Srilakshmi Krishnamoorthy 
  
Abinash Sarma 
email: sarmaabinash15@iisertvm.ac.in
  
SOME NEW CONGRUENCES FOR ℓ-REGULAR MULTIPARTITIONS

Keywords: 2010 Mathematics Subject Classification. 05A17, 11P83, 11P84 Integer Partitions, Multipartitions, Regular Partitions, Congruences

For a positive integer n, let B ℓ 1 ,...,ℓr (n) denote the number of (ℓ

In this paper, we prove several infinite families of congruences satisfied by B (r) ℓ (n) for different values of ℓ and r.

≡ 0 (mod 5), where p i = 5 is a prime number such that p i ≡ 2 (mod 3) for i ∈ {1, • • • , t + 1} and p t+1 ∤ j.

Introduction

Given a positive integer n, a partition of n is said to be ℓ-regular, for a fixed positive integer ℓ, if none of its parts is divisible by ℓ. Let n = a 1 + a 2 + • • • + a r be a partition of n. Suppose, in turn, λ (i) is a partition of a i for each i ∈ {1, 2, . . . , r}. We call the ordered tuple (λ (1) , λ (2) , . . . , λ (r) ) as a r-multipartition of n; if the value of r is obvious from the context, we simply call it a multipartition of n. In particular, a 2-multipartition of n is called a bipartition of n. Let us fix r positive integers, namely, ℓ 1 , ℓ 2 , . . . , ℓ r such that λ (i) is a ℓ i -regular partition. Then (λ (1) , λ (2) , . . . , λ (r) ) is said to be a (ℓ 1 , ℓ 2 , . . . , ℓ r )-regular multipartition of n.

Let B ℓ1,...,ℓr (n) denote the number of (ℓ 1 , ℓ 2 , . . . , ℓ r )-regular multipartitions of n. By convention, we assume that B ℓ1,...,ℓr (0) = 1 for any r and any (ℓ 1 , ℓ 2 , . . . , ℓ r ). Note that the generating function for B ℓ1,...,ℓr (n) is given by

∞ n=0 B ℓ1,...,ℓr (n)q n = E ℓ1 E ℓ2 • • • E ℓr E r 1 , (1) 
where E k := ∞ m=1 (1 -q km ) for k ∈ N. Note that, for any prime number p and any k ∈ N, we have

E kp ≡ E p k (mod p). (2) 
Suppose ℓ 1 = ℓ 2 = • • • = ℓ r = ℓ. Then we say that (λ (1) , λ (2) , . . . , λ (r) ) is a ℓ-regular r-multipartition of n. In this case, we simplify the notation for B ℓ1,...,ℓr (n) as B (r) ℓ (n). Now from (1), we have

∞ n=0 B (r) ℓ (n)q n = E r ℓ E r 1 . (3) 
Recently, for different values of ℓ, many properties of ℓ-regular partition function have been discussed by several mathematicians in [START_REF] Adiga | Congruences for 7 and 49-regular partitions modulo powers of 7[END_REF][START_REF] Ahmed | New congruences for ℓ-regular partitions for ℓ ∈ {5, 6, 7, 49[END_REF][START_REF] Carlson | Infinite families of infinite families of congruences for k-regular partitions[END_REF][START_REF] Cui | Arithmetic properties of ℓ-regular partitions[END_REF][START_REF] Dai | On the distribution of odd values of 2 a -regular partition functions[END_REF][START_REF] Furcy | Congruences for ℓ-regular partition functions modulo 3[END_REF][START_REF] Hou | Quadratic forms and congruences for ℓ-regular partitions modulo 3, 5 and 7[END_REF][START_REF] Ranganatha | Ramanujan-type congruences modulo powers of 5 and 7[END_REF][START_REF] Webb | Arithmetic of the 13-regular partition function modulo 3[END_REF][START_REF] Xia | Congruences for some l-regular partitions modulo l[END_REF]. For recent results for (ℓ 1 , ℓ 2 )-regular bipartition function, the reader may refer to [START_REF] Adiga | A simple proof of a conjecture of Dou on (3,7)-regular bipartitions modulo 3[END_REF][START_REF] Dou | Congruences for (3, 11)-regular bipartitions modulo 11[END_REF][START_REF] Kathiravan | Ramanujan-type congruences modulo m for (l, m)-regular bipartitions[END_REF][START_REF] Kathiravan | On ℓ-regular bipartitions modulo ℓ[END_REF][START_REF] Lin | Arithmetic of the 7-regular bipartition function modulo 3[END_REF][START_REF] Lin | An infinite family of congruences modulo 3 for 13-regular bipartitions[END_REF][START_REF] Wang | Arithmetic properties of (k, ℓ)-regular bipartitions[END_REF]. Saikia and Boruah [START_REF] Saikia | Congruences of ℓ-regular partition triples for ℓ ∈ {2, 3, 4, 5}[END_REF] proved certain congruences for B

(3) ℓ (n) taking ℓ ∈ {2, 3, 4, 5} and Gireesh and Naika [START_REF] Gireesh | On 3-regular partitions in 3-colors[END_REF] proved for B

(3) 3 (n). Chern, Tang, and Xia [START_REF] Chern | Arithmetic properties for 7-regular partition triples[END_REF] established infinite families of congruences for B

(3) 7 (n) modulo powers of 7. Baruah and Das [START_REF] Baruah | Generating functions and congruences for 9-regular and 27-regular partitions in 3 colours[END_REF] established the generating functions for B

(3) 9 (n) and B

(3) 27 (n). Very recently, Murugan and Fathima [START_REF] Murugan | Arithmetic properties of 3-regular 6-tuple partitions[END_REF] studied congruences for B [START_REF] Chern | Arithmetic properties for 7-regular partition triples[END_REF] 3 (n). The following are the main results of this paper.

Theorem 1.1. For any n ≥ 0 and t ≥ 0, we have

(i) B (12) 3 3p 2 1 • • • p 2 t+1 n + p 2 1 • • • p 2 t p t+1 (p t+1 + 3j) -1 ≡ 0 (mod 3)
, where p i is a prime number such that p i ≡ 2 (mod 3)

for i ∈ {1, • • • , t + 1} and p t+1 ∤ j. (ii) B (15) 3 3p 2 1 • • • p 2 t+1 n + p 2 1 •••p 2 t pt+1(5pt+1+12j)-5 4 
≡ 0 (mod 3), where p i = 3 is a prime number such that p i ≡ 3 (mod 4) for i ∈ {1, • • • , t + 1} and p t+1 ∤ j.

(iii) B

(iv) B (7) 7

7p 2 1 • • • p 2 t+1 n + 7 p 2 1 •••p 2 t pt+1(pt+1+4j)-1 4 
≡ 0 (mod 7), where p i = 7 is a prime number such that p i ≡ 3 (mod 4) for i ∈ {1, 

3p 2t+2 n + p 2t+1 (p + 3j) -1 ≡ 0 (mod 3)
, where p is a prime number such that p ≡ 2 (mod 3) and p ∤ j.

(ii) B (15) 3 3p 2t+2 n + p 2t+1 (5p+12j)-5 4 ≡ 0 (mod 3), where p = 3 is a prime number such that p ≡ 3 (mod 4) and p ∤ j.

(iii) B ≡ 0 (mod 5), where p = 5 is a prime number such that p ≡ 2 (mod 3) and p ∤ j.

(iv) B (7) 7

7p 2t+2 n + 7 p 2t+1 (p+4j)-1 4
≡ 0 (mod 7), where p = 7 is a prime number such that p ≡ 3 (mod 4) and p ∤ j. ≡ 0 (mod 11), where p ∈ {3, 11} is a prime number such that p ≡ 3 (mod 4) and p ∤ j.

Theorem 1.3. For n ≥ 0 and t ≥ 0, we have

(i) B (6) 5 p 4t n + (p 4t -1) ≡ p 2t B (6) 5 (n) (mod 5), if B (6) 
5 (p -1) ≡ 0 (mod 5), where p = 5 is a prime number.

(ii) B (6) 7 7p 4t n + 7p 4t -3 2 ≡ p 4t B (6) 7 (7n + 2) (mod 7), if B (6) 7 7p-3 2
≡ 0 (mod 7), where p = 7 is an odd prime number.

Theorem 1.4. For n ≥ 0 and t ≥ 0, we have

(i) B (12) 3 6p 2t+2 n + p 2t+1 (4p + 3j) -1 ≡ 0 (mod 6)
, where p is a prime number such that p ≡ 2 (mod 3) and j is an even number such that p ∤ j.

(ii) B ≡ 0 (mod 10), where p = 5 is a prime number such that p ≡ 2 (mod 3) and j is an even number such that p ∤ j.

(iii) B (15) 3

15p 2t+2 n + p 2t+1 ((12α+5)p+12j)-5 4
≡ 0 (mod 15), where α ∈ {1, 2, 3, 4}, p = 3 is a prime number such that p ≡ 3 (mod 4) and j is such that 5 | j but p ∤ j.

Theorem 1.5. For any n ≥ 0 and t ≥ 0, we have

(i) B (20t+1) 5 
(20n + 14) ≡ 0 (mod 10 Note that Corollary 1.2 (i), (ii), (iii), (iv), (v) can be proved by taking p 1 = • • • = p t+1 = p in Theorem 1.1 (i), (ii), (iii), (iv), (v), respectively.

Preliminary

In this section, we list down a few results which will be used while proving our main theorems. Before stating the first lemma, we write, for any r ≥ 1, [START_REF] Newman | The coefficients of certain infinite products[END_REF], Theorem 1). Suppose that r is even, 0 < r ≤ 24. Let p be a prime such that r(p-1) ≡ 0 (mod 24). Set δ = r(p -1)/24. Then for any n ≥ 0

E r 1 = ∞ n=0 a r (n)q n . (4) Lemma 2.1 ([
a r (pn + δ) = a r (δ) • a r (n) -p r 2 -1 • a r n -δ p ,
with the convention that a r (x) = 0, if x is not an integer.

Let us list down the following 2-dissection, 5-dissection, 7-dissection, and 11-dissection results.

Lemma 2.2 ([13], Theorem 2.1). We have,

E 5 E 1 = E 8 E 2 20 E 2 2 E 40 + q E 3 4 E 10 E 40 E 3 2 E 8 E 20 . ( 5 
)
Lemma 2.3 ([21] and [START_REF] Watson | Ramanujans Vermutung über Zerfällungszahlen[END_REF]). For R(q) := ∞ m=1 1-q 5m-4 1-q 5m-1 1-q 5m-3 1-q 5m-2 , we have

E 1 = E 25 1 R(q 5 ) -q -q 2 R q 5 . ( 6 
)
Lemma 2.4 ([12], (10.5.1)).

For A i (q) := ∞ m=1 (1 -q 7m-i )(1 -q 7m-7+i ), i ∈ {1, 2, 3}, we have E 1 = E 49 A 2 (q 7 ) A 1 (q 7 ) -q A 3 (q 7 ) A 2 (q 7 ) -q 2 + q 5 A 1 (q 7 ) A 3 (q 7 ) . (7) 
Lemma 2.5 ([12], (10.6.1)).

For B i (q) := ∞ m=1 (1 -q 11m-i )(1 -q 11m-11+i ), i ∈ {1, 2, 3, 4, 5}, we have E 1 = E 121
B 4 (q 11 ) B 2 (q 11 ) -q B 2 (q 11 ) B 1 (q 11 ) -q 2 B 5 (q 11 ) B 3 (q 11 ) + q 5 + q 7 B 3 (q 11 ) B 4 (q 11 ) -q 15 B 1 (q 11 ) B 5 (q 11 ) .

We conclude this section by writing down Dedekind's eta-function defined by

η(z) := q 1/24 ∞ m=1 (1 -q m ) . (9) 

Congruences Modulo a Prime Number

In this section, we will prove Theorem 1.1, and Theorem 1.3.

Proof of Theorem 1.1. Part (i): Let us take ℓ = 3 and r = 12 in (3) to get ∞ n=0 B (12) 3 (n)q n = E 12 3 E 12 1 . Now, by (2), we get ∞ n=0 B (12) 3 (n)q n ≡ E 12 3 E 4 3 ≡ E 8 3 (mod 3).
In view of (9), we get

∞ n=0 B (12) 3 
(3n)q 3n+1 ≡ η 8 (3z) (mod 3).

Writing

η 8 (3z) = ∞ n=0 a(n)q n , we get B (12) 3 
(3n) ≡ a(3n + 1) (mod 3). [START_REF] Furcy | Congruences for ℓ-regular partition functions modulo 3[END_REF] Moreover, one can verify that a(n) = 0, if n ≡ 1 (mod 3).

Serre [START_REF] Serre | Sur la lacunarité des puissances de η[END_REF] showed that η 8 (3z) is a normalized Hecke eigenform of weight 4, level 9. Therefore, for any prime number p, operating the Hecke operator T p on η 8 (3z), we get

η 8 (3z) | T p = a(p) • η 8 (3z). (11) Since η 8 (3z) | T p = ∞ n=1 a(pn) + p 4-1 • a n p q n = ∞ n=1 a(pn) + p 3 • a n p q n ,
therefore, by comparing coefficients on both sides of ( 11), we get

a(pn) + p 3 • a n p = a(p) • a(n) ∀ n ≥ 1.
Let p be a prime number such that p ≡ 2 (mod 3); then we have

a(pn) + p 3 • a n p = 0. ( 12 
)
Substituting n by pn + r with p ∤ r in the above equation, we get a(p 2 n + pr) = 0. Now, substituting n by 3n + 1 -pr, we get

a(3p 2 n + p 2 -p 3 r + pr) = 0. But, 3p 2 n + p 2 -p 3 r + pr = 3 p 2 n + p 2 -1 3 + pr(1-p 2 )
3 + 1. Thus, by [START_REF] Furcy | Congruences for ℓ-regular partition functions modulo 3[END_REF], we get

B (12) 3 3 p 2 n + p 2 -1 3 + pr(1 -p 2 ) 3 ≡ 0 (mod 3).
As gcd 1-p 2 3 , p = 1, so we have p ∤ r if and only if p ∤ j, where j := r(1-p 2 )

3

. Hence, for j ≡ 0 (mod p), we get

B (12) 3 3p 2 n + p 2 -1 + 3pj ≡ 0 (mod 3). ( 13 
)
Substituting n by pn in [START_REF] Hirschhorn | The Power of q: A Personal Journey[END_REF], we get [START_REF] Furcy | Congruences for ℓ-regular partition functions modulo 3[END_REF], we get

a(p 2 n) = -p 3 • a(n) ≡ a(n) (mod 3). Now, substituting n by 3n + 1, we get a(3p 2 n + p 2 ) ≡ a(3n + 1) (mod 3). But, 3p 2 n + p 2 = 3 p 2 n + p 2 -1 3 + 1. Thus, by
B (12) 3 3 p 2 n + p 2 -1 3 ≡ B (12) 3 (3n) (mod 3). ( 14 
)
Let t ≥ 0 and p i be a prime number such that

p i ≡ 2 (mod 3) for i ∈ {1, • • • , t + 1}. Since p 2 1 • • • p 2 t n + p 2 1 • • • p 2 t -1 3 = p 2 1 p 2 2 • • • p 2 t n + p 2 2 • • • p 2 t -1 3 + p 2 1 -1 3 ,
therefore by repeated use of ( 14), we get

B (12) 3 3p 2 1 • • • p 2 t n + (p 2 1 • • • p 2 t -1) ≡ B (12) 3 
(3n) (mod 3).

Substituting n by p 2 t+1 n +

p 2 t+1 -1 3 
+ p t+1 j with p t+1 ∤ j, we get the desired result in view of [START_REF] Hirschhorn | Elementary proofs of parity results for 5-regular partitions[END_REF]. Part (ii): Let us take ℓ = 3 and r = 15 in (3) to get

∞ n=0 B (15) 3 (n)q n = E 15 3 E 15 1 . Now, by (2), we get ∞ n=0 B (15) 3 (n)q n ≡ E 15 3 E 5 3 ≡ E 10 3 (mod 3).
In view of (9), we get

∞ n=0 B (15) 3 
(3n)q 12n+5 ≡ η 10 (12z) (mod 3).

Writing η 10 (12z) = ∞ n=0 a(n)q n , we get B

(3n) ≡ a(12n + 5) (mod 3). ( 15)

Serre [START_REF] Serre | Sur la lacunarité des puissances de η[END_REF] showed that η 10 (12z) = 1 96 (ϕ + (z) -ϕ -(z)), where ϕ + (z) and ϕ -(z) are normalized Hecke eigenforms of weight 5, level 2 4 3 2 and character χ defined as

χ(n) = (-1) n-1 2 if gcd(n, 2 4 3 2 ) = 1, 0 otherwise. If we write ϕ ± (z) = ∞ n=0 b ± (n)q n ,
then for any prime number p, operating the Hecke operator T p on η 10 (12z), we get

η 10 (12z) | T p = 1 96 (ϕ + (z) | T p -ϕ -(z) | T p ) = 1 96 (b + (p) • ϕ + (z) -b -(p) • ϕ -(z)) . (16) Since η 10 (12z) | T p = ∞ n=1 a(pn) + χ(p) • p 5-1 • a n p q n = ∞ n=1 a(pn) + (-1) p-1 2 p 4 • a n p q n ,
therefore, by comparing coefficients on both sides of ( 16), we get a(pn) + (-1)

p-1 2 p 4 • a n p = 1 96 (b + (p) • b + (n) -b -(p) • b -(n)) ∀ n ≥ 1.
Moreover, Serre [START_REF] Serre | Sur la lacunarité des puissances de η[END_REF] further established that b ± (n) = 0, if n ≡ 1 (mod 4). Let p = 3 be a prime number such that p ≡ 3 (mod 4); then we have

a(pn) -p 4 • a n p = 0. ( 17 
)
Substituting n by pn + r with p ∤ r in the above equation, we get a(p 2 n + pr) = 0. Now, substituting n by 12n + 5 -pr, we get

a(12p 2 n + 5p 2 -p 3 r + pr) = 0. But, 12p 2 n + 5p 2 -p 3 r + pr = 12 p 2 n + 5(p 2 -1)

12

+ pr(1-p 2 ) 12 + 5. Thus, by [START_REF] Kathiravan | Ramanujan-type congruences modulo m for (l, m)-regular bipartitions[END_REF], we get

B (15) 3 3 p 2 n + 5(p 2 -1) 12 + pr(1 -p 2 ) 12 ≡ 0 (mod 3).
As gcd 1-p 2 12 , p = 1, so we have p ∤ r if and only if p ∤ j, where j := r(1-p 2 )

12

. Hence, for j ≡ 0 (mod p), we get

B (15) 3 3p 2 n + 5(p 2 -1) 4 + 3pj ≡ 0 (mod 3). ( 18 
)
Substituting n by pn in [START_REF] Lin | Arithmetic of the 7-regular bipartition function modulo 3[END_REF], we get

a(p 2 n) = p 4 • a(n) ≡ a(n) (mod 3).
Now, substituting n by 12n + 5, we get a(12p 2 n + 5p 2 ) ≡ a(12n + 5) (mod 3).

But, 12p 2 n + 5p 2 = 12 p 2 n + 5(p 2 -1) 12 + 5. Thus, by [START_REF] Kathiravan | Ramanujan-type congruences modulo m for (l, m)-regular bipartitions[END_REF], we get

B (15) 3 3 p 2 n + 5(p 2 -1) 12 ≡ B (15) 3 (3n) (mod 3). ( 19 
)
Let t ≥ 0 and p i = 3 be a prime number such that p i ≡ 3 (mod 4) for i ∈ {1, • • • , t + 1}. Since

p 2 1 • • • p 2 t n + 5(p 2 1 • • • p 2 t -1) 12 = p 2 1 p 2 2 • • • p 2 t n + 5(p 2 2 • • • p 2 t -1) 12 + 5(p 2 1 -1) 12 ,
therefore by repeated use of ( 19), we get

B (15) 3 3p 2 1 • • • p 2 t n + 5(p 2 1 • • • p 2 t -1) 4 ≡ B (15) 3 
(3n) (mod 3).

Substituting n by p 2 t+1 n +

5(p 2 t+1 -1) 12 
+ p t+1 j with p t+1 ∤ j, we get the desired result in view of [START_REF] Lin | An infinite family of congruences modulo 3 for 13-regular bipartitions[END_REF]. In view of ( 9), we get

∞ n=0 B (10) 5 
(5n)q 3n+1 ≡ η 8 (3z) (mod 5).

Rest of the proof follows similarly as Part (i). Part (iv): Let us take ℓ = 7 and r = 7 in (3) to get

∞ n=0 B (7) 7 (n)q n = E 7 7 E 7 1 .
Now, by (2), we get

∞ n=0 B (7) 7 (n)q n ≡ E 7 7 E 7 ≡ E 6 7 (mod 7).
In view of (9), we get

∞ n=0 B (7) 
7 (7n)q 4n+1 ≡ η 6 (4z) (mod 7).

Writing

η 6 (4z) = ∞ n=0 a(n)q n , we get B ( 7 
)
7 (7n) ≡ a(4n + 1) (mod 7). [START_REF] Newman | The coefficients of certain infinite products[END_REF] Moreover, one can verify that a(n) = 0, if n ≡ 1 (mod 4).

Serre [START_REF] Serre | Sur la lacunarité des puissances de η[END_REF] showed that η 6 (4z) is a normalized Hecke eigenform of weight 3, level 16 and character χ defined as

χ(n) = (-1) n-1 2 if n is odd, 0 if n is even.
Therefore, for any prime number p, operating the Hecke operator T p on η 6 (4z), we get

η 6 (4z) | T p = a(p) • η 6 (4z). ( 21 
) Since η 6 (4z) | T p = ∞ n=1 a(pn) + χ(p) • p 3-1 • a n p q n = ∞ n=1 a(pn) + (-1) p-1 2 p 2 • a n p q n ,
therefore, by comparing coefficients on both sides of ( 21), we get

a(pn) + (-1) p-1 2 p 2 • a n p = a(p) • a(n) ∀ n ≥ 1.
Let p = 7 be a prime number such that p ≡ 3 (mod 4); then we have

a(pn) -p 2 • a n p = 0. ( 22 
)
Substituting n by pn + r with p ∤ r in the above equation, we get a(p 2 n + pr) = 0. Now, substituting n by 4n + 1 -pr, we get

a(4p 2 n + p 2 -p 3 r + pr) = 0. But, 4p 2 n + p 2 -p 3 r + pr = 4 p 2 n + p 2 -1 4 + pr(1-p 2 )
4 + 1. Thus, by [START_REF] Newman | The coefficients of certain infinite products[END_REF], we get

B (7) 7 7 p 2 n + p 2 -1 4 + pr(1 -p 2 ) 4 ≡ 0 (mod 7).
As gcd 1-p 2 4 , p = 1, so we have p ∤ r if and only if p ∤ j, where j := r(1-p 2 )

4

. Hence, for j ≡ 0 (mod p), we get

B (7) 7 7p 2 n + 7(p 2 -1) 4 + 7pj ≡ 0 (mod 7). ( 23 
)
Substituting n by pn in [START_REF] Ranganatha | Ramanujan-type congruences modulo powers of 5 and 7[END_REF], we get But, 4p 2 n + p 2 = 4 p 2 n + p 2 -1 4 + 1. Thus, by [START_REF] Newman | The coefficients of certain infinite products[END_REF], we get

a(p 2 n) = p 2 • a(n).
B (7) 7 7 p 2 n + p 2 -1 4 ≡ p 2 • B (7) 
7 (7n) (mod 7). [START_REF] Serre | Sur la lacunarité des puissances de η[END_REF] Let t ≥ 0 and p i = 7 be a prime number such that p i ≡ 3 (mod 4) for i ∈ {1, • • • , t + 1}. Since

p 2 1 • • • p 2 t n + p 2 1 • • • p 2 t -1 4 = p 2 1 p 2 2 • • • p 2 t n + p 2 2 • • • p 2 t -1 4 + p 2 1 -1 4 ,
therefore by repeated use of ( 24), we get

B (7) 7 7p 2 1 • • • p 2 t n + 7(p 2 1 • • • p 2 t -1) 4 ≡ (p 2 1 • • • p 2 t+1 ) • B (7) 
7 (7n) (mod 7).

Substituting n by p 2 t+1 n +

p 2 t+1 -1 4 
+ p t+1 j with p t+1 ∤ j, we get the desired result in view of [START_REF] Saikia | Congruences of ℓ-regular partition triples for ℓ ∈ {2, 3, 4, 5}[END_REF]. In view of ( 9), we get

∞ n=0 B (11) 
11 (11n)q 12n+5 ≡ η 10 (12z) (mod 11).

Rest of the proof follows similarly as Part (ii).

Proof of Theorem 1.3. Part (i): Let us take ℓ = 5 and r = 6 in (3) to get

∞ n=0 B (6) 5 (n)q n = E 6 5 E 6 1 .
Now, by (2), we get

∞ n=0 B (6) 5 (n)q n ≡ E 30 1 E 6 1 ≡ E 24 1 (mod 5).
In view of (4), we get

B (6) 5 (n) ≡ a 24 (n) (mod 5) ∀ n ≥ 0. ( 25 
)
Let us apply Lemma 2.1 taking r = 24 to get that for a prime p,

a 24 (pn + (p -1)) = a 24 (p -1) • a 24 (n) -p 11 • a 24 n -(p -1) p .
Substituting n by pn + (p -1) repeatedly, we get

a 24 p 2 n + (p 2 -1) = a 24 (p -1) • a 24 (pn + (p -1)) -p 11 • a 24 (n) , (26) 
a 24 p 3 n + (p 3 -1) = a 24 (p -1) • a 24 p 2 n + (p 2 -1) -p 11 • a 24 (pn + (p -1)) , (27) 
a 24 p 4 n + (p 4 -1) = a 24 (p -1) • a 24 p 3 n + (p 3 -1) -p 11 • a 24 p 2 n + (p 2 -1) . (28) 
In [START_REF] Xia | Congruences for some l-regular partitions modulo l[END_REF], replacing a 24 p 3 n + (p 3 -1) and a 24 p 2 n + (p 2 -1) according to ( 26) and ( 27), respectively, we get after simplifying Let us assume that p = 5 and that B .

The above equation can be rewritten as

∞ n=0 B (6) 7 (n)q n = E 6 7 E 7 1 • E 1 .
Now, by [START_REF] Cui | Arithmetic properties of ℓ-regular partitions[END_REF], we get

∞ n=0 B (6) 7 (n)q n = E 6 7 E 7 
1

• E 49 B q 7 C(q 7 ) -q A q 7 B(q 7 ) -q 2 + q 5 C q 7 A(q 7 ) .

In view of (2), we get

∞ n=0 B (6) 7 (n)q n ≡ E 12 7 B q 7
C(q 7 ) -q A q 7 B(q 7 ) -q 2 + q 5 C q 7 A(q 7 ) (mod 7).

Collecting the terms involving q 7n+2 , we get

∞ n=0 B (6) 
7 (7n + 2)q 7n+2 ≡ 6q 2 E 12 7 (mod 7). Now, dividing both sides by q 2 and substituting q by q 1/7 , we get

∞ n=0 B (6) 
7 (7n + 2)q n ≡ 6E 12 1 (mod 7).

In view of ( 4), we get

B (6) 7 (7n + 2) ≡ 6a 12 (n) (mod 7) ∀ n ≥ 0. ( 29 
)
Let us apply Lemma 2.1 taking r = 12 to get that for an odd prime p,

a 12 pn + p -1 2 = a 12 p -1 2 • a 12 (n) -p 5 • a 12 n -p-1 2 p .
Substituting n by pn + p-1 2 repeatedly, we get

a 12 p 2 n + p 2 -1 2 = a 12 p -1 2 • a 12 pn + p -1 2 -p 5 • a 12 (n) , (30) 
a 12 p 3 n + p 3 -1 2 = a 12 p -1 2 • a 12 p 2 n + p 2 -1 2 -p 5 • a 12 pn + p -1 2 , ( 31 
)
a 12 p 4 n + p 4 -1 2 = a 12 p -1 2 • a 12 p 3 n + p 3 -1 2 -p 5 • a 12 p 2 n + p 2 -1 2 . ( 32 
)
In (32), replacing a 12 p 3 n + p 3 -1 2 and a 12 p 2 n + p 2 -1 2 according to (30) and (31), respectively, we get after simplifying

a 12 p 4 n + p 4 -1 2 = a 12 p -1 2 • a 12 p -1 2 2 -2p 5 • a 12 pn + p -1 2 -p 5 • a 12 p -1 2 2 -p 5 • a 12 (n).
Now, by (29), we get 6B (6) 7

7p 4 n + 7p 4 -3 2 ≡ 6B (6) 7 7p -3 2 • 6B (6) 7 7p -3 2 2 -2p 5 • 6B (6) 7 7pn + 7p -3 2 -p 5 • 6B (6) 7 7p -3 2 2 -p 5 • 6B (6) 
7 (7n + 2) (mod 7).

Let us assume that p = 7 and that B (6) 7 7p-3) 2

≡ 0 (mod 7). Then we get

B (6) 7 7p 4 n + 7p 4 -3 2 ≡ p 4 B (6) 
7 (7n + 2) (mod 7).

We get the desired result by inductively substituting n by p 4 n + p 4 -1 2 in the above congruence.

Congruences Modulo a Composite Number

In this section, we will prove Theorem 1.4, Theorem 1.5, Theorem 1.6, and Theorem 1.7.

Proof of Theorem 1.4. Part (i): Let us take ℓ = 3 and r = 12 in (3) to get

∞ n=0 B (12) 3 (n)q n = E 12 3 E 12 1 
. Now, by (2), we get

∞ n=0 B (12) 3 (n)q n ≡ E 6 6 E 6 2 
(mod 2).

Comparing coefficients of q 2n+1 on both sides, we get

B (12) 3 (2n + 1) ≡ 0 (mod 2) ∀ n ≥ 0. ( 33 
)
On the other hand, let p be a prime number such that p ≡ 2 (mod 3) and j be an even number such that p ∤ j. By Corollary 1.2 (i), we get that for any n ≥ 0 and t ≥ 0,

B (12) 3 3p 2t+2 n + p 2t+1 (p + 3j) -1 ≡ 0 (mod 3).
Substituting n by 2n + 1, we get

B (12) 3 6p 2t+2 n + p 2t+1 (4p + 3j) -1 ≡ 0 (mod 3). Note that 6p 2t+2 n + p 2t+1 (4p + 3j) -1 = 2 3p 2t+2 n + p 2t+1 (4p+3j)-2 2 + 1.
Thus, in view of (33), we get

B (12) 3 6p 2t+2 n + p 2t+1 (4p + 3j) -1 ≡ 0 (mod 2),
and hence, the desired result.

Part (ii): Let us take ℓ = 5 and r = 10 in (3) to get Comparing coefficients of q 2n+1 on both sides, we get B

∞ n=0 B (10) 5 (n) 
(2n + 1) ≡ 0 (mod 2) ∀ n ≥ 0. (34) On the other hand, let p = 5 be a prime number such that p ≡ 2 (mod 3) and j be an even number such that p ∤ j. By Corollary 1.2 (iii), we get that for any n ≥ 0 and t ≥ 0,

B (10) 5 5p 2t+2 n + 5 p 2t+1 (p + 3j) -1 3 ≡ 0 (mod 5).
Substituting n by 2n + 1, we get

B (10) 5 10p 2t+2 n + 5 p 2t+1 (4p + 3j) -1 3 ≡ 0 (mod 5).
Note that 10p 2t+2 n + 5 p 2t+1 (4p+3j)-1 3

= 2 5p 2t+2 n + 5p 2t+1 (4p+3j)-8 6 + 1. Thus, in view of (34), we get

B (10) 5 10p 2t+2 n + 5 p 2t+1 (4p + 3j) -1 3 ≡ 0 (mod 2),
and hence, the desired result. Part (iii): Let us take ℓ = 3 and r = 15 in (3) to get

∞ n=0 B (15) 3 (n 
)q n = E 15 3 E 15 1 
. Now, by (2), we get

∞ n=0 B (15) 3 (n)q n ≡ E 3 15 E 3 5 (mod 5).
Comparing coefficients of q 5n+α on both sides, where α ∈ {1, 2, 3, 4}, we get

B (15) 3 (5n + α) ≡ 0 (mod 5) ∀ n ≥ 0. (35)
On the other hand, let p = 3 be a prime number such that p ≡ 2 (mod 3) and j be a positive integer such that 5 | j but p ∤ j. By Corollary 1.2 (ii), we get that for n ≥ 0 and t ≥ 0,

B (15) 3 3p 2t+2 n + p 2t+1 (5p + 12j) -5 4 ≡ 0 (mod 3).
Substituting n by 5n + α, we get

B (15) 3 15p 2t+2 n + p 2t+1 ((12α + 5)p + 12j) -5 4 ≡ 0 (mod 3). Note that 15p 2t+2 n + p 2t+1 ((12α+5)p+12j)-5 4 = 5 3p 2t+2 n + 3p 2t+2 α-α ′ +3p 2t+1 j 5 + p 2t+2 -1 4 + α ′
, where α ′ ∈ {1, 2, 3, 4} is such that 3p 2t+2 α ≡ α ′ (mod 5). Thus, in view of (35), we get (n

)q n = E 20t+1 5 E 20t+1 1 . (36) 
The above equation can be rewritten as

∞ n=0 B (20t+1) 5 (n)q n = E 20t 5 E 20t 1 • E 5 E 1 .
Now, by [START_REF] Carlson | Infinite families of infinite families of congruences for k-regular partitions[END_REF], we get

∞ n=0 B (20t+1) 5 (n)q n = E 20t 5 E 20t 1 E 8 E 2 20 E 2 2 E 40 + q E 3 4 E 10 E 40 E 3 2 E 8 E 20 .
In view of (2), we get

∞ n=0 B (20t+1) 5 (n)q n ≡ E 5t 20 E 5t 4 E 8 E 2 20 E 4 E 40 + q E 3 4 E 10 E 40 E 3 2 E 8 E 20
(mod 2).

Collecting the terms involving q 2n , we get

∞ n=0 B (20t+1) 5 (2n)q 2n ≡ E 5t 20 E 5t 4 • E 8 E 2 20 E 4 E 40 (mod 2).
Now, substituting q by q 1/2 , we get

∞ n=0 B (20t+1) 5 (2n)q n ≡ E 5t 10 E 5t 2 • E 4 E 2 10 E 2 E 20 (mod 2).
Comparing coefficients of q 2n+1 on both sides, we get

B (20t+1) 5 (4n + 2) ≡ 0 (mod 2) ∀ n ≥ 0. ( 37 
)
On the other hand, (36) can be also rewritten as

∞ n=0 B (20t+1) 5 (n)q n = E 20t+1 5 E 20t+5 1 • E 4 1 .
Now, by [START_REF] Chern | Arithmetic properties for 7-regular partition triples[END_REF], we get

∞ n=0 B (20t+1) 5 (n)q n = E 20t+1 5 E 20t+5 1 • E 4 25 1 R(q 5 ) -q -q 2 R q 5 4 .
In view of (2), we get

∞ n=0 B (20t+1) 5 (n)q n ≡ E 20t+1 5 E 4 25 E 4t+1 5 1 R (q 5 ) 4 + q R (q 5 ) 3 + 2q 2
R (q 5 ) 2 + 3q 3 R (q 5 ) + 2q 5 R q 5 + 2q 6 R q 5 2 + 4q 7 R q 5 3 + q 8 R q 5 4 (mod 5).

Comparing coefficients of q 5n+4 on both sides, we get (n

)q n = E 20t+9 5 E 20t+9 1 .
The above equation can be rewritten as

∞ n=0 B (20t+9) 5 (n)q n = E 20t+8 5 E 20t+8 1 • E 5 E 1
as well as

∞ n=0 B (20t+9) 5 (n)q n = E 20t+9 5 E 20t+10 1 • E 1 .
Following similar arguments as in Part (i), we get that for any n ≥ 0, B

(4n + 2) ≡ 0 (mod 2), B

(5n + α ′ ) ≡ 0 (mod 5), where α ′ ∈ {3, 4}. Combining these, we get the desired result. Part (iii): Let us take ℓ = 5 and r = 20t + 17, for t ≥ 0, in (3) to get

∞ n=0 B (20t+17) 5 (n)q n = E 20t+17 5 E 20t+17 1 .
The above equation can be rewritten as

∞ n=0 B (20t+17) 5 (n)q n = E 20t+16 5 E 20t+16 1 • E 5 E 1 as well as ∞ n=0 B (20t+17) 5 (n)q n = E 20t+17 5 E 20t+20 1 • E 3 1 .
Following similar arguments as in Part (i), we get that for any n ≥ 0, B

(4n + 2) ≡ 0 (mod 2), B

(5n + α ′ ) ≡ 0 (mod 5), where α ′ ∈ {2, 3, 4}. Combining these, we get the desired result.

Proof of Theorem 1.6. Part (i): Let us take ℓ = 35 and r = 35t + 4, for t ≥ 0, in (3) to get

∞ n=0 B (35t+4) 35 (n)q n = E 35t+4 35 E 35t+4 1 . (39) 
The above equation can be rewritten as

∞ n=0 B (35t+4) 35 (n)q n = E 35t+4 35 E 35t+5 1 • E 1 . Now, by (6), we get ∞ n=0 B (35t+4) 35 (n)q n = E 35t+4 35 E 35t+5 1 • E 25 1 R(q 5 ) -q -q 2 R q 5 .
In view of (2), we get

∞ n=0 B (35t+4) 35 (n)q n ≡ E 35t+4 35 E 25 E 7t+1 5 1 R(q 5 )
-q -q 2 R q 5 (mod 5).

Comparing coefficients of q 5n+α1 on both sides, where α 1 ∈ {3, 4}, we get

B (35t+4) 35 (5n + α 1 ) ≡ 0 (mod 5) ∀ n ≥ 0. ( 40 
)
On the other hand, (39) can be also rewritten as

∞ n=0 B (35t+4) 35 (n)q n = E 35t+4 35 E 35t+7 1 • E 3 1 .
Now, by [START_REF] Cui | Arithmetic properties of ℓ-regular partitions[END_REF], we get

∞ n=0 B (35t+4) 35 (n)q n = E 35t+4 35 E 35t+7 1 • E 3 49 A 2 (q 7 ) A 1 (q 7 ) -q A 3 (q 7 ) A 2 (q 7 ) -q 2 + q 5 A 1 (q 7 ) A 3 (q 7 ) 3 .
In view of (2), we get

∞ n=0 B (35t+4) 35 (n)q n ≡ E 35t+4 35 E 3 49 E 5t+1 7 A 3 2 A 3 1 + 4q A 2 A 3 A 2 1 + 4q 2 A 2 2 A 2 1 + 3q 2 A 2 3 A 1 A 2 + 6q 3 A 3 A 1 + 6q 3 A 3 3 A 3 2 + 3q 4 A 2 A 1 + 4q 4 A 2 3 A 2 2 + 3q 5 A 2 2 A 1 A 3 + 4q 5 A 3 A 2 + q 7 A 2 A 3 + 3q 7 A 1 A 3 A 2 2 + 6q 8 A 1 A 2 + 3q 9 A 1 A 3 + 3q 10 A 1 A 2 A 2 3 + 4q 11 A 2 1 A 2 A 3 + 4q 12 A 2 1 A 2 3 + q 15 A 3 1 A 3 3 (mod 7),
where A i := A i (q 7 ) for i ∈ {1, 2, 3}. Comparing coefficients of q 7n+6 on both sides, we get 

11 11p

 11 2t+2 n + 11 p 2t+1 (5p+12j)-5 12

  Part (iii): Let us take ℓ = 5 and r = 10 in (3) to get

  Now, substituting n by 4n + 1, we get a(4p 2 n + p 2 ) = p 2 • a(4n + 1).

  Part (v): Let us take ℓ = 11 and r = 11 in (3) to get

a 24 p

 24 4 n + (p 4 -1) = a 24 (p -1) • a 24 (p -1) 2 -2p 11 • a 24 (pn + (p -1)) -p 11 • a 24 (p -1) 2 -p 11 • a 24 (n). Now, by (25), we get B

p 4 n

 4 + (p 4 -1) ≡ p 2 B (6) 5 (n) (mod 5). We get the desired result by inductively substituting n by p 4 n + (p 4 -1) in the above congruence. Part (ii): Let us take ℓ = 7 and r = 6 in (3) to get

B ( 15 ) 3 15p

 153 2t+2 n + p 2t+1 ((12α + 5)p + 12j) -5 4 ≡ 0 (mod 5), and hence, the desired result. Proof of Theorem 1.5. Part (i): Let us take ℓ = 5 and r = 20t + 1, for t ≥ 0, in (3) to get

B (20t+1) 5 (5n + 4 )

 54 ≡ 0 (mod 5) ∀ n ≥ 0. (38) Combining (37) and (38), we get the desired result. Part (ii): Let us take ℓ = 5 and r = 20t + 9, for t ≥ 0, in (3) to get

B (35t+4) 35 (7n + 6 ) 1 • E 1 . 1 . 6 ) 1 • E 1 .α 2 ) 1 • E 3 1α 1 ∈ 1 .B 1 • E 1

 3561116112131111 ≡ 0 (mod 7) ∀ n ≥ 0. (41) Combining (40) and (41), we get the desired result. Part (ii): Let us take ℓ = 35 and r = 35t + 6, for t ≥ 0, in (3) to get Following similar arguments as in Part (i), we get that for any n ≥ 0, B (35t+6) 35 (5n + 4) ≡ 0 (mod 5), B (35t+6) 35 (7n + α 2 ) ≡ 0 (mod 7), where α 2 ∈ {3, 4, 6}. Combining these, we get the desired result. Part (iii): Let us take ℓ = 35 and r = 35t + 11, for t ≥ 0, in (3) to get Following similar arguments as in Part (i), we get that for any n ≥ 0, ≡ 0 (mod 7). Combining these, we get the desired result. Part (iv): Let us take ℓ = 35 and r = 35t + 27, for t ≥ 0, in (3) to get Following similar arguments as in Part (i), we get that for any n ≥ 0, ≡ 0 (mod 7), where α 1 ∈ {2, 3, 4} and α 2 ∈ {3, 4, 6}. Combining these, we get the desired result. Part (v): Let us take ℓ = 35 and r = 35t + 32, for t ≥ 0, in (3) to get Following similar arguments as in Part (i), we get that for any n ≥ 0, {2, 3, 4}. Combining these, we get the desired result. Part (vi): Let us take ℓ = 35 and r = 35t + 34, for t ≥ 0, in (3) to get The above equation can be rewritten as ∞ n=0

  • • • , t + 1} and p t+1 ∤ j.

	(v) B	(11) 11	11p 2 1 • • • p 2 t+1 n +	11 p 2 1 •••p 2 t pt+1(5pt+1+12j)-5 12
		(12)		
		3		

≡ 0 (mod 11), where p i ∈ {3, 11} is a prime number such that p i ≡ 3 (mod 4) for i ∈ {1, • • • , t + 1} and p t+1 ∤ j.

Corollary 1.2. For any n ≥ 0 and t ≥ 0, we have (i) B

Following similar arguments as in Part (i), we get that for any n ≥ 0, B (35t+34) 35 (5n + α 1 ) ≡ 0 (mod 5),

B (35t+34) 35

(7n + α 2 ) ≡ 0 (mod 7), where α 1 ∈ {3, 4} and α 2 ∈ {3, 4, 6}. Combining these, we get the desired result.

Proof of Theorem 1.7. Part (i): Let us take ℓ = 55 and r = 55t + 21, for t ≥ 0, in (3) to get

The above equation can be rewritten as

Now, by [START_REF] Chern | Arithmetic properties for 7-regular partition triples[END_REF], we get

In view of (2), we get

+ 2q 6 R q 5 2 + 4q 7 R q 5 3 + q 8 R q 5 4 (mod 5).

Comparing coefficients of q 5n+4 on both sides, we get

On the other hand, (42) can be also rewritten as

Now, by [START_REF] Dai | On the distribution of odd values of 2 a -regular partition functions[END_REF], we get

) -q 2 B 5 (q 11 ) B 3 (q 11 ) + q 5 + q 7 B 3 (q 11 ) B 4 (q 11 ) -q 15 B 1 (q 11 ) B 5 (q 11 ) .

In view of (2), we get

-q B 2 (q 11 ) B 1 (q 11 ) -q 2 B 5 (q 11 ) B 3 (q 11 ) + q 5 + q 7 B 3 (q 11 ) B 4 (q 11 ) -q 15 B 1 (q 11 ) B 5 (q 11 ) (mod 11).

Comparing coefficients of q 11n+α2 on both sides, where α 2 ∈ {3, 6, 8, 9, 10}, we get

Combining ( 43) and (44), we get the desired result.

Part (ii): Let us take ℓ = 55 and r = 55t + 32, for t ≥ 0, in (3) to get

The above equation can be rewritten as

Following similar arguments as in Part (i), we get that for any n ≥ 0, B 

The above equation can be rewritten as

Following similar arguments as in Part (i), we get that for any n ≥ 0, B

(5n + α 1 ) ≡ 0 (mod 5), B

(11n + α 2 ) ≡ 0 (mod 11),

where α 1 ∈ {3, 4} and α 2 ∈ {3, 6, 8, 9, 10}. Combining these, we get the desired result.