poincaré operator [40], is a bounded self-adjoint operator in V0 [29].
The buoyancy operator K has properties given by Proposition 2.1.

Proposition 2.1. The operator K is bounded, self-adjoint and positive in V0.

Proof. We must show that K is symmetric, bounded, and positive in V0. We verify that K is
symmetric since ⟨a,K(b)⟩= ⟨K(a), b⟩ for any (a, b)∈V0 ×V0. Moreover, we have

||K(u)||2 = ⟨K(u), N2(u · 1z)1z⟩ − ⟨K(u),∇Φ⟩= ⟨K(u), N2(u · 1z)1z⟩

since ⟨K(u),∇Φ⟩= 0 using the definition of L. Using Cauchy-Schwarz inequality, we then
obtain ||K(u)||2 ≤ ||K(u)|| ||N2(u · 1z)1z || ≤max(N2)||K(u)|| ||u||, showing that K is bounded.
Finally, K is positive because ⟨u,K(u)⟩ ≥ 0 if N2 ≥ 0. ■

We want to characterise the spectrum σ of the quadratic spectral form Qω in ellipsoids, which
is the set of complex numbers ω for which Qω is not continuously invertible. Actually, the spectral
problem Qω(u) = 0 can be converted into a standard eigenvalue problem (SEP) for a bounded
self-adjoint operator in V0 ×V0.

Proof. This is a general result for spectral families of the form Qω :=−ω2 + ωA+B acting on a
Hilbert space H, where [A,B] are bounded self-adjoint operators and with B≥ 0 [55,56]. When
ω ̸= 0, the QEP Qω(u) = 0 can be recast as a SEP for the operators L or T given by

L :=

(
0 I
B A

)
, T :=

(
A B1/2

B1/2 0

)
, (2.13a,b)

which are both acting on the Hilbert space H×H equipped with the inner product ⟨⟨z, ζ⟩⟩=
⟨z1, ζ1⟩+ ⟨z2, ζ2⟩ with z = (z1,z2)

⊤ and ζ = (ζ1, ζ2)
⊤. Here, T is a bounded self-adjoint

operator (where B1/2 is the square root of B, which is also self-adjoint [57]), whereas L has
no particular symmetries. The spectra of Qω , L and T are identical outside ω= 0. ■
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The spectrum σ(Qω) is thus the disjoint union of the point spectrum given by

σP (Qω) := {ω ∈C | ∃u ̸= 0 Qω(u) = 0}, (2.14)

which is the subset spanned by the eigenvalues of QEP (2.11), and the remaining continuous
spectrum (i.e. the set of ω for which T − ωI is injective and has a dense range, but is not
surjective). This mathematical distinction is of direct physical interest to IGMs. Indeed, the
point spectrum is associated with (regular) square-integrable eigenvectors in diffusionless fluids.
On the contrary, a non-empty continuous spectrum is often characterised by (almost) periodic
attracting trajectories obtained from ray tracing techniques [37]. These geometrical structures,
called attractors [37], are associated with nearly singular (i.e. non-square-integrable) velocity
fields when diffusion is vanishingly small [58]. Given the symmetries of the different operators,
some general properties of the spectrum are given in Proposition 2.2.

Proposition 2.2. The spectrum of QEP (2.11) is real-valued and even. Moreover, the spectrum is bounded
by |ω| ≤ ωmax with ωmax ≤Ωs +

√
Ω2

s +max(N2). Finally, two eigen-pairs (ω1,u1) and (ω2,u2)

with ω1 ̸= ω2 are not orthogonal with respect to inner product (2.9), but satisfy the two integral properties

ω1ω2⟨u2,u1⟩=−⟨u2,K(u1)⟩, (ω2 + ω1)⟨u2,u1⟩= ⟨u2, iC(u1)⟩. (2.15a,b)

Proof. ω ∈R result from the fact that the operator T defined in equation (2.13b) is self-adjoint
when K≥ 0. Then, the complex-conjugate of QEP (2.11) gives

−ω2u† − ωiC(u†) +K(u†) = 0,

which shows that (−ω,u†) is an eigen-pair of the QEP. The upper bound of ωmax can be obtained
using a min-max principle [55]. Finally, the orthogonality conditions can be found using vector
manipulations of the QEP [59]. ■

3. Ellipsoidal model for a constant BV frequency
We now simplify the general model to consider an idealised configuration of geophysical vortices.
To get physical insight into the problem, it is useful to consider a shape that is amenable to
mathematical analysis. For simplicity, we assume that the boundary ∂V is a triaxial ellipsoid
of semi-axes [a, b, c], where the c−axis is aligned with gravity (figure 2b). The use of ellipsoids
has a long-standing history in the study of geophysical vortices [14], and is supported by
recent fluid dynamic experiments [10,11]. In the rotating frame, the boundary is expressed using
the Cartesian coordinates as F (x, y, z) = 1 with F (x, y, z) := (x/a)2 + (y/b)2 + (z/c)2, such that
the unit normal is n := ∇F/||∇F ||. Moreover, geophysical vortices with N ≫ 2Ωs are usually
strongly flattened with a, b≫ c (e.g. Jupiter’s GRS is expected to have a depth of only a few
hundreds of km [11]). In such vortices, the ambient gravity is expected to weakly varies with
depth. Thus, we also assume that g=−g1z is uniform and consider a background density
ρ∗ + ρ0(z) that varies linearly with z as

ρ0(z)/ρ∗ =−(N2/g) z, (3.1)

where N is a constant BV frequency. With these assumptions, the eigensolutions can be
characterised using finite-dimensional arguments in ellipsoids.

(a) Polynomial description
Since an ellipsoid is a quadratic surface and expression (3.1) is a polynomial, we can seek
eigenvectors using polynomial functions in the Cartesian coordinates. We denote by Pn :R3 →C
the space spanned by the scalar Cartesian monomials xiyjzk of degree i+ j + k smaller or equal
to n with n≥ 1. Its dimension is N(Pn) = (n+ 1)(n+ 2)(n+ 3)/6. Then, we denote by Vn the
space of vectors in ellipsoids with coefficients in Pn and define the subspace V0

n :=Vn ∩V0
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of dimension N(V0
n) = n(n+ 1)(2n+ 7)/6, whose elements are divergenceless vector fields

that are tangent to the boundary ∂V . Finally, we introduce the subspaces W0
n := (V0

n−1)
⊥ ∩

V0
n of dimension N(W0

n) = n(n+ 2), which are spanned by vectors in V0
n of degree n that

are orthogonal to polynomial vectors of degree ≤ n− 1. These polynomial spaces are key to
characterise the spectrum because of Proposition 3.1.

Proposition 3.1. The spaces V0
n with n≥ 1 are invariant by the action of C and K in triaxial ellipsoids,

that is C|V0
n
⊆V0

n and K|V0
n
⊆V0

n.

Proof. The invariance of V0
n under the action of C has been demonstrated elsewhere [29,40]. Here,

we can use similar arguments to show that it is invariant by the action of K. Briefly, we must
prove that the Leray projector L is well-defined on V0

n. This is ensured by Theorem 2.4 in [60],
which shows that there is a unique scalar Ψ ∈Pn+1 in the definition of L. ■

We deduce from Proposition 3.1 that V0
n is invariant by the action of Qω . Moreover, since

⊕n∈N∗V0
n is dense in V0 [40], it shows that σ(Qω) is pure point in ellipsoids (i.e. σ= σP ). The

continuous spectrum is thus empty, and equation (2.5) admits square-integrable eigenvectors in
V0

n. From a physical viewpoint, an empty continuous spectrum means that there are no singular
velocity fields associated with wave attractors. This is a difference with other geometries, in which
wave attractors can exist even when N is constant (e.g. in a trapezoid [36]). However, this does
not preclude the existence of (almost) periodic wave trajectories using ray tracing techniques.
The classical example is the pure inertial wave problem within a sphere. Periodic trajectories
have been found in this geometry using ray theory [61] but, since the continuous spectrum is also
empty in a full sphere [29,62], these structures are not associated with singular global modes for
vanishingly small diffusion. Here, because the spectrum is pure point, we can solve the eigenvalue
problem by restricting u to V0

n in ellipsoids.

(b) Galerkin algorithm
An accurate numerical description can be developed by seeking u∈V0

n as u=
∑

j≥1 αjej , where
{αj}j≥1 are complex-valued coefficients, and {ej}j≥1 are real-valued basis vector elements of
V0

n [63] normalised such that ||ej ||= 1. Then, we substitute the above expansion into the QEP
Qω(u) = 0, and project the entire equation on every ei using inner-product (2.9) to cancel out the
spatial dependence (Galerkin method [63]). This gives the finite-dimensional QEP(

−ω2Mn + ωiCn +Kn

)
α= 0 (3.2)

where α= (α1, α2, . . . )
⊤ is the eigenvector, and where [Mn,Cn,Kn] are three real-valued

matrices of size N(V0
n)×N(V0

n) and of elements Mn,ij = ⟨ei, ej⟩, Cn,ij = ⟨ei, 2Ω × ej⟩ and
Kn,ij = ⟨ei, N2(ej · 1z)1z⟩. The matrix Mn is positive definite but non-diagonal (because the
chosen basis elements are not mutually orthogonal by construction in triaxial ellipsoids [63]).
The matrix Cn is antisymmetric, and Kn is a real-valued positive matrix. Further properties of
[Cn,Kn] are given below in Proposition 3.2.

Proposition 3.2. dim(kerCn) = ⌈n/2⌉ and dim(kerKn) = n(n+ 1)(n+ 2)/6.

Proof. WhenN = 0, ker(Cn) is associated with geostrophic modes of degree n. Its dimension was
proved in [40]. When N ̸= 0, ker(Kn) is associated with 2D motions such that u · 1z = 0. The
latter can be sought as u=∇× (Ψ1z) where Ψ = p[1− F (x, y, z)] is a stream function and with
p∈Pn−1. The dimension of ker(Kn) is thus dim(Pn−1) = n(n+ 1)(n+ 2)/6. ■

For numerical convenience, we convert the finite-dimensional QEP into an equivalent finite-
dimensional SEP when ω ̸= 0. The finite-dimensional counterpart of the self-adjoint operator
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Figure 3. Sparse upper triangular block matrices An (left) and Bn (right) for n= 5 and 1Ω = 1z .

defined in equation (2.13b) is not well suited for numerical computations (because of the square
root). Instead, we consider the SEP Lnz = ωz with z = (α,β)⊤ and the matrix Ln given by

Ln :=

(
0 I

Bn iAn

)
, An :=M−1

n Cn, Bn :=M−1
n Kn, (3.3a–c)

where I is the identity matrix. As illustrated in figure 3, the matrices An and Bn are sparse and
have an upper triangular block structure (which directly results from Proposition 3.1). It has a
practical consequence in the unstratified case N = 0. The eigenvalues of the pure inertial modes,
given by Anα= ωα, can indeed be computed separately for every space W0

n by seeking the
eigenvalues of every diagonal block of An. Yet, since the matrix Ln has not an upper triangular
block structure, we cannot compute separately the eigenvalues for every degree n when N ̸= 0.

We have modified the bespoke numerical code SHINE, initially developed for compressible
fluids [64,65], to implement the above algorithm for Boussinesq fluids. The matrices
[Mn,Cn,Kn] are first built analytically. Since the basis vector elements are not mutually
orthogonal in an ellipsoid [63], the matrices become numerically ill-conditioned when the
polynomial degree is large. Hence, we perform the computations using extended-precision
algorithms. We can illustrate the Galerkin algorithm by considering the six polynomial solutions
u∈V0

1. The latter are sought in the form of uniform-vorticity flows as [42]

u=α× r +∇ψ, ψ= αx
c2 − b2

b2 + c2
yz + αy

a2 − c2

a2 + c2
xz + αz

b2 − a2

a2 + b2
xy, (3.4a–b)

and with α= (αx, αy, αz)
⊤. Next, the block matrices of L1 are given by

B1 =


N2c2

b2 + c2
0 0

0
N2c2

a2 + c2
0

0 0 0

 , A1 =


0 − 2Ωza

2

a2 + c2
2Ωya

2

a2 + b2

2Ωzb
2

b2 + c2
0 − 2Ωxb

2

a2 + b2

− 2Ωyc
2

b2+c2
2Ωxc

2

a2 + c2
0

 , (3.5a,b)

and with Ω = (Ωx, Ωy, Ωz)
⊤. Finally, the eigenvalue-eigenvector solutions of L1 can be solved

analytically to extend the linear solutions obtained by Vantieghem [27] when N = 0 and 1Ω = 1z .
However, we must rely on numerical computations to obtain Ln for higher degrees n.
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(c) Enumeration of the eigenvalues
We can explicitly count the number of non-zero and zero eigenvalues of the QEP when u∈V0

n.
Since the spectra of the primitive equations, the one of Qω and the one of L are identical when
ω ̸= 0, their finite-dimensional counterparts have the same number of non-zero eigenvalues.

Proposition 3.3. The number of non-zero eigenvalues of QEP (3.2) is n(n+ 1)(n+ 5)/3.

Proof. The number of non-zero eigenvalues can be estimated from the primitive equations

iωu+ 2Ω × u=−∇π − ζN1z , ∇ · u= 0, iωζ = (u · 1z)N.

Solutions of the latter equations belong to the space spanned by u∈V0
n and ζ ∈Pn, whose

dimension is N(V0
n) +N(Pn) = (n+ 1)(n2 + 4n+ 2)/2. Next, we count the number of zero

eigenvalues. From the density equation, we deduce that ω= 0 is associated with 2D flows such
that u · 1z = 0. Such 2D flows u∈V0

n can be sought as u=∇× (Ψ1z) where Ψ = p[1− F (x, y, z)]

is a stream function and with p∈Pn−1. Assuming that Ω = (Ωx, Ωy, Ωz)
⊤, we obtain 2Ωz∂xΨ =

−∂xπ and 2Ωz∂yΨ =−∂yπ from the horizontal components of the momentum equation. Then,
we deduce that π=−2ΩzΨ + h(z), where h(z) is an arbitrary polynomial function of z and
of degree n+ 1 (with n≥ 1). Finally, the density perturbation is obtained from the vertical
component of the momentum equation, which gives ζN = 2(Ωy∂yΨ +Ωx∂xΨ)− ∂zπ. Thus, ω=

0 is associated with an eigenspace of dimension dim(Pn−1) + (n+ 1) = (n+ 1)(n2 + 2n+ 6)/6.
Therefore, the number of non-zero eigenvalues is given by n(n+ 1)(n+ 5)/3. ■

Equipped with Proposition 3.3, we can enumerate the zero eigenvalues of the matrix Ln,
which has 2N(V0

n) eigenvalues. Hence, the algebraic multiplicity of the zero eigenvalue ω= 0

is given by n(n+ 1)(n+ 2)/3. However, ω= 0 is not only associated with standard eigenvectors.
The geometric multiplicity mL of ω= 0 is the dimension of kerLn. The null space of the equation
Ln(α,β)

⊤ = 0 is spanned by the vector elements such that β= 0 and Knα= 0. Therefore, we
have kerLn =kerKn

⊕
{0} and ω= 0 has the geometric multiplicity mL = n(n+ 1)(n+ 2)/6

according to Proposition 3.2. However, since Ln is not Hermitian, the eigenvalue ω= 0 has an
algebraic multiplicity rL >mL. The missing rL −mL = n(n+ 1)(n+ 2)/6 polynomial solutions
are associated with generalized eigenvectors, which belong to ker(L2

n).

Proposition 3.4. The eigenvalue ω= 0 of the matrix Ln has the geometric multiplicity mL =

n(n+ 1)(n+ 2)/6, and the algebraic multiplicity rL = 2mL (because of generalized eigenvectors).

The vector space associated with ω= 0 is thus partly spanned by generalized eigenvectors,
which here satisfy Lnz ̸= 0 and L2

nz = 0. Back in the temporal domain, they correspond to
solutions that are not steady but linear in t. However, these admissible solutions are mathematical
artefacts due to the formulation of the quadratic problem in terms of the matrix Ln. Indeed, QEP
(3.2) can be converted into an equivalent self-ajoint SEP [59], which is the finite-dimensional
counterpart of the self-adjoint operator defined in equation (2.13b). This shows that, from a
physical viewpoint, ω= 0 is only associated with standard eigenvectors. Therefore, we will not
further elaborate on the (artificial) generalized eigenvectors of Ln below. Following our prior
investigation of the non-stratified problem [40], we can combine polynomial computations for
fixed values of n and spectral theory for n→∞ to study the eigensolutions in ellipsoids.

4. Point spectrum in ellipsoids
We have shown that σ(Qω) is pure point in ellipsoids when N is constant. For this configuration,
we can further characterise the eigensolutions. In particular, the spectrum can be divided into
two subsets. If an eigenvalue is isolated in the spectrum and of finite multiplicity (when n→∞),
it belongs to the discrete spectrum σD . Otherwise, it belongs to the essential spectrum σE := σ\σD
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Low-frequency (surface) modes
Inertial-Gravity Modes (IGMs)

Figure 4. Sketch of the bounded pure point spectrum in triaxial ellipsoids (not to scale) when N is constant. The spectrum

is symmetric with respect to 0 and bounded by |ω| ≤ ω+ (Proposition 4.1). The velocity equation is either hyperbolic or

elliptic in volume. The spectrum is spanned by IGMs and low-frequency (surface) modes.

(i.e. the complement to the discrete spectrum). Since ⊕n∈N∗V0
n is dense in V0, we conclude from

Proposition 3.4 that the eigenvalue ω= 0 has an infinite multiplicity when n→ ∞ (i.e. ω= 0

belongs to σE). Now, it remains to characterise the other eigensolutions.
When N is constant, the frequencies ω± defined in equation (2.7) are constant in the volume.

Moreover, it is possible to find a better estimate of ωmax (compared to the one given in Proposition
2.2). In the aligned case, it was shown in [39] that ωmax = ω+ with ω+ =max(N, 2Ωs) . Thus, σ3
is empty in ellipsoids when Ω and 1z are collinear. We also show below in Proposition 4.1 that
ωmax = ω+, even when Ω and 1z are not collinear.

Proposition 4.1. When N is constant, the pure point spectrum is bounded by ω+ in an ellipsoid.

Proof. We introduce the projector operator P acting on a pair z = (u, ζ)⊤ by P(z) := (Lu, ζ)⊤,
where L is the Leray projector introduced in §2. Then, we can reformulate the spectral problem
as the spectral properties of the linear operator P defined by P(z) := P(EP(z)) with

E = i


0 −2Ω3 2Ω2 0

2Ω3 0 −2Ω1 0

−2Ω2 2Ω1 0 N

0 0 −N 0

 .

P is a self-adjoint operator for square-integrable fields. We have ||P||= 1, and the eigenvalues of
the Hermitian matrix E are ±ω± such that ||E|| ≤ ω+. Thus, the spectrum is bounded by ω+. ■

Therefore, we can divide the allowable frequency range into disjoint intervals with I1 =

[−ω+,−ω−] ∪ [ω−, ω+] and I2 =]− ω−, ω−[ \ {0}. The velocity equation is hyperbolic in V when
ω ∈ I1, and elliptic in V when ω ∈ I2. We also define the associated spectra σi = σP ∩ Ii for
i= {1, 2} and, when u is restricted to V0

n, the subsets are denoted by [σ1,n, σ2,n] such that
σi,n−1 ⊆ σi,n. In unbounded fluids, a continuum of IGWs exists with angular frequencies ω ∈ I1
given by dispersion relation (2.8). We will show below that the spectrum σ1 ⊂ σE is dense in
I1 within ellipsoids. On the contrary, σ2 is known to be empty in unbounded fluids (which
agrees with prior experimental observations [66]). This is consistent with the fact that the velocity
satisfies an elliptic-type equation when ω ∈ I2 (i.e. plane-wave solutions are evanescent in these
intervals). Yet, a countable number of eigenfrequencies can exist in some bounded geometries
when |ω|<ω− [38,39]. The eigensolutions with ω ∈ σ1 are referred as class-I solutions, and those
with ω ∈ σ2 are called class-II solutions in [38,39]. We describe the two spectra below.

(a) Low-frequency (surface) modes

(i) Illustrative examples

Contrary to the free-space case, it is known that σ2 is not empty when Ω ∝ 1z in some bounded
geometries (e.g. in cylinders or spheres [21,39]). In triaxial ellipsoids, we can also show that σ2 ̸= ∅
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Figure 5. Spectrum σ2 in the aligned case 1Ω = 1z . (a) Eigenvalues ω3,5 ≥ 0 in σ1,1 for a sphere with b/a= c/a= 1

(solid purple curves) and an ellipsoid with b/a= 0.7 and c/a= 0.1 (dashed olive curves). Red region shows σ2 in which

the problem is hyperbolic. (b) Number of eigenvalues in σ1,n for a sphere (b/a= c/a= 1) and a flattened ellipsoid

(b/a= 0.7 and c/a= 0.1). Colour bar shows the value of N/Ωs.

when Ω · 1z ̸= 0 (otherwise, ω− = 0 and σ1 fills the entire interval 0< |ω|<ω+). To this end,
we first consider the eigenvalues for u∈V0

1, which are the roots of the characteristic equation
det(L1 − ωI) = 0. The six roots ωj of the characteristic polynomial are the two degenerate
solutions ω1,2 = 0 and the four solutions

ω3,4 =±

√
β4
2∆

+

√
(β4/∆)2 − 4β2/∆

2
, ω5,6 =±

√
β4
2∆

−
√

(β4/∆)2 − 4β2/∆

2
, (4.1a–b)

where we have introduced the positive coefficients

β4 =N2c2(a2 + b2)(a2 + b2 + 2c2) + 4Ω2
xb

2c2(b2 + c2) + 4Ω2
ya

2c2(a2 + c2) + 4Ω2
za

2b2(a2 + b2),

β2 = c4N2[4(Ω2
xb

2 +Ω2
ya

2) +N2(a2 + b2)],

∆= a4b2 + a4c2 + a2b4 + 2a2b2c2 + a2c4 + b4c2 + b2c4.

The only non-zero solutions in the non-stratified caseN = 0 are ω3,4 =±
√
β4/∆, which reduce to

the eigenvalues of the pure inertial modes in V0
1 obtained by Vantieghem [27] whenΩx =Ωy = 0.

Solutions (4.1) are illustrated in figure 5(a) for a sphere and a flattened (triaxial) ellipsoid. Several
points are worth commenting on in the figure. First, ω3 and ω5 smoothly vary as a function of N .
We observe that ω3 ∈ σ1,1 for any value of N but, on the contrary, ω5 can either belong to σ1,1 or
σ2,1 when N is varied. For instance, the transition occurs here at N/Ωs > 4 in a sphere and at a
much larger value N/Ωs ≳ 25 in the pancake-like ellipsoid.

Next, we show in figure 5(b) the evolution of dim(σ2,n) as a function of n for some illustrative
cases. We see that we have always σ2,n ̸= ∅ for a sufficiently large degree n, and that dim(σ2,n)

increases when n is increased. This suggests that σ2 has an infinite (but countable) number of
eigenvalues when n→∞. However, dim(σ2,n) is found to strongly depend on the geometry
and the value of N/Ωs. More specifically, dim(σ2,n) is reduced when N is increased, but the
variation is more pronounced in the sphere than in pancake-like ellipsoids with c/a≪ 1. Finally,
the number of eigenvalues seems to be bounded by n(n+ 1), which corresponds to the number
of spherical harmonics Ym

l of degree 2≤ l≤ n+ 1 and order 0< |m|< l. This shows that σ2 is
related to solid (spherical) harmonics.

Further insight into the link between σ2 and the theory of spherical harmonics can be gained
by considering the aligned case 1Ω = 1z withN = 2Ωs. For this particular configuration, we have
ω− = ω+ from equation (2.7). Then, pressure equation (2.6) and its associated BC for eigenvalues
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Figure 6. Spatial structure of the low-frequency (surface) modes for u∈V0
10 in the aligned case 1Ω = 1z as a function

of N/Ωs, in a flattened ellipsoid with b/a= 1 and c/a= 0.1. Meridional view of the absolute value of the normalised

density perturbation |ζ| (in logarithmic scale) in the (Oxz) plane (with rescaled axes to have a 1:1 ratio).

ω ∈ σ2 reduce to

∇2Φ= 0, n ·∇Φ=− 1

iω
(2Ω × n) ·∇Φ on ∂V . (4.2a,b)

Laplace equation (4.2a) can then be solved using harmonic functions in spherical or ellipsoidal
geometries, and the eigenvalues ω are the roots of a transcendental equation obtained from
BC (4.2b). In a sphere, the pressure associated with u∈V0

n is given in spherical coordinates
(r, θ, ϕ) by the solid harmonics Φ(r) = rlYm

l (θ, ϕ) with ω=±2Ωsm/l, where Ym
l is the spherical

harmonic of degree l≤ n+ 1 and azimuthal order m< l. The modes with m> 0 have a negative
frequency ω < 0 when Ωs > 0 (respectively positive ω > 0 if m< 0). Given our phase convention
∝ exp[i(ωt+mϕ)], these modes have a positive azimuthal phase velocity cϕ =−ω/m> 0 when
Ωs > 0 (i.e. prograde direction). The explicit solutions show that the spectrum σ2,n is here
isomorph to the set of rational numbers Q, such that dim(σ2,n) = n(n+ 1) in this case. Moreover,
it can explicitly be shown that there is a one-to-one correspondence between the solutions in the
sphere and those in the ellipsoid for this specific configuration [39]. Since Q is dense in R, σ2
belongs to the essential spectrum σE when 1Ω = 1z and N = 2Ωs.

(ii) General properties

The above examples strongly suggest that σ2 ⊂ σE . This can be shown by further looking at
the pressure problem. Assuming that |ω| ≠ ω±, the pressure is governed by a boundary-value
problem given by equation (2.6) in V and a mixed-type BC on ∂V . This boundary-value scalar
problem is elliptic if the equation is elliptic in V (which occurs here when 0< |ω|<ω−), but
also if some invertibility conditions are satisfied by the BC on ∂V [48] (see the ESM). If both
requirements were met in V and everywhere on ∂V in a given interval [ω1, ω2], then the spectrum
would be discrete in this interval (see the ESM). Otherwise, the spectrum would be essential in
such an interval. Here, we can prove that σ2 belongs to the essential spectrum in an ellipsoid
when Ω and 1z are aligned (see the ESM). We also conjecture that σ2 ∈ σE in the misaligned case.
Because the spectrum is pure point in ellipsoids, an infinite number of modes would thus exist
with 0< |ω|<ω− when n→∞.

Finally, we explore the properties of the corresponding eigenvectors. We remind the reader
that these modes only exist when ω− ̸= 0. Otherwise, pure inertial modes (when N = 0), pure
internal (gravity) modes (when Ω = 0) or pure IGMs (when Ω · 1z = 0) fill the entire interval
0< |ω|<ω+. Two modal families are shown in figure 6. When N/Ωs ≤ 2, the energy of the
lowest-frequency modes with |ω| → 0 is nearly aligned with the rotation axis. This structure is
reminiscent of geostrophic modes without stratification, and fully agrees with asymptotic analysis
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Figure 7. Spatial structure of IGMs for u∈V0
10 in the aligned case 1Ω = 1z as a function of N/Ωs, in a flattened

ellipsoid with b/a= 1 and c/a= 0.1. Meridional view of the absolute value of the normalised density perturbation |ζ| (in

logarithmic scale) in the (Oxz) plane (with rescaled axes to have a 1:1 ratio).

when N/Ωs ≪ 1. As investigated by Allen [38] when Ω ∝ 1z , these modes appear because a
weak stratification imposes some spatial restrictions on the steady geostrophic modes without
stratification. The modes are nearly z−independent throughout the fluid (at the leading order),
and have a phase travelling in the prograde direction. Note that this origin seems similar to the
appearance of low-frequency Rossby modes in a volume V without closed geostrophic contours
[2]. On the contrary, the higher-frequency modes with |ω|≲ ω− have an energy that is maximum
near the boundary and decays more or less significantly away from the boundary. These low-
frequency (surface) modes seem similar to the (trapped) Kelvin waves in shallow-water models
[67]. Indeed, as for the Kelvin waves, the wave energy of these low-frequency (surface) modes
is mainly trapped near the boundary and decays away from ∂V (see figure 6). Therefore, the
presence of a boundary introduces a new subset of low-frequency (surface) modes in a rotating
stratified fluid (which differ from the higher-frequency IGMs).

(b) High-frequency IGMs
We investigate IGMs with angular frequencies belonging to σ1. A few illustrative modes are
shown in figure 7. IGMs are mainly inertial modes modified by gravity when N ≪ 2Ωs, whereas
they are gravity modes more or less affected by rotation when N ≫ 2Ωs. In between these
two limits, rotation and stratification can have competing effects. Moreover, some of their
characteristics are directly controlled by the dispersion relation of IGWs. For example, the modes
exhibit a pancake-like structure when ω/Ωs → 2 and 1Ω = 1z . From dispersion relation (2.8),
the angle ϑ between 1z and k is such that ϑ→ 0 when ω/Ωs → 2. Since the group velocity is
orthogonal to k for IGWs [3], the energy propagates in the horizontal direction (in agreement
with the observed pancake-like structure). On the contrary, we have θ→ π/2 for high-frequency
IGWs with ω→N , such that the energy varies in the vertical direction. IGMs with ω ∈ σ1 are thus
the direct counterparts in ellipsoids of IGWs in unbounded fluids.

Such as IGWs without boundaries, IGMs are dense in this frequency interval when n→∞.
Yet, the eigenfrequencies are likely not equiprobable within this interval in ellipsoids. The
frequency density is worth obtaining for physical applications, since it will strongly constrain
the likelihood of obtaining (resonant) IGMs at a given frequency in geophysical vortices. The
asymptotic density of the eigenvalues in σ1 can be obtained using mathematical analysis when
n→∞, and then compared to the density obtained from the polynomial computations at fixed
values of n. We define the probability measure πn of the eigenvalues {ωj} of Qω|W0

n
given by
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Figure 8. Density of IGMs in σ1. Comparison between asymptotic density dπ∞/dω given in Proposition 4.2 and σ2,35

obtained from polynomial computations. Left : Flattened ellipsoid b/a= 1 and c/a= 0.1 in the aligned case 1Ω = 1z

with N/Ωs = 5. Right : Sphere b/a= c/a= 1 in the perpendicular case 1Ω · 1z = 0 with N/Ωs = 10.

πn := (1/dn)
∑dn

j=1 δ(ωj) with dn = 2N(W0
n), where δ is the Dirac function. As explained above,

the eigenvalues of SEP (3.3) cannot be easily separated in different subsets for every degree n.
Therefore, we rather consider the joint repartition of the eigenvalues of Qω|V0

n
. Naturally, the

two repartitions have the same asymptotic distribution when n→∞. Asymptotic properties of
the essential spectrum of PDEs can generally be investigated using microlocal analysis. Such an
approach usually neglects the boundary effects but, here, it is possible to account for them while
keeping a microlocal description. The asymptotic behaviour is given in Proposition 4.2.

Proposition 4.2. The measure πn converges weakly to the asymptotic measure π∞ when n→∞. The
asymptotic measure is characterised by a cumulative distribution function given by∫λ

−∞
dπ∞ =

1

8π
Area(Sλ ∩ S2)

where S2 is the surface of the unit sphere, Sλ is the surface in R3 defined by

Sλ := {k̃ ∈R3 | ω(k̃)≤ λ}, k̃= (
√
A1kx,

√
A2ky,

√
A3kz)

⊤,

with A1 = 1/a2, A2 = 1/b2 and A3 = 1/c2, and where ω(k̃) is the plane-wave dispersion relation given
by equation (2.8) for the rescaled wave vector k̃. Hence, the asymptotic measure has a probability density
function f∞ := dπ∞/dω that is even and non-vanishing when ω2

− ≤ ω2 ≤ ω2
+.

Proof. This is the most technical part of the paper. The proof closely follows the strategy presented
in Colin de Verdière & Vidal [40] for the non-stratified problem, so we only outline the key
steps below. The proof can be extended to matrix operators that only involve pseudo-differential
operators of degree 0. This condition is not satisfied by the operator T defined in equation (2.13b).
Thus, the starting point is to consider the matrix operator L defined in equation (2.13a). The fact
that this operator is not self-adjoint is not a problem in the analysis (i.e. in the trace formula).
Then, we apply the tools of microlocal analysis in the presence of boundary effects. They allow
us to get the asymptotics of

∑dn
j=1 f(ωj) when n→∞ for any function f ∈C0(R \ 0) (i.e. the

set of real-valued continuous functions vanishing near zero). The analysis heavily relies on the
principal symbol of the operator L when ω ̸= 0. This gives the asymptotic measure in the interval
I1 (where the velocity equation is hyperbolic). Note that we avoid the value ω= 0 because kerL
is not clearly related to the steady solutions of the original physical problem (due to the existence
of generalized eigenvectors). ■
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Figure 9. Asymptotic density dπ∞/dω̃ of IGMs with normalised eigenvalues ω̃ := ω/ω+, given by Proposition 4.2. Left :

Sphere b/a= c/a= 1 in the aligned case 1Ω = 1z . Right : Axisymmetric ellipsoids with b/a= 1 and varying c/a ratios.

Top panel computed for N/Ωs = 0.5, and bottom one for N/Ωs = 5.

Proposition 4.2 shows that σ1 is dense in I1 when n→∞. Next, we compare in figure 8 the
asymptotic density with the density obtained from polynomial computations at a fixed degree
n= 35. The asymptotic density is normalised such that

∫∞
−∞ dπ∞ = 1 but, since Proposition 4.2

heavily relies on the dispersion relation of IGWs, it is assumed that dπ∞/dω= 0 when ω ∈ I2. To
have a correct comparison, we have thus removed the spectra σ2,n before normalising the density.
An excellent agreement is then obtained with the asymptotic density (even for the moderate
polynomial degree n= 35 considered here). We have also represented a particular configuration
for which 1Ω · 1z = 0, such that ω− = 0 from expression (2.7). In this case, IGMs are dense in
the entire interval ]0, ω+[. Note that a similar agreement is found for other configurations (not
shown). Hence, Proposition 4.2 can be used to obtain the density of σ1.

The asymptotic behaviour is further illustrated in figure 9 for different parameters and
geometries. The density of pure inertial modes is known to be uniform within the frequency
interval ]− 2Ωs, 2Ωs[ for a sphere [40]. Yet, the density of pure internal gravity modes without
rotation is not uniform in the sphere (it is larger for the high-frequency modes than for the low-
frequency modes). Between these two limits, the density is very close to the non-rotating case
when N/Ωs ≫ 1. On the contrary, the density of the high-frequency IGMs with |ω|/ωmax → 1

approaches the density of the non-stratified modes when N/Ωs ≤ 2. We also observe that the
geometry does modify the spectral density. When N/Ωs < 2, the density is maximal near |ω| →
ω− in elongated (i.e. prolate) ellipsoids with c/a≫ 1, whereas it is maximal near |ω| → ω+ in
flattened (i.e. oblate) ellipsoids with c/a≪ 1. Instead, low-frequency IGMs with |ω| → ω− are
favoured in flattened ellipsoids when N/Ωs > 2.

Finally, the situation ω+ = ω− occurring when 1Ω = 1z and N/Ωs = 2 deserves a specific
consideration. The spectrum σ1 is then reduced to the degenerate eigenvalue ω/Ωs =±2, whose
multiplicity can be determined. Indeed, we know that dim(σ2,n) = n(n+ 1) from the explicit
solutions of equations (4.2a,b). Because the total number of non-zero eigenvalues is fixed for a
degree n (Proposition 3.3), we have dim(σ1,n) = n(n+ 1)(n+ 2)/3 when ω+ = ω−.

5. Physical discussion
The idealised model with a constant N has allowed us to identify the key properties of the
bounded oscillations in rotating stratified ellipsoids. Next, physical insight into geophysical
vortices could be obtained by plugging realistic parameters into the model. Typical geophysical
estimates for some large-scale vortices are given in table 1. These vortices are strongly stratified



17

royalsocietypublishing.org/journal/rspa
P

roc.
R

.S
oc.

A
...........................................................

Table 1. Typical estimates for some Jovian vortices and Mediterranean eddies (obtained from [10,11]). Rotation is usually

described using the f−plane approximation with the Coriolis parameter f = 2Ω · 1z = 2Ωz cos(θ), where θ the mean

colatitude of the vortex (figure 2).

f [rad.s−1] N/f a [km] b [km] c [km]

Jupiter’s GRS ∼ 1.4× 10−4 O(102) ∼ 9000 ∼ 5000 ∼ 100

Jupiter’s Oval BA ∼ 1.9× 10−4 O(102) ∼ 3000 ∼ 3000 ∼ 50

Mediterranean eddies ∼ 8.5× 10−5 10− 50 10− 102 10− 102 0.5− 1

with N/Ωs ≫ 1 and, consequently, they usually have a very small aspect ratio c/a≤ 10−2.
However, the value of N is still subject to strong uncertainties. Indeed, the remote determination
of the ellipsoidal geometry is only sensitive to the difference between the BV frequency within
the vortex and that of the ambient fluid [9–11]. The detection of IGWs (or IGMs) might be another
way to estimate the internal stratification of such vortices. Various mechanisms could indeed
excite such wave motions within a vortex (e.g. as interactions with the surrounding fluid, or bulk
turbulence [68]). The bounds given by formula (2.7), which depend on the orientation of Ω and
on the ratio N/Ωs, can be simplified in the relevant regime N/Ωs ≫ 1. It gives

ω2
+ ≃N2 + 4

[
|Ω|2 − (Ω · 1z)2

]
, ω2

− ≃ 4|Ω · 1z |2. (5.1a,b)

We see that the upper bound approaches ω2
+ →N2 for realistic valuesN/Ωs ≫ 1. Detecting IGMs

within a vortex may thus yield an estimate of the vortex’s stratification.
A striking property of the global modes is that they admit, under our assumptions, polynomial

solutions. This behaviour directly results from Proposition 3.1, and IGMs in other configurations
can be very different. To illustrate this point, we consider a sphere of radius R that is stratified
under the radial gravity g=−(g/R) r. The background hydrostatic density is then ∇ρ0 =
−(β/R) r (where β > 0 is a constant). The BV frequency is thus given by N2 =N2

0 (r/R)
2 using

the Boussinesq approximation, whereN0 =
√
βg/ρ∗ is the constant value ofN at r=R. Then, the

IGMs obey a mixed hyperbolic-elliptic equation that changes of type when [32,58]

s2/(ω2 − 4Ω2
s ) + z2/ω2 = 1/N2

0 , (5.2)

where s=
√
x2 + y2 is the cylindrical radius measured from the rotation axis Ω =Ωs1z . For a

given angular frequency ω, equation (5.2) defines a turning surface that separates regions where
the equation is hyperbolic and elliptic in V . Such turning surfaces strongly impact the spatial
structure of IGMs, which are mainly trapped in the hyperbolic region [58]. Moreover, IGMs
with |ω| → 2Ωs <N become trapped in the equatorial waveguide when N/Ωs ≫ 1 [69]. Finally,
such turning surfaces are also likely responsible for a non-empty continuous spectrum without
diffusion [58]. On the contrary, the eigenmodes in a stratified ellipsoid with a constant N are
always smooth and can penetrate deep inside the volume.

We have also shown the existence of low-frequency (surface) modes when 0< |ω|<ω−. Their
properties are very similar to those of the (trapped) Kelvin waves in rotating shallow-water
models [67], which owe their existence to topological features [70,71]. Our study brings here
a complementary viewpoint. Indeed, we show that such low-frequency modes can exist in a
bounded geometry with rigid walls if the pressure problem fails to be elliptic (due to the BC,
see the ESM). Since this situation is expected to be rather generic, such low-frequency (surface)
modes could also exist in more complicated models of stratified vortices.

Finally, we turn our attention to the lifetime of geophysical vortices. Without bulk motions,
the slow temporal evolution of a stratified vortex is governed by diffusion processes that operate
on the slow time scale [16,72] τν = (a2/ν)(2Ωs/N)2, where ν is the kinematic viscosity of the
fluid within the vortex. Yet, it is known that bulk dissipation can be significantly increased in the
presence of IGMs shaped by wave attractors [31,58]. Hence, we could wonder how much energy
could be dissipated if some IGMs were forced inside an elliptical vortex. Without stratification, a
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pure inertial mode (ω,u) satisfies in an ellipsoid the intriguing integral property [27,28]∫
V
u† ·∇2udV =

∫
V
u† · L(∇2u) dV = 0. (5.3)

This could be interpreted as a vanishing viscous dissipation of the inertial modes in an ellipsoid
if there were no boundary layers. However, when viscous BCs are properly taken into account on
the boundary (either with no-slip or stress-free BCs), the inertial modes have a non-zero viscous
dissipation [2,73]. From a mathematical viewpoint, formula (5.3) is valid in an ellipsoid because
(i) L(∇2u)∈V0

n−2 when u∈V0
n and (ii) two inertial eigenvectors (ui,uj) are orthogonal with

respect to inner product (2.9) such that ⟨ui,uj⟩= δij (when properly normalised). Here, the IGMs
do not satisfy property (5.3) because they are not mutually orthogonal with respect to inner
product (2.9) as explained in Proposition 2.2. This shows that the IGMs are (at least) subject to
viscous dissipation in the bulk on the slow time scale 1/E in a stratified vortex. In addition, they
will also be affected by thermal diffusion (if the stratification has a thermal origin, otherwise
by molecular diffusion). Since the IGMs are here smooth polynomial solutions, it is possible
to account for the leading-order dissipative effects using boundary-layer theory (see the ESM).
This also shows that the IGMs would be dissipated on a typical time scale that is of the same
order as τν in the absence of motions. The presence of IGMs may thus affect the slow temporal
evolution of stratified vortices. Moreover, small-scale turbulence is often present inside stratified
vortices, and IGMs could be involved in nonlinear interactions to generate (weakly) turbulent
motions [19,68,74]. Therefore, IGMs may play a role in the transition towards turbulence and the
long-term evolution of stratified vortices.

6. Concluding remarks
We have investigated the normal modes of a diffusionless fluid enclosed in a uniformly rotating
ellipsoidal vortex, which is stratified in density under a background gravity. Indeed, they could
be important for the dynamics of pancake-like stratified vortices (which are ubiquitous in
geophysical flows). We have employed the Boussinesq approximation for simplicity, and shown
that the problem can be recast as a mixed hyperbolic-elliptic equation for the fluid velocity. Next,
we have simplified the model by considering a constant BV frequency. This idealised model
retains the key ingredients to account for the dynamics of geophysical vortices. Under these
assumptions, we have proved that the problem admits smooth polynomial eigenvectors in triaxial
ellipsoids. Given the polynomial form of the eigenvectors, we have characterised the spectrum by
using a bespoke numerical algorithm and asymptotic spectral theory following our prior study
without stratification [40]. The normal modes consist of high-frequency IGMs and low-frequency
(surface) modes. Using microlocal analysis, we have shown that the boundary plays a key role
in sustaining such low-frequency (surface) modes. Finally, we have discussed our results in the
light of geophysical applications, arguing that accounting for IGMs in the models could be useful
to (better) understand the dynamics of stratified vortices.

Several questions have remained unanswered by our work (even in the linear theory). A more
in-depth investigation of the properties of the low-frequency (surface) modes will be presented
in a mathematical work. From a physical viewpoint, the model could also be extended to account
for additional ingredients (while keeping polynomial solutions). For instance, a uniform-vorticity
background flow U0 will be taken into account to study the effects of the vortex’s differential
rotation (as measured by the Rossby number Ro). Large-scale vortices (e.g. Jupiter’s vortices or
Mediterranean eddies) are expected to be in the low-Rossby regime |Ro| ≲ O(10−1), whereas
smaller-scale vortices are in the opposite regime |Ro|≳O(1) (e.g. vortices at sub-mesoscales
≲ 1− 10 km in the Earth’s oceans [6]). We have also entirely discarded magnetic effects. This
is a reasonable assumption since, for realistic parameters, magnetic fields are expected to only
weakly modify the high-frequency IGMs at the size of a vortex. However, magnetic fields are
known to affect the low-frequency spectrum in rotating, stratified and electrically conducting
fluids [21,75]. Moreover, there is a class of magnetic fields leaving invariant the three-dimensional
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polynomial vector spaces in an ellipsoid [76,77]. Therefore, our ellipsoidal model could be used as
a toy model to investigate the properties of these Magneto-Archimedean-Coriolis (MAC) modes,
by combining microlocal analysis and polynomial computations. Other physical ingredients (e.g.
a variable BV frequency) would break the exact polynomial nature of the eigenvectors. Hence, the
spectrum should be investigated using another numerical method.

Finally, future studies could build upon our work to understand the onset of turbulence within
geophysical vortices. Turbulent mixing and dissipation may indeed (partly) explain why some
stratified vortices are remarkably stable over long time scales, while some others have much
shorter lifetimes. Several routes exist for the excitation of turbulence in stratified fluids, but direct
applications of our work include the study of elliptical instabilities. So far, the flows driven by
elliptical instabilities have only received scant attention in stratified environments [78–81]. The
polynomial Galerkin algorithm presented in this work can be extended in the linear theory to
determine the onset of the instabilities upon an elliptical flow. Therefore, elliptical instabilities
will be considered in future work to explore, as a function of the Rossby number, the transition
towards turbulence in stratified vortices.
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Abstract

We present the derivation of the boundary-value pressure problem governing the nor-
mal modes of an incompressible fluid, which is rotating and stratified in density under the
Bousinesq approximation. Next, we discuss for which conditions this is an elliptic boundary-
value problem (using microlocal analysis). Applications to ellipsoidal vortices with a constant
Brunt-Väisälä frequency are then considered. Finally, we introduce a boundary-layer analysis
to determine the (leading-order) diffusive decay rates of the normal modes in an ellipsoid.

1 Boundary-value pressure problem

We consider a diffusionless and incompressible fluid, which is enclosed in a smooth bounded
domain V (whose boundary is denoted by ∂V ). The fluid is rotating at the angular velocity
Ω = (Ωx,Ωy,Ωz)

⊤ with respect to an inertial frame, and is stratified in density under the imposed
gravity field g = −g(z)1z within the Boussinesq approximation. At rest, the pressure P0 and the
density satisfy the hydrostatic balance ∇P0 = [ρ∗ + ρ0(z)]g, where ρ∗ is the typical (mean) den-
sity of the fluid within the Boussinesq approximation. Then, we seek small-amplitude oscillatory
perturbations (where ω ∈ R is the angular frequency) for the velocity u exp(iωt), the pressure
Φ exp(iωt), and the density ζ exp(iωt) upon the hydrostatic basic state. These perturbations are
governed in the rotating frame by the incompressible Euler equations

iωu+ 2 (Ω× u) = −∇Φ− (ζ/ρ∗)g(z)1z, ∇ · u = 0, (1a,b)

and the buoyancy equation

iωζ =
ρ∗N2(z)

g(z)
(u · 1z) , N2(z) := −g(z)

ρ∗

dρ0
dz

, (2a,b)

where N(z) is the Brunt-Väisälä (BV) frequency. The latter equations can be reduced, as long as
ω ̸= 0, to a quadratic equation in ω for the velocity given by

−ω2u+ iω (2Ω× u) +N2(z) (u · 1z)1z = −iω∇Φ. (3)

∗Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
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BOX 1.1: Poincaré problem

When N = 0, the velocity is given by (see formula 2.7.2 in Greenspan [1])

(4|Ω|2 − ω2)u = −iω∇Φ− 4

iω
(Ω ·∇Φ)Ω+ 2Ω×∇Φ. (B1.1.1)

The divergence of the latter equation yields the so-called Poincaré equation [1]

ω2∇2Φ = (2Ω · ∇)2Φ. (B1.1.2)

The associated BC, obtained from equation (15) below, is given by

ω2∇Φ · n = iω(2Ω× n) ·∇Φ + 4(Ω ·∇Φ)(Ω · n) on ∂V , (B1.1.3)

which is identical to equation (2.7.4) in Greenspan [1].

Finally, equation (3) is supplemented with the no-penetration boundary condition (BC) given by
u · n|∂V = 0 (i.e. u is tangent to ∂V ), where n is the unit vector normal to the boundary.

Our goal is to find an alternative formulation of the problem in terms of the pressure Φ. An
equation for the pressure can be obtained by taking the divergence of equation (3), which gives

−iω∇2Φ = iω∇ · (2Ω× u) + (u · 1z)∂zN
2 +N2(z)∂z(u · 1z). (4)

The associated boundary condition (BC) is then obtained by taking the scalar product of equation
(3) with n, which gives

−iω(∇Φ · n) = iω(2Ω× u) · n+N2(z)(u · 1z)(1z · n) on ∂V . (5)

However, equations (4)-(5) still depend on u. Therefore, an expression of u in terms of Φ only is
required before obtaining the equation for the pressure (e.g. the Poincaré problem, see Box 1.1).
We will give below the explicit formula(s) accounting for misaligned rotation and gravity with a
varying BV frequency N(z).

1.1 Second-order equation in the volume

To find the equation satisfied by the pressure Φ in V , we first find the equation relating u and Φ
(Proposition 1.1). Then, we enforce the incompressibility condition to obtain the pressure equation
(Proposition 1.2). Finally, we give in Proposition 1.3 the pressure equation when N is constant.
It will be of prime importance for the microlocal analysis presented in Section 2.

Proposition 1.1. The velocity u is related to the pressure Φ by the equation Dω(z)u = f when
Dω(z) = (ω2 − ω2

+)(ω
2 − ω2

−) ̸= 0 with

ω2
± =

1

2
(N2(z) + 4|Ω|2)±

√
1

4
(N2(z) + 4|Ω|2)2 − 4N2(z)(Ω · 1z)2, (6)

and with

f = iω3∇Φ− 2ω2(Ω×∇Φ)− 4iω(Ω ·∇Φ)Ω

+N2(z) [(2Ω · 1z)(1z ×∇Φ) + iω1z × (1z ×∇Φ)] . (7)
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Proof. We recast Euler equation (1a) and buoyancy equation (2) as a linear system given by

M




ux

uy

uz

ζ/ρ∗


 = −




∂xΦ
∂yΦ
∂zΦ
0


 , M :=




iω −2Ωz 2Ωy 0
2Ωz iω −2Ωx 0
−2Ωy 2Ωx iω g(z)
0 0 −N2(z)/g(z) iω


 , (8a,b)

and with u = (ux, uy, uz)
⊤. The system admits non-zero solutions when det(M) := Dω(z) ̸= 0. In

this case, we can invert the linear system and the result follows. Note that it reduces to equation
(2.7.2) in Greenspan [1] when N = 0. ■

Proposition 1.2. When Dω(z) ̸= 0, the pressure obeys the second-order equation given by

∇ · (f/Dω) = 0 ⇐⇒ ∇ · f − (1/Dω) fz∂zDω = 0, (9)

with ∂zDω = −(ω2 − ω2
−)∂zω

2
+ − (ω2 − ω2

+)∂zω
2
−.

When N(z) is variable and Ω = Ωz1z, equation (9) reduces to

∇2Φ +
∂

∂z

(
N2 − 4Ω2

z

ω2 −N2

∂Φ

∂z

)
= 0, (10)

which is identical to equation (5.1) in Friedlander & Siegmann [2]. For oscillatory motions with
ω ̸= 0, equation (11) is thus equivalent to equation (3) when |ω| ̸= ω±(z). However, the pressure
must obey another equation Dω(z) = 0 (see below).

Proposition 1.3. When N is constant, equation (9) reduces to Pω(Φ) = 0 with

Pω := −∇2 − N2

ω2 −N2
(1z ·∇)2 +

4

ω2 −N2
(Ω ·∇)2 . (11)

The operator Pω is elliptic when 0 < |ω| < |ω−, and its principal symbol p is given by

p := Ak2
x +Bk2

y + Ck2
z + 2Dkykz + 2Ekxkz + 2Fkxky (12)

with

A =
ω2 −N2 − 4Ω2

x

ω2 −N2
, B =

ω2 −N2 − 4Ω2
y

ω2 −N2
, C =

ω2 − 4Ω2
z

ω2 −N2
,

D =
−4ΩyΩz

ω2 −N2
, E =

−4ΩxΩz

ω2 −N2
, F =

−4ΩxΩy

ω2 −N2
.

Finally, it is worth explicitly writing the Cartesian components of f = (fx, fy, fz)
⊤ when N is

constant (as we will reuse them below). They are given by

fx
ω2 −N2

= iω[A∂xΦ + F∂yΦ + E∂zΦ] − 2ω2Ωy

ω2 −N2
∂zΦ + 2Ωz∂yΦ, (13a)

fy
ω2 −N2

= iω[F∂xΦ +B∂yΦ +D∂zΦ] +
2ω2Ωx

ω2 −N2
∂zΦ − 2Ωz∂xΦ, (13b)

fz
ω2 −N2

= iω[E∂xΦ +D∂yΦ + C∂zΦ] +
2ω2

ω2 −N2
(Ωy∂xΦ− Ωx∂yΦ). (13c)

where the coefficients (A,B,C,D,E, F ) appear in the principal symbol of Pω (Proposition 1.3).
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BOX 1.2: Aligned case

When Ω = Ωz1z and N is constant, pressure equation (10) simplifies into

−∇2Φ− N2 − 4Ω2
z

ω2 −N2
(1z ·∇)2Φ = 0, (B1.2.1)

which is identical to equation (2.21) in Friedlander & Siegmann [3]. If required, the velocity
is related to the pressure as

[4Ω2
z − ω2]u = −iω∇Φ +

iω

ω2 −N2
[4Ω2

z −N2](1z ·∇Φ)1z + 2Ωz(1z ×∇Φ). (B1.2.2)

To find the pressure BC, we rearrange equation (15) as

iω
[
ω2 −N2

]
∇Φ · n = 2Ωz

[
ω2 −N2

]
(1z ×∇Φ) · n+ iω

[
4Ω2

z −N2
]
(1z · n)

∂Φ

∂z
,

which simplifies into

∇Φ · n =
2Ωz

iω
(n× 1z) ·∇Φ−

[
N2 − 4Ω2

z

ω2 −N2

]
(1z · n)

∂Φ

∂z
on ∂V . (B1.2.3)

BC (B1.2.3) is identical to formula (2.22) in Friedlander & Siegmann [3].

1.2 Boundary condition

Proposition 1.4. The pressure BC is given by f · n|∂V = 0, where the components of f are
given in equations (13a-c).

For the sake of comparison with prior studies, the pressure BC can be rewritten as

iω3∇Φ · n = 2ω2(Ω×∇Φ) · n+ 4iω(Ω ·∇Φ)(Ω · n)
−N2(z) [(2Ω · 1z)(1z ×∇Φ) + iω1z × (1z ×∇Φ)] · n. (14)

Since we have 1z × (1z ×∇Φ) = (1z ·∇Φ)1z −∇Φ, we can rewrite the pressure BC as

iω
[
ω2 −N2(z)

]
∇Φ · n = 2

[
ω2(Ω×∇Φ)−N2(z)(Ω · 1z)(1z ×∇Φ)

] · n
+ iω

[
4(Ω ·∇Φ)Ω−N2(z)(1z ·∇Φ)1z

] · n. (15)

BC (15) can be strongly simplified in some cases (see Box 1.2).

1.3 First-order equation when Dω(z) = 0

The pressure is no longer given by equation (9) when Dω(z) = 0. The latter defines the equation
of turning surfaces, on which the mathematical problem change of type. Onto such surfaces, the
pressure obeys another partial differential equation. Assuming that the field unknowns remain
non-singular across such surfaces, this equation is found by using vector manipulations of the
primitive equations (Proposition 1.5).
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Proposition 1.5. When Dω(z) = 0 (i.e. on turning surfaces), the pressure is given by the first-
order equation

(2Ω · 1z)(2Ω ·∇Φ) + 2iωΩ · (1z ×∇Φ)− ω2(1z ·∇Φ) = 0, (16)

which is a particular case of equation (3.5) in Friedlander & Siegmann [2].

Proof. We apply 2Ω× to equation (1a), which gives

iω(2Ω× u) = −2Ω× (2Ω× u)− 2Ω×∇Φ− g(z)(ζ/ρ∗)(2Ω× 1z),

= −4
[
(Ω · u)Ω− |Ω|2u

]
− 2Ω×∇Φ− g(z)(ζ/ρ∗)(2Ω× 1z).

The latter equation can be rearranged to give

(
4|Ω|2 − ω2

)
u = −iω∇Φ + 4(Ω · u)Ω+ 2Ω×∇Φ +

N2(z)

iω
(1z · u) [2Ω× 1z − iω1z] , (17)

where we have used equation (1a) to simplify 2Ω × u and used equation (2a) to simplify the
buoyancy term. Thus, it only remains to express Ω ·u and 1z ·u as a function of Φ only. We take
the scalar product of equation (1a) with iωΩ, which gives

ω2(Ω · u) = iω(Ω ·∇Φ) +N2(z)(Ω · 1z)(1z · u). (18)

Then, we take the scalar product of equation (1a) with iω1z to obtain

[
N2(z)− ω2

]
(1z · u) = iω 2Ω · (1z × u)− iω(1z ·∇Φ). (19)

Since we have also from equation (1a)

iω(1z × u) = −1z × (2Ω× u)− 1z ×∇Φ = −2 [(1z · u)Ω− (1z ·Ω)u]− 1z ×∇Φ, (20)

we combine equations (18) to (20) to obtain

−Dω(z)(1z · u) = iω(2Ω · 1z)(2Ω ·∇Φ)− 2ω2Ω · (1z ×∇Φ)− iω3(1z ·∇Φ). (21)

From equation (21), we see that the pressure must satisfy equation (16) when Dω(z) = 0. ■

2 Microlocal analysis of boundary-value problems

We investigate, using microlocal analysis, under which conditions a quite general boundary-value
scalar problem is elliptic in §2.1. Then, we revisit the ellipsoidal model with a constant N in §2.2
to prove that the low-frequency spectrum σ2 is essential.

2.1 Elliptic boundary-value problem

Remark. In this subsection, the Cartesian coordinates are denoted by (x1, x2, x3) to make use of
index notations.
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We consider a smooth bounded domain V in Rd, and a symmetric elliptic differential operator
Pω of order 2 with smooth coefficients and of principal symbol p. We also assume that the Dirichlet
extension of Pω is > 0. The scalar Φ is governed by the boundary-value problem given by

Pω(Φ) = 0 in V , B(Φ) := n⋆ ·∇Φ + V(Φ) = 0 on ∂V , (22a,b)

where n⋆ is the unit vector normal computed with respect to the metric g induced on ∂V by the
principal symbol of Pω (see Box 2.1), and V is a differential operator of degree 1 tangent1 to ∂V .
To solve system (22), we introduce the Dirichlet-to-Neumann operator N in Proposition 2.1.

Proposition 2.1. If Ψ : ∂V → C is a field defined on the boundary, then the Dirichlet-to-
Neumann operator is defined by N (Ψ) := ∂n⋆Φ where ∂n⋆ = n⋆ ·∇ is the normal derivative with
respect to the vector n⋆, and where Φ is the solution of the Dirichlet problem in V given by
Pω(Φ) = 0 in V and Φ|∂V = Ψ on ∂V .

Note that N is a self-adjoint operator acting on functions defined in the space L2(∂V, dσ) for
the area dσ defined by the metric g restricted on ∂V [5]. To solve problem (22), we first solve the
boundary problemN (Ψ)+V(Ψ) = 0 on ∂V , and then consider the Dirichlet problem in V given the
boundary field Ψ. In practice, this amounts to solving the problem on the boundary ∂V and, then,
propagating the boundary solution in the interior V by using the Dirichlet problem. Actually, the
nature of the boundary-value problem crucially depends on the nature of the boundary equation
N (Ψ) + V(Ψ) = 0 on ∂V . This can be analysed using microlocal analysis. Indeed, N is a nice
pseudo-differential operator of principal symbol is given in Proposition 2.2. The ellipticity of
boundary-value problem (22) is then given by Proposition 2.3. Finally, the nature is given by
Proposition 2.4 below.

Proposition 2.2. The principal symbol of the Dirichlet-to-Neumann operator N , defined for an
elliptic operator with a positive principal symbol p > 0, is given by

√
g⋆|∂V , where g⋆|∂V is the

dual of the restriction on ∂V of the metric g induced by p in V .

Proof. It is given in the Appendices of Taylor’s book [6]. Note that the principal symbol is defined
as −

√
− g|∂V in [6]. The first minus sign comes from the fact that an inward vector n⋆ was

considered, and the second from the fact that the other convention p ≤ 0 was used. ■

Proposition 2.3. Let us denote by v the principal symbol of V . Then, boundary-value problem
(22) is elliptic if and only if the principal symbol

√
g⋆|∂V + v is elliptic on ∂V , that is if it does

not vanish for non-zero covectors k ∈ R2 on the boundary ∂V .

Proof. See Chapter 9 in [7]. This is also known as the Shapiro-Lopatinskii condition [7]. ■

Proposition 2.4. If boundary-value problem (22) is elliptic in the interval [ω1, ω2], then its spec-
trum is discrete (or empty) in this interval. Otherwise, the spectrum is essential in [ω1, ω2].

Proof. If the boundary-value pressure problem is elliptic, the operator Pω admits a parametrix
L (i.e. an approximate inverse) such that Pω ◦ L = Id + R, where R is a pseudo-differential
operator of degree −1. Hence, R is a compact operator. Moreover, Pω and R are also analytic
functions. Then, the result follows from the Fredholm analytic theorem (see Theorem VI.14 in
[9]). Otherwise, the values ω ∈ [ω1, ω2] belong to the essential spectrum [10]. ■

1tangent is here understood in the language of differential geometry [4]. For instance, if ∂V is described by
q1 = constant for a set of curvilinear coordinates (q1, q2, q3), then V only involves derivatives (∂q2 , ∂q3) on the
tangent plane at a given point.
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BOX 2.1: Normal vector induced by the metric on ∂V

The normal vector n̂ defined from the metric on ∂V is computed as follows. The principal
symbol p defines a metric given by g⋆ := (g⋆)ijkikj for the covectors k ∈ R3 in the cotangent
space, whose inverse g := (g⋆)−1 induces a metric in V defined by g := gijdxidxj. Then,
the normal vector n⋆ computed with respect to g⋆ is given by

n⋆ ∝ g⋆n, gijn
⋆
in

⋆
j = 1,

where n = (n1, n2, n3)
⊤ is the unit vector normal to ∂V in Cartesian coordinates with

n2
1 + n2

2 + n2
3 = 1. The constant of proportionality is such that n⋆ has a unit norm with

respect to the metric g. The vector n⋆ is also called the conormal vector (with respect to
g⋆) in the study of partial differential equations [8]. Note that g⋆ is a contravariant metric
tensor associated with the operator (g⋆)ij∂xi

∂xj
. Thus, the conormal n⋆ is the contravariant

description (in the space with the metric defined by g) of the covariant normal vector n to
∂V (in the space with the Euclidean metric).

In practice, the difficult step is to evaluate the principal symbol of the Dirichlet-to-Neumann
operator (Proposition 2.2). In practice, this can be done as follows. The principal symbol p
induces a metric in V given by g := gijdxidxj. Let us assume that xi = xi(qj) with the curvilinear
coordinates (q1, q2, q3) such that the boundary ∂V is given by q1 = constant (for instance). Then,
we can rewrite the two-dimensional metric restricted on ∂V as g|∂V = g̃ijdqidqj. Then, the dual

of the metric induced by g on ∂V is given by g⋆|∂V = (g̃
⋆
)ijkikj with g̃

⋆
= g̃

−1
.

2.2 Back to the pressure equation

We aim to apply the above microlocal analysis to the boundary-value pressure problem when N
is constant, which is elliptic in V when 0 < |ω| < ω−. The principal symbol p, defined in equation
(12), induces the metric g in V and its dual g⋆ characterised by the metric tensors

g⋆ =



A F E
F B D
E D C


 , g =

1

det(g⋆)




BC −D2 −CF +DE −BE +DF
−CF +DE AC − E2 −AD + EF
−BE +DF −AD + EF AB − F 2


 , (23a,b)

with det(g⋆) = ABC −AD2 −BE2 −CF 2 + 2DEF . For a given normal vector n = (n1, n2, n3)
⊤

in Cartesian coordinates, the conormal vector n⋆ is thus given by

n⋆ =
1

α


n1



A
F
E


+ n2



F
B
D


+ n3



E
D
C




 , (24)

with α = [An2
1 + Bn2

2 + Cn2
3 + 2(Dn2n3 + En1n3 + Fn1n2)]

1/2 such that gijn
⋆
in

⋆
j = 1. Thanks to

expression (24), we clearly see that the conormal naturally appears in equations (13a-c). Thus, we
can apply Proposition 2.3 to determine the nature of the boundary-value pressure problem.

Let us consider here the aligned case with Ω = (0, 0,Ωz)
⊤, for which the equations are then

greatly simplified (see Box 1.2). In this case, the two metrics reduce to

g⋆ = k2
x + k2

y + Ck2
z , g = dx2 + dy2 + C−1dz2, (25a,b)
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and the conormal vector is given by n⋆ = (1/α) (n1, n2, n3C)⊤ with α =
√
1 + n2

3(C − 1), where
the Euclidian normal vector is n = (n1, n2, n3)

⊤ with n2
1 + n2

2 + n2
3 = 1. To demonstrate that

the pressure problem is not elliptic for a given frequency 0 < |ω| < ω−, it is sufficient to find one
location on ∂V where Proposition 2.3 is not valid. We look at the behaviour at the equator, where
the tangent plane is vertical with n = 1x (for instance) such that the pressure BC is simply fx = 0.
The restriction of the metrics on ∂V gives

g|∂V = dy2 + C−1dz2, g⋆|∂V = k2
y + Ck2

z , (26a,b)

and the conormal vector is simply given by n⋆ = 1x. The principal symbol of the pressure BC is
then given by √

k2
y + Ck2

z = −2Ωz

ω
ky, (27)

which reduces to (
4Ω2

z − ω2

ω2

)

︸ ︷︷ ︸
≥0

k2
y = C︸︷︷︸

≥0

k2
z (28)

where the two prefactors are positive when 0 < |ω| < ω− = min(N, 2Ωz) in the aligned case.
Therefore, we can find a real-valued covector k = (0, ky, kz)

⊤ such that the principal symbol of
the BC vanishes. The boundary-value pressure problem is thus not elliptic in this case (Proposi-
tion 2.2), and the low-frequency spectrum is essential (Proposition 2.4). Similarly, we conjecture
that the spectrum is always essential when 0 < |ω| < ω− when Ω and 1z are misaligned. The
corresponding calculations (which are more lengthy) will be included in a forthcoming paper [5],
in which we will also further explore the properties of the low-frequency (surface) modes.

3 Boundary-layer analysis

We introduce diffusion in the problem to investigate the diffusive decay rates of IGMs for a constant
BV frequency in an ellipsoid. We use the same model as in the main text except that, here, the fluid
has a non-zero kinematic viscosity ν and diffusivity κ. We employ boundary-layer theory (BLT) to
approach the low-diffusive regime (relevant for geophysical vortices), and introduce dimensionless
variables below. We take Ω−1

s as the time scale, L as the length scale (e.g. either a or c), and
ρ∗LN2/g as the density scale. For the sake of concision, the dimensionless variables are written
below using the same symbols as the dimensional variables in the main text. We seek modal
solutions as [v, π, ρ](r, t) = [u,Φ, ζ](r) exp(λt), where λ ∈ C is the diffusive eigenvalue. The
dimensionless linearised Navier-Stokes equations are then given in the rotating frame by

λu+ 2(1Ω × u) = −∇Φ− Ñ2ζ1z + E∇2u, λζ = (u · 1z) + Eκ∇2ζ, (29a,b)

with the (dimensionless) Ekman number E = ν/(ΩsL
2) and Eκ = E/Pr where Pr = ν/κ is the

Prandtl number, and with the normalised BV frequency Ñ = N/Ωs. Multiplying equation (29a)

by u† and the complex-conjugate of equation (29b) by Ñ2ζ, we obtain after volume integration

λ||u||2 + λ†Ñ2||ζ||2 = E⟨u,∇2u⟩+ Ñ2Eκ⟨∇2ζ, ζ⟩, (30)

where the scalar product between two scalar quantities is defined as ⟨ζ1, ζ2⟩ =
∫
V
ζ†1 · ζ2 dV . Note

that formula (30) is also valid in a sphere with a radial gravity [11]. Finally, the problem is
supplemented with BC. We assume that the velocity field satisfies the stress-free BCs

u · n|∂V = 0, [ϵ(u) · n]× n|∂V = 0 (31a,b)
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where ϵ(u) = (1/2)
[
∇u+ (∇u)⊤

]
is the strain-rate tensor. SF-BCs (31a,b) allow the tangential

velocity to slip on ∂V . For the density perturbation, we enforce a Neumann BC ∇ζ · n|∂V = 0. A
density jump is thus possible between the vortex and the ambient fluid (as considered in idealised
models [12, 13, 14]), but without exchange of mass between the two fluids.

We can simplify equation (31) using BLT when E ≪ 1. Formally, classical BLT for rotating

fluids is not expected to be strongly modified by stratification when Ñ is not too large (e.g. for
rigid boundaries [15]). Moreover, it is known that the boundary-layer flow is E1/2 smaller than the
bulk flow for SF-BCs [16, 17]. This considerably simplifies the BLT, because explicit expressions
for the boundary-layer solutions are no longer required to estimate the decay rate of the modes.
We seek the variables at the leading order in E for the SF-BCs as

λ ≃ iω0 + Eλ1, [u, ζ] ≃ [u0, ζ0] + E1/2 [u1, ζ1] , (32a,b)

where [ω0,u0] is the eigenvalue-eigenvector pair of a diffusionless IGM, λ1 ∈ C is the first-order
correction of the eigenvalue, and [u1, ζ1] are the first-order corrections within the boundary layer
such that u0+E1/2u1 satisfies SF-BCs (31a,b) and ζ0 + E1/2ζ1 satisfies the Neumann BC for the
density. We substitute the above asymptotic expansions into equation (30) and we obtain

λ1||u0||2 + λ†
1Ñ

2||ζ0||2 ≃ −
(
2

∫

V

ϵ(u0) : ϵ(u
†
0) dV +

Ñ2

Pr

∫

V

(∇ζ0)
2 dV

)
(33)

at the order E, where we have used the SF-BCs and the Neumann BC to simplify the volume
integrals on the right-hand side. Since the latter is real-valued and negative, there is no frequency
correction at the leading order in E due to SF-BCs such that ℑm(λ1) = 0 and ℜe(λ1) = τ1 ≤ 0.
We recover from equation (33) the viscous decay rate of pure inertial modes with SF-BCs [17].

Finally, we can crudely estimate whether forced IGMs would quickly decay or not in large-
scale stratified vortices by plugging geophysical estimates into equation (33). Typical values for
the kinematic viscosity are ν ∼ 10−6 m2.s−1 for water and ν ∼ 4 × 10−7 m2.s−1 for gas giants
(according to ab-initio simulations [18]). Using Table 1 in the main text, typical values for the
Ekman number are thus E ∼ 10−8 − 10−12 for Mediterranean eddies and E ∼ 10−12 − 10−17 for
Jovian vortices. Estimating the Prandtl number depends on whether the stratification is due to
thermal effects or compositional ones (for which Pr ≫ 1 in both water and gas giants). Heat
diffusion in Mediterranean eddies is characterised by Pr ≃ 0.7, and typical values Pr ∼ 10−2 − 1
are expected for thermal diffusion in gas giants [18]. Hence, we have ÑEκ ∼ 10−4 − 10−8 for

Mediterranean eddies and ÑEκ ∼ 10−6−10−11 for Jovian vortices. Consequently, the largest-scale
IGMs are not expected to be strongly damped by diffusion in stratified vortices.
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