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MASC: A Memory-Efficient Adjoint Sensitivity Analysis through Compression Using Novel Spatiotemporal Prediction

Adjoint sensitivity analysis is critical in modern integrated circuit design and verification, but its computational intensity grows significantly with the size of the circuit, the number of objective functions, and the accumulation of time points. This growth can impede its wider application. The intimate link between the forward integration in transient analysis and the reverse integration in adjoint sensitivity analysis allows for the retention of Jacobian matrices from transient analysis, thereby speeding up sensitivity analysis. However, Jacobian matrices across multiple timesteps are often so large that they cannot be stored in memory during the forward integration process, necessitating disk storage and incurring significant I/O overhead. To address this, we develop a memoryefficient sensitivity analysis method that utilizes data compression to minimize memory overhead during simulation and enhance analysis efficiency. Our compression method can efficiently compress the sparse tensor that contains the Jacobian matrices over time by exploiting the spatiotemporal characteristics of the data and circuit attributes. It also introduces a shared-indices technique, a cutting-edge spatiotemporal prediction model, and robust residual encoding. We evaluate our compression method on 7 datasets from real-world simulations and demonstrate that it can reduce the memory requirements for storing Jacobian matrices by more than 16× on average, which is significantly more efficient than other state-of-the-art compression techniques.

INTRODUCTION

In contemporary integrated circuit design, transient sensitivity analysis plays a vital role in various domains, including circuit optimization [START_REF] Agrawal | Circuit optimization using scale based sensitivities[END_REF], performance modeling [START_REF] Stevanovic | Quadratic backward propagation of variance for nonlinear statistical circuit modeling[END_REF], and yield estimation [START_REF] Gu | An efficient, fully nonlinear, variability-aware non-monte-carlo yield estimation procedure with applications to sram cells and ring oscillators[END_REF]. The working performance of a circuit is influenced by numerous critical parameters, such as transistor dimensions, parasitic resistances, capacitances, and more. Sensitivity analysis is a valuable tool for examining the impact of these factors on system output. However, the conventional direct method falls short when dealing with a large number of parameters [START_REF] Sagan | Transient adjoint dae sensitivities: a complete, rigorous, and numerically accurate formulation[END_REF]; as a result, the adjoint method has become the standard in modern circuit simulations.

In large-scale circuit simulations, transient adjoint sensitivity analysis often results in significant computational overhead. This arises from the discretization of the dynamic system through numerical integration methods, which typically require solving large-scale differential equations at numerous time points -a process that can be quite time-consuming. This challenge is particularly prevalent in modern integrated circuit design. A major portion of the time spent in the adjoint method is devoted to computing Jacobian matrices [START_REF] Hu | Adjoint transient sensitivity analysis for objective functions associated to many time points[END_REF]. Therefore, any approach that enables the adjoint method to bypass these computations could lead to considerable time savings.

Fortunately, the adjoint system and the original system usually share the same Jacobian matrices. By storing and reusing these matrices instead of recomputing them, significant reductions in simulation time can be achieved.

Nonetheless, efforts to speed up sensitivity analysis by retaining Jacobians during transient analysis result in excessive memory overhead. Consequently, an alternative approach is to save this data on disk storage. However, this introduces frequent file I/O operations and data retrieval processes, leading to considerable time overhead. Such an approach significantly diminishes the simulator's efficiency while also placing substantial demands on disk storage.

To address the aforementioned issues, the introduction of inmemory compression is crucial. However, existing compression methods do not adequately exploit the intrinsic characteristics of data during the simulation process, resulting in suboptimal compression ratios and speeds. It is noteworthy that these matrices form a tensor along the time dimension, characterized by the following features: Firstly, each matrix is stored in a sparse storage format, with row indices and column indices represented as integer arrays, and non-zero values as floating-point arrays. Secondly, due to the brief step lengths in numerical integration, there is a significant correlation between temporally adjacent matrices, essentially making these matrices a form of time series data. Furthermore, these Jacobians are intimately linked to the circuit's structure.

To this end, we propose a novel lossless compression method that employs spatiotemporal prediction, effectively enhancing compression ratios for Jacobians across timesteps. This algorithm skillfully utilizes the spatiotemporal attributes of Jacobian matrices, enabling efficient compression of the sparse tensor formed by these matrices. As a result, it significantly reduces memory overhead in simulations without sacrificing accuracy. To our knowledge, this represents the first instance of a data compression-based approach to adjoint sensitivity analysis. It also constitutes the first thorough exploration of sparse Jacobian matrix compression in the context of SPICE simulations. Our contributions are summarized as follows:

• We conduct a comprehensive analysis of data characteristics in circuit simulation and investigate different floating-point compression methods from various fields. • We develop a lossless floating-point compression method based on a novel spatiotemporal prediction model for Jacobian matrices. We adeptly employ the shared indices technique to address the storage and computational overhead associated with the Jacobian matrix indices. • We evaluate our compression method on 7 real-world datasets, showcasing its superior performance compared with other leading compression methods.

• We further employ the proposed compression algorithm into the sensitivity analysis in SPICE simulator, and demonstrate memory-efficient acceleration with end-to-end comparison.

The rest of this paper is organized as follows. Section 2 provides an outline of the research background, and Section 3 discusses the motivation. In Section 4, we present our compression method, followed by the MASC design in Section 5. The evaluation results are detailed in Section 6. We conclude the paper in Section 7.

BACKGROUND 2.1 ADJOINT SENSITIVITY ANALYSIS

For sensitivity analysis, the circuit we are interested in can be represented by a set of Differential Algebraic Equations (DAE):

𝒈(𝒙, 𝑡, 𝒑) = 𝑑 𝑑𝑡 𝒒(𝒙, 𝒑) + 𝒇 (𝒙, 𝒑) + 𝒃 (𝑡, 𝒑) = 0, (1) 
where 𝒙 ∈ R 𝐷 is the state vector, 𝑡 is time, 𝒑 ∈ R 𝑀 is the parameter vector with respect to which we need sensitivities, 𝒒 ∈ R 𝐷 and 𝒇 ∈ R 𝐷 respectively represent dynamic and static elements, 𝒃 ∈ R 𝐷 is the input. It is common to discretize the DAE system using numerical integration methods such as backward Euler, and then employ the Newton-Raphson iteration to solve at each timestep. The objective function is typically a function of the state vector ì 𝑥 at one or multiple time points:

𝑶 = 𝜻 (𝒙 0 , 𝒙 1 , • • • , 𝒙 𝑛 ).
(2) Then the sensitivity is the derivative of the objective function with respect to the system parameters p:

𝑑𝑶 𝑑𝒑 = 𝑛 ∑︁ 𝑖=0 𝑑𝑶 𝑑𝒙 𝑖 𝜕𝒙 𝜕𝒑 𝑖 . ( 3 
)
Adjoint method is shown as:

𝑑𝑂 𝑑𝑝 = 𝑛 ∑︁ 𝑖=0 𝑛 ∑︁ 𝑘=𝑖 ( d𝑶 d𝒙 ) 𝑘 ( 𝜕𝒈 𝜕𝒙 ) -1 𝑘 𝑖 𝑗=𝑘 -1 ( 1 
ℎ 𝑡 𝜕𝒒 𝜕𝒙 ) 𝑗 ( 𝜕𝒈 𝜕𝒙 ) -1 𝑗 ( 𝜕𝝋 𝜕𝒑 ) 𝑖 . ( 4 
)
It can be considered as a backward propagation of transient analysis, with ℎ 𝑡 as the step size for numerical integration and 𝝋 representing terms related to the system parameter 𝒑:

𝜕𝝋 𝜕𝒑 𝑖+1 = 1 ℎ 𝑡 [( 𝜕𝒒 𝜕𝒑 ) 𝑖+1 -( 𝜕𝒒 𝜕𝒑 ) 𝑖 ] + 𝜕𝒇 𝜕𝒑 𝑖+1 + 𝜕𝒃 𝜕𝒑 𝑖+1 (5) 
Based on (4), it is evident that during the adjoint process, repetitive computations of Jacobian matrices at multiple time points are required, leading to a significant additional time overhead.

FLOATING-POINT DATA COMPRESSION

Jacobian matrices, which are usually sparse, are often stored in Compressed Sparse Row (CSR) format, which utilizes integer indices and floating-point non-zero values. To further reduce the size of these CSR sparse matrices, compression techniques can be applied to both the non-zero floating-point values and the integer indices. General-purpose lossless compression can be divided into two main categories: (1) Dictionary-based compression, which aims to reduce spatial redundancy in the input data stream. Examples include LZ77 and LZW . LZ77 is designed to efficiently encode locally repeated sequences, while LZW assembles a lexicon of recurring data strings, allowing for the substitution of long repeated patterns with shorter dictionary indices. ( 2) Entropy-based compression, which utilizes the entropy/frequency information of the input for encoding. This category includes methods such as Asymmetric Numeral Systems (ANS) encoding [START_REF] Duda | Asymmetric numeral systems: entropy coding combining speed of huffman coding with compression rate of arithmetic coding[END_REF] and Huffman encoding . ANS efficiently compresses data by assigning shorter codes to more frequent symbols and longer codes to less frequent ones, while Huffman encoding uses a different encoding strategy which is building a Huffman tree based on the frequency to generate the prefix code. While Huffman encoding is simpler and quite effective for many applications, ANS encoding offers higher efficiency and adaptability at the cost of increased complexity. Several significant endeavors, including FPZIP [START_REF] Lindstrom | Fast and efficient compression of floating-point data[END_REF], NDZIP [START_REF] Knorr | ndzip: A high-throughput parallel lossless compressor for scientific data[END_REF], and ZFP [START_REF] Lindstrom | Fixed-rate compressed floating-point arrays[END_REF], have proposed new general-purpose lossless compressors specifically for floating-point data. Each algorithm employs distinct methodologies to achieve decorrelation of floating-point data, which is a prerequisite step before the application of various encoding techniques, including the aforementioned ones or alternative, more straightforward encoding methods. However, these compressors do not consider the specific characteristics of the data such as Jacobian matrices during decorrelation.

MOTIVATION 3.1 TIME-CONSUMING COMPUTATION

Table 1 presents a time comparison between transient analysis and ajoint sensitivity analysis for circuits of varying scales. This comparison is made under different numbers of objective functions, given parameters, and at various time points. Due to the impact of these factors, the time overhead associated with sensitivity analysis is substantial, often being several times or even tens of times that of transient simulation, which is unacceptable. Furthermore, in adjoint sensitivity analysis, the computation of the Jacobian matrix is notably time-consuming. For example, as shown in Table 1, the time spent on calculating the Jacobian matrix accounts for about 50%, and in some cases, it can go as high as about 65%. If the calculation of the Jacobian matrix can be avoided in the sensitivity analysis process, the efficiency of the sensitivity analysis can be significantly enhanced.
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Spatiotemporal Prediction

HIGH MEMORY COST

By reusing Jacobian from transient analysis, we can significantly accelerate the sensitivity analysis process. However, this strategy leads to considerable memory overhead. As illustrated in Figure 1, in adjoint sensitivity analysis, the storage overhead for Jacobians can surpass several hundred gigabytes as the scale of the circuit increases. Consequently, developing a compression method that offers a high compression ratio for Jacobians is essential to effectively reduce the memory burden during the simulation process.

Furthermore, to enhance the accuracy of simulation results, it is preferable to employ efficient lossless compression during the simulation process rather than lossy compression. The use of lossy compression could lead to significant cumulative errors.

SPATIOTEMPORAL PREDICTION BASED COMPRESSION FRAMEWORK

To minimize memory overhead during simulation, we propose an innovative approach for effectively compressing sparse Jacobians. The complete workflow of our compression method is depicted in Figure 2. We employ sparse storage formats, such as CSR, to store the Jacobian matrix. Considering that the values in the index array are integers and the non-zero element array comprises floatingpoint numbers, we discuss their compression separately.

SHARED INDICES

First, let us briefly discuss the compression and storage of indices. By observing the stamping process of the Jacobian matrix, we can notice that the structure of all matrices is identical. Therefore, we have ingeniously employed a technique called "Shared Indices" to effectively reduce the computational and storage overhead of the index arrays. Since all Jacobian matrices share a common set of row and column index, we place them in heap memory to ensure a longer lifecycle. If further compressing index arrays is desired, delta encoding can first be utilized to convert large integers into smaller ones, and then variable-length encoding can be applied to achieve efficient compression of indices.

SPATIOTEMPORAL PREDICTION MODEL

The primary challenge in compressing Jacobians lies in the efficient compression of non-zero element arrays. In this section, we introduce an efficient lossless floating-point compression method based on a novel hybrid prediction model to address this challenge.

Temporal Prediction Model. Due to the significant temporal correlations present in Jacobian matrices, our predictor employs the temporal prediction model to effectively capture and address these temporal dependencies.

In time-series compression, the typical approach is to compute the predictive value using historical data points [START_REF] Liakos | Chimp: efficient lossless floating point compression for time series databases[END_REF]. We expand this concept to the spatial dimension by employing a neighboring time point matrix to predict the current matrix 𝑴 𝑡 , where M𝑡 = 𝑴 𝑡 +1 . However, using multiple adjacent matrices to predict the current matrix is not feasible, as storing the historical information of several matrices would result in a substantial increase in memory overhead. Therefore, during the forward integration process, we store the Jacobian matrix at time 𝑡 𝑛 for use at time point 𝑡 𝑛+1 , relying solely on Jacobian matrices from adjacent time points for predictive modeling. Subsequent difference computation can eliminate the data redundancy introduced by linear elements.

Spatial Prediction Model. In the spatial dimension, we establish the prediction model, termed the "stamping-based prediction model", aligning with the Jacobian matrix construction methodolog, i.e. MNA, as illustrated in Figure 3(a). The Jacobian matrix is essentially an aggregate of the stamps from all the elements in the circuit [START_REF] Roychowdhury | Numerical Simulation and Modelling of Electronic and Biochemical Systems[END_REF]. A typical matrix stamp can be characterized by the set {𝑆 (𝑖, 𝑖), 𝑆 (𝑖, 𝑗), 𝑆 ( 𝑗, 𝑖), 𝑆 ( 𝑗, 𝑗)}. The four elements in this set are derived from the same element's contribution to the matrix, demonstrating a significant interdependence among them. For example, in linear resistors and capacitors, there exists a relationship such that 𝑆 (𝑖, 𝑖) = 𝑆 ( 𝑗, 𝑗) = -𝑆 (𝑖, 𝑗) = -𝑆 ( 𝑗, 𝑖).

Similarly, we examine four non-zero elements at corresponding positions in the matrix, forming a pattern described by the set {𝑉 (𝑖, 𝑖), 𝑉 (𝑖, 𝑗), 𝑉 ( 𝑗, 𝑖), 𝑉 ( 𝑗, 𝑗)}. One of the values in this set can be predicted using the other values. The design of our prediction model is structured as follows:

         V𝑝 (𝑖, 𝑗) = 𝑒𝑣𝑎𝑙 ( V ( 𝑗, 𝑖), -V (𝑖, 𝑖), -V ( 𝑗, 𝑗)) V𝑝 ( 𝑗, 𝑖) = 𝑒𝑣𝑎𝑙 (-V (𝑖, 𝑖), -V ( 𝑗, 𝑗)) V𝑝 ( 𝑗, 𝑗) = V (𝑖, 𝑖) (6)
Due to the unique nature of the values in the matrix stamp of different elements, we do not employ the Lorenz predictor scheme, in contrast to the approaches used in NDZIP and FPZIP. Instead, we independently evaluate the similarity between the true value and the other values in the matrix stamp. We use an evaluation function to select the value that is closest to the true value as the prediction result for this model. Notably, the non-zero elements on the main diagonal of the Jacobian matrix in simulations often have sign bits opposite to those in other regions. To capitalize on this, we invert the sign bits of the elements on the main diagonal, leading to a higher compression ratio during the encoding phase. Figure 3(b)(c)(d) outlines the workflow of our predictor. A more detailed explanation will be provided in the next section.

Markov predictor. To minimize the time overhead involved in selecting the best-fit prediction model, we innovatively employ Markov models. This approach is based on our observation of regularity in the selection of prediction models, due to strong spatiotemporal dependencies in the data. Specifically, we record the predictor's decision history during the best-fit phase in a historical table, estimate probabilities using frequency, and then utilize a Markov predictor to directly make predictions for the choice of prediction models (as shown in Figure 4). This design not only reduces the compression time overhead but also significantly lessens the extra space overhead incurred by recording the selection of prediction models, though there may be a slight decrease in prediction accuracy (see detail in Table 3). 

EFFICIENT RESIDUAL CODING

Figure 5 shows the encoding process for non-zero elements. The compressor reads the actual value from the front of the compression queue and the predicted value from the hybrid predictor, then performs an XOR operation between them to generate the residual. Subsequently, the encoder encodes these residuals. Since the actual and predicted values are usually very close, the residuals often contain numerous leading and trailing zeros. Hence, effectively encoding these zero bits can result in a significant compression ratio for the floating-point data.

We perform a statistical analysis of the residual characteristics across multiple datasets and developed an efficient residual encoding scheme, as shown in Figure 5(a). Figure 5(b) displays the distribution of leading zeros in the residuals, indicating that approximately 60% of the residuals comprise 64 consecutive zero bits, this also robustly validates the effectiveness of our spatiotemporal prediction model. Consequently, we utilize just 1 bit to represent this scenario. Given that fewer than 2% of the residuals have fewer than 8 leading zeros, we use 3 bits for encoding the number of leading zeros, treating it as 0 if the count of leading zero bits is between 0 and 7. Moreover, if the meaningful bits of the current residual are within the range of the previous residual's meaningful bits, the encoding of leading zeros can be shared. Once the encoding process is completed, these bits are concatenated and stored in a buffer. 

5:

if 𝑉 𝑖 ∈ 𝐿 then 6:

V (𝐿)
𝑖 ← 𝐿𝑎𝑠𝑡𝑉 𝑎𝑙𝑢𝑒.

7:

end if 8:

𝑠𝑜𝑙 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑃 ={ (𝑇 ),(𝑆 ),(𝐿) } ( | V 𝑃 𝑖 -𝑉 𝑖 | ) 9:
if 𝑉 𝑖 ∈ 𝐷 then 10:

Use 1 bit to record the bestfit prediction model.

11:

else 12:

Use 2 bits to record the bestfit prediction model.

13:

end if

14:

else if 𝑠𝑜𝑙 = 𝑀𝑎𝑟𝑘𝑜𝑣_𝑠𝑜𝑙 then 15:

𝜋 * ← 𝑀𝑎𝑟𝑘𝑜𝑣𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 , 𝑠𝑜𝑙 = 𝜋 * .

16:

end if 17:

𝑅𝑒𝑠 𝑖 = V 𝑠𝑜𝑙 𝑖
⊕ 𝑉 𝑖 , encode the residual,write it into the buffer.

18: end for Overview of our proposed compression method. Finally, our complete spatiotemporal compression method is presented in Algorithm 1. Specifically, we compress 𝑴 𝑡 at the 𝑡 + 1 time point during the transient simulation process, using 𝑴 𝑡 +1 as the prediction matrix. Due to the strong symmetry of the Jacobian matrix, we divide the original matrix into three regions: the strictly upper triangular region, the strictly lower triangular region, and the diagonal region. The non-zero elements in these regions correspond to three sets 𝑈 , 𝐿, and 𝐷, respectively. Following the matrix stamp-based prediction model, we sequentially compress the floating-point numbers in these sets. To minimize bit wastage in encoding prediction results in set 𝐿 and enhance prediction accuracy, we employ a last value predictor [START_REF] Sazeides | The predictability of data values[END_REF]. This predictor selects the neighboring non-zero element in the same row as the matrix's true value for the predicted value. Ultimately, it chooses the prediction closest to the true value from multiple prediction models as the final prediction value.

ACCELERATING ADJOINT SENSITIVITY SIMULATION USING COMPRESSION

Integrating the SPICE simulation process with efficient data compression techniques substantially improves the efficiency of sensitivity analysis and adeptly tackles the issue of memory overhead. It is important to note that in scenarios with ample computational resources, the proposed design offers potential for parallel execution.

The complete simulation workflow is depicted in Algorithm 2. In the transient analysis, data compression and storage are implemented. Initially, shared indices are obtained during the calculation of the circuit's DC operating point. During transient simulation, the Jacobian matrix at 𝑡 𝑛 is stored to 𝑡 𝑛+1 , and compression of 𝑴 𝑛 occurs at 𝑡 𝑛+1 . This ensures that during the reverse integration process, data decompression is conducted in a reverse manner. Data decompression and memory release are performed during sensitivity analysis. Assuming the objective function is a function of the system's final state, we decompress 𝑴 𝑛-1 at 𝑡 𝑛 for subsequent adjoint sensitivity analysis at 𝑡 𝑛-1 . At this point, 𝑴 𝑛 can be released, thereby reducing memory overhead. Adjoint sensitivity analysis at 𝑡𝑛 .

12:

Decompress 𝑴 𝑛-1 using 𝑴𝑛 ; free memory for 𝑴𝑛 . 13: end while

EXPERIMENTAL EVALUATION

In this section, we present our evaluation results. We start by describing our experimental setup. Next, we examine the compression ratio and time of our proposed compression method. We then demonstrate the effectiveness of our prediction models and conclude by showcasing the overall end-to-end performance of MASC in sensitivity analysis simulations with integrated compression. Datasets. We evaluate the performance of our compression on seven datasets, as shown in Table 2, all generated from actual simulations. Specifically, #CirElem and #Steps represent the number of circuit elements and discrete time points, respectively; 𝑆 𝐶𝑆𝑅 denotes the space required to store all Jacobian matrices in CSR format; and 𝑆 𝑁 𝑍 indicates the space occupied by all non-zero elements in the matrices, which is the primary focus of our compression evaluation.

Baselines. We compare the performance of our proposed compressor with that of the general compressor GZIP , two advanced floating-point compressors (FPZIP [START_REF] Lindstrom | Fast and efficient compression of floating-point data[END_REF] and NDZIP [START_REF] Knorr | ndzip: A high-throughput parallel lossless compressor for scientific data[END_REF]), and the lossy compressor SpiceMate [START_REF] Li | Efficient and accuracy-ensured waveform compression for transient circuit simulation[END_REF] from the EDA domain.

COMPRESSION PERFORMANCE

First, we evaluate the performance of our proposed compression method and compare it with the aforementioned baselines. Table 3 demonstrates that our spatiotemporal compression significantly surpasses other compression methods, achieving a compression ratio 4.95× higher than SpiceMate and 2.24× higher than FPZIP. This superior performance can be attributed to the effective exploitation of the spatiotemporal characteristics of sparse tensors.

In terms of compression time, the average compression time of our spatiotemporal compression method is about 25% of that of GZIP, although it is slower than FPZIP. This slower speed is due to the matrix partitioning step in our spatiotemporal compression method. Despite this, the compression efficiency is remarkably high. Overall, the performance of our spatiotemporal compression method satisfactorily meets the demands of simulation processes.

EFFECTIVENESS OF PREDICTION MODELS

We then evaluate the effectiveness of three prediction models, as illustrated in Figure 6. Specifically, the temporal prediction model was selected with a frequency exceeding 60% in certain datasets, indicating that temporal dependencies are more significant than spatial dependencies in these datasets. In datasets exhibiting regularity in the spatial dimension, the matrix stamping-based prediction model was chosen with a frequency close to 60%, confirming the effectiveness of this model. Concurrently, the last value prediction, introduced to improve prediction accuracy, was selected with a frequency of around 10%, validating its necessity in the model.

END-TO-END PERFORMANCE OF MASC

Finally, we assess the end-to-end performance of our proposed simulator, MASC, and compare it with Xyce [START_REF] Verley | Xyce: Open source simulation for largescale circuits[END_REF]. As Figure 7 illustrates, MASC achieves approximately a 50% reduction in time overhead for sensitivity analysis compared to the original simulation Xyce. This improvement is primarily due to MASC's in-memory compression scheme, which efficiently circumvents the significant time overhead involved in repeatedly computing the Jacobian matrix during the reverse process. When comparing MASC to simulations that directly save Jacobian matrices to disk rather than using in-memory compression, MASC demonstrates 6× end-to-end performance improvement. This notable performance boost is attributed to two factors: (1) our compression method leads to over an 80% reduction in the overhead associated with storing Jacobian matrices on disk, and (2) the speed of our parallel compressor is considerably high (∼2.3 GB/s), far surpassing the SSD's bandwidth (∼0.5 GB/s), which ensures minimal additional time overhead in simulations. Note that the speed of our parallel (de)compression increases rapidly with the number of threads, peaking at around 16 threads. At this point, the parallel speed is more than 8× of the serial speed.

CONCLUSION

In this paper, we seamlessly integrate data compression into simulation processes, utilizing Jacobian matrices stored during forward integration to expedite the reverse adjoint sensitivity solving process. Concurrently, we develop a novel lossless compression method that significantly reduces memory overhead during the simulation. The time overhead of our MASC is approximately half of that with Xyce. Furthermore, our compression method exhibits remarkable enhancements compared to general compression methods and state-of-the-art floating-point compression methods, effectively minimizing memory overhead during the simulation process.
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 2 Figure 2: Overall framework of sparse Jacobian matrices compression technology.
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 45 Figure 4: Matrix stamp and proposed spatiotemporal prediction model.

Algorithm 1 :

 1 Compressing a Jacobian Matrix 𝑴 𝑡 . Input: 𝑴𝑡 and 𝑴 𝑡 +1 Output: Compressed 𝑴𝑡 1: Partition 𝑴𝑡 , obtain 𝑈 , 𝐿, and 𝐷, initiate compression task for these three sequentially, involving 𝑁 floating-point values. 2: for (𝑉 𝑖 , 𝑖 = 0, 1 • • • 𝑁 -1) do 3: if 𝑠𝑜𝑙 = 𝑏𝑒𝑠𝑡 𝑓 𝑖𝑡 _𝑠𝑜𝑙 then

Algorithm 2 : 1 :: else 6 : 9 :

 2169 Proposed MASC sensitivity simulation. Input: Input netlist Output: Sensitivity analysis results 𝑑𝑶 𝑑𝒙 Parse netlist and begin transient simulation. 2: while 𝑡𝑛 ≤ 𝑡 𝑓 do 3: if 𝑡𝑛 = 𝑡 0 then 4: Compute DC operating points; get shared indices; store 𝑴 0 . 5Transient analysis at 𝑡𝑛 ; compress 𝑴 𝑛-1 using 𝑴𝑛 ; store 𝑴𝑛 . End transient simulation and begin sensitivity simulation. 10: while 𝑡𝑛 ≥ 𝑡 0 do 11:

Figure 7 :

 7 Figure 7: End-to-end simulation time reduction of MASC compared to baselines.

Table 1 :

 1 Time comparison between transient analysis and sensitivity analysis and the proportion of Jacobian matrix calculation time in sensitivity analysis.

	Circuits Type #Elem #Param #Obj #Steps Tran (s) Sens (s) 𝑇𝑆𝑒𝑛𝑠/𝑇𝑇𝑟𝑎𝑛 𝑇𝐽𝑎𝑐/𝑇𝑆𝑒𝑛𝑠
	CHIP_01 BJT 40221	126	8	3738	144.6	595.6	4.1	63.3%
	CHIP_02 BJT 58946	183	12	5524	242.4	1969.3	8.1	62.4%
	CHIP_03 BJT 100445	351	21	2837	258.8	3279.1	12.7	57.9%
	CHIP_04 BJT 132097	398	27	1278	358.5	2449.0	6.8	57.4%
	CHIP_05 BJT 165669	421	32	682	89.3	1668.3	18.7	61.6%
	CHIP_06 BJT 162440	409	30	552	73.4	148.1	20.2	57.0%
	CHIP_07 BJT 226583	512	38	2625	431.5	9413.9	21.8	58.3%
	CHIP_08 BJT 289669	602	40	3521	801.6 16032.7	20.0	59.4%
	CHIP_09 BJT 316556	728	48	6678	1855.9 38887.5	21.0	60.4%
	ram2k MOS 14059	109	12	2330	172.6	438.4	2.5	65.3%
	smult20 MOS 46075	254	52	6276	867.7	5107.5	5.9	50.6%
	RC_01	RC 117843	324	42	5204	55.9	1959.5	35.1	46.1%
	RC_02	RC 153338	387	52	1106	14.7	668.3	45.4	45.9%
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	Infor								
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Figure 1: Memory cost for storing Jacobians.

Compressed 𝑴 𝟎 Compressed 𝑴 𝟐 Shared

Table 2 :

 2 Detail of our test datasets.

	Dataset	#CirElem	#Steps	𝑆 𝐶𝑆𝑅 (GB)	𝑆 𝑁 𝑍 (GB)	CR (gzip)	𝑇𝑐𝑜𝑚𝑝 (gzip)
	add20	5091	42799	9.09	5.80	2.52	164.60s
	smult20	46075	9048	22.99	14.37	5.85	211.17s
	mem_plus	217431	13124	18.38	11.56	13.04	114.64s
	MOS_T5	902631	8680	40.13	24.32	2.00	736.68s
	MOS_T7	175487	25280	163.68	99.20	1.81	3076.71s
	MOS_T8	494077	12740	177.48	111.62	1.97	3366.62s
	MOS_T10	224398	20592	208.08	129.24	1.98	3827.76s
	6.1 EXPERIMENTAL SETUP		
	Platform and software. Experiments are conducted on a Linux
	server with an AMD EPYC 7702 CPU at 2.0 GHz, 512 GB of RAM,
	and a Micron 5100 SSD, running Ubuntu 20.04. We implement our
	proposed compressor in C++ and develop its parallel version using
	OpenMP. It is available at [13]. We implement MASC based on Xyce
	[14], a high-performance, SPICE-compatible circuit simulator.

Table 3 :

 3 Comparison of compression ratio, compression time (in seconds), and decompression time (in seconds) for different compression methods. Statistics analysis of selection rate for three prediction models.

			FPZIP [7]				NDZIP [8]			SpiceMate [15]		MASC w/o Markov		MASC w/ Markov
	Dataset															
		CR	𝑇𝑐𝑜𝑚𝑝	𝑇 𝑑𝑒𝑐𝑜𝑚𝑝	CR	𝑇𝑐𝑜𝑚𝑝	𝑇 𝑑𝑒𝑐𝑜𝑚𝑝	CR	𝑇𝑐𝑜𝑚𝑝	𝑇 𝑑𝑒𝑐𝑜𝑚𝑝	CR	𝑇𝑐𝑜𝑚𝑝	𝑇 𝑑𝑒𝑐𝑜𝑚𝑝	CR	𝑇𝑐𝑜𝑚𝑝	𝑇 𝑑𝑒𝑐𝑜𝑚𝑝
	add20	4.92	34.02	39.18	1.05	179.33	176.31	2.24	113.07	60.79	11.90	44.54	29.93	10.59	40.09	27.24
	smult20	4.66	86.97	95.85	1.04	215.22	211.95	5.01	127.17	67.56	11.07	105.96	74.46	10.04	87.83	70.74
	mem_plus	5.31	57.94	66.24	1.01	168.35	163.47	8.68	86.72	56.48	11.51	83.70	61.54	10.27	65.40	59.52
	MOS_T5	14.53	86.16	107.92	1.10	341.78	342.76	1.96	422.36	91.60	35.32	161.40	142.80	32.32	124.29	135.16
	MOS_T7	9.78	407.06	484.42	1.14	1454.23	1443.15	1.88	1740.08	444.01	20.65	739.97	594.45	19.62	643.77	563.20
	MOS_T8	4.80	646.84	726.27	1.06	1603.85	1505.99	1.97	1998.04	574.19	9.91	880.75	676.13	9.02	702.21	631.28
	MOS_T10	8.46	542.52	624.24	1.12	1845.00	1848.24	2.00	2103.76	497.17	17.19	967.68	820.08	16.16	872.85	796.54
	Average	7.49	265.93	306.30	1.07	829.68	826.64	3.39	941.60	255.97	16.79	426.28	342.77	15.43	362.34	326.24
							7HPSRUDO3UHGLFWLRQ								
	6HOHFWLRQ3HUFHQWDJH						0DWUL[6WDPS3UHGLFWLRQ /DVW9DOXH3UHGLFWLRQ							
		DGG	PHPBSOXV	&LUFXLWV	VPXOW	YRWHU								
	smult20 mem_plus MOS_T5 MOS_T7 MOS_T8 MOS_T10 Circuits 49.1 58.2 62.0 60.4 63.4 55.7 84.8 84.5 85.3 86.7 82.6 87.2 Versus Original Simulation Figure 6: add20 40 50 60 70 80 90 100 63.7 Time Reduction(%) 84.1 Versus Simulation Saving Jacobians to Disk								
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