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Abstract

This paper addresses the problem of jointly estimating the statistical distribution and segmenting

lesions in multiple-tissue high-frequency skin ultrasound images. The distribution of multiple-tissue

images is modeled as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial

coherence inherent to biological tissues is modeled by enforcing local dependence between the mixture

components. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is

then proposed to jointly estimate the mixture parameters and a label-vector associating each voxel to

a tissue. More precisely, a hybrid Metropolis-within-Gibbs sampler is used to draw samples that are

asymptotically distributed according to the posterior distribution of the Bayesian model. The Bayesian

estimators of the model parameters are then computed from the generated samples. Simulation results

are conducted on synthetic data to illustrate the performance of the proposed estimation strategy. The

method is then successfully applied to the segmentation of in-vivo skin tumors in high frequency 2D

and 3D ultrasound images.

Index Terms

Heavy-tailed Rayleigh distribution, mixture model, Potts-Markov field, Bayesian estimation, Gibbs

sampler.

I. INTRODUCTION

Ultrasound imaging is a longstanding medical imaging modality with important applications in

diagnosis, preventive examinations, therapy and image-guided surgery. In dermatologic oncology,
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diagnosis relies mainly on surface indicators such as color, shape and texture whereas the two

more reliable measures are the depth of the lesion and the number of skin layers that have been

invaded. Currently, these can only be evaluated after excision. Recent advances in high frequency

transducers and 3D probes have opened new opportunities to perform non-invasive diagnostics

using ultrasound images. However, changing dermatological practices requires developing robust

segmentation algorithms. Despite the extensive literature on the subject, accurate segmentation of

ultrasound images is still a challenging task and a focus of considerable research efforts. Current

segmentation techniques are extremely application-specific, developed mainly for echocardiog-

raphy followed by transrectal prostate examination (TRUS), kidney, breast cancer and (intra)

vascular diseases (IVUS) [1]. A survey of the state-of-the-art methods up to 2006 is presented

in [1].

Segmentation in echocardiography, TRUS and IVUS is mainly concerned with the detection

and tracking of organ boundaries. Lesion delimitation is significantly different and more chal-

lenging. On one hand, unlike organs, lesions exhibit soft or “fuzzy” edges that are difficult

to capture with boundary detection techniques. On the other, their echogenic and statistical

characteristics are visibly different from those of their surrounding tissues. This fact has moti-

vated the development of region-based segmentation techniques as opposed to boundary-based

methods, which are still an active research subject in other medical ultrasound domains [2]–

[4]. Similarly, lesions do not have anatomically predefined shapes as is the case for organs and

are unlikely to benefit in the near future from recent works on anatomical or learned statistical

shape priors [5]–[7]. This might change with the improvement of geometric tumor growth models

derived from computational biology [8]. Early lesion segmentation methods have focused mainly

on thresholding [9], [10] and were superseded by texture-based techniques. Madabhushi et al.

derived an active contour based on texture and boundary features [11]. Huang et al. proposed

a texture segmentation technique based on a neural network and a watershed algorithm [12].

In addition, Gaussian mixture models coupled with Markov random fields were proposed to

segment lesions based on their region statistics [13], [14]. Moreover, since the seminal work of

Dias et al. [15], Rayleigh mixtures have become a powerful model for region-based ultrasound

image segmentation. The use of Rayleigh instead of Gaussian distributions is strongly justified

by the physics of the image formation process that generates B-mode ultrasound images [16].

Based on the assumption that each biological tissue has its proper Rayleigh statistics, tissue
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segmentation is achieved by separating the mixture components. This is achieved by finding the

maximum-likelihood (ML) or maximum-a-posteriori (MAP) estimators of the lesion contours.

The optimization problem stemming from the ML and MAP estimators was solved in [15] using

an interactive dynamic programming (IDP) algorithm that jointly estimated the MAP contour and

the mixture parameters. The authors performed several experiments on real echocardiography

images and showed that the proposed method accurately segments heart walls.

With the development of deformable models, Brusseau et al. proposed a statistical parametric

active contour (AC) [17]. A parametric AC is a regularized curve defined by a set of points

in the image domain that can be moved to maximize the segmentation posterior [18]. In the

work of Brusseau et al., the 2-mixture components were separated using a statistical region AC

which iteratively estimated the Rayleigh parameter of each component and evolved to optimize

the segmentation. Also, given that convergence to a global optimum is not guaranteed, the

authors proposed an ad-hoc automatic initialization technique. This method was further improved

by Cardinal et al. [19] who substituted the parametric AC by an edge-based level set (LS)

derived from the original work of Osher and Sethian [20]. A second modification was the

introduction of an expectation-maximization (EM) algorithm to estimate the mixture parameters

during initialization, thus removing the need to estimating them iteratively. The authors reported

that the Rayleigh mixture LS method outperforms classic gradient-based level set at intravascular

image segmentation. In addition, Saroul et al. recently applied the Rayleigh mixture model to

prostate segmentation in transrectal ultrasound images [21]. In this case, the LS was replaced by

a deformable model based on a super ellipse whose evolution was computed using a variational

algorithm. The authors showed that the regularization introduced by this deformable model could

compensate partial occlusion.

Rayleigh-mixture models were extended to tissues with generalized Rayleigh statistics by

Destrempes et al. [22], who proposed a carotid artery segmentation method based on a Nakagami

mixture and a deformable model. As in [19], the estimation of the mixture parameters was

achieved using an EM algorithm under the assumption that observations are independent. The

evolution of the deformable model was computed using exploration/selection, a stochastic opti-

mization algorithm that converges to the global optimum. However, since the mixture parameters

are estimated with an EM algorithm, overall global convergence is not guaranteed. One other

important contribution is the Rayleigh region-based LS method presented in [23], that adapted
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the fundamental work of Chan and Vese [24] on ACs without edges to ultrasound images with

Rayleigh statistics. These region-based LS should be very appropriate for ultrasound images

of lesions as they are able to segment objects with smooth edges under poor signal-to-noise

ratio conditions. This work was recently generalized to all the distributions from the exponential

family (i.e., Gamma, Rayleigh, Poisson, etc.) in [25]. However, these methods have not yet been

applied to lesion segmentation in ultrasound images.

This paper addresses the problem of jointly estimating the statistical distribution and seg-

menting lesions in multiple-tissue 2D and 3D high-frequency skin ultrasound images. To our

knowledge this is the first ultrasound image segmentation method specific to skin lesions. We

propose to model multiple-tissue images using a heavy-tailed Rayleigh mixture, a model that

has been inspired by the single-tissue model studied in [26]. The proposed mixture model is

equipped with a Markov random field (MRF) that takes into account the spatial correlation

inherent to biological tissues. Note that Potts Markov fields are particularly well suited for

label-based segmentation as explained in [27] and further studied in [28]–[31]. Potts Markov

models enhance segmentation because of their ability to capture the spatial correlation that exists

between neighbor class labels [28]. This correlation arises naturally from the spatial organization

of biological tissues and is particularly important in skin because of its layered structure. Finally,

while the Potts prior is an effective means to introduce spatial correlation between the class labels,

it is interesting to mention that other more complex models could have been used instead. In

particular, Marroquin et al. [32] have shown that better segmentation results may be obtained

by using a two-layer hidden field, where hidden labels are assumed to be independent and

correlation is introduced at a deeper layer by a vectorial Markov field. Similarly, Woolrich

et al. [33] have proposed to approximate the Potts field by modeling mixture weights with a

Gauss-Markov random field. However, these alternative models are not well adapted for 3D

images because they require significantly more computation and memory resources than the

Potts model. These overheads result from the fact that they introduce (K+1)N and KN hidden

variables respectively, against only N for the Potts model (N being the number of voxels and

K the number of classes). In addition, the segmentation problem is solved using a stochastic

optimization algorithm with guaranteed global convergence, removing the need for an initial

contour or supervised training. The paper is organized as follows: The statistical model used for

a voxel of an ultrasound image is introduced in Section II. Section III introduces the Bayesian
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model used for the segmentation of ultrasound images. An hybrid Gibbs sampler generating

samples asymptotically distributed according to the posterior distribution of this Bayesian model

is described in Section IV. Experiments on synthetic and real data are presented in Section V.

Conclusions are finally reported in Section VI.

II. PROBLEM STATEMENT

This section describes the mixture model used for ultrasound image voxels1. Let rn ∈ R+

denote an observation, or voxel, in an envelope (B-mode) ultrasound image r = (r1, . . . , rN)T

without logarithmic compression. We assume that rn is defined by means of the widely accepted

point scattering model [36]

rn =

∣∣∣∣∣
M∑
i=1

ai [p(tn − τi) + p̃(tn − τi)]

∣∣∣∣∣ (1)

where M is the total number of punctual scatterers, p(t) + p̃(t) denotes the analytic extension

of the interrogating pulse p(t), ai ∈ (0, 1) is the cross-section of the ith scatterer, τi ∈ R+ is

the time of arrival of the ith backscattered wave and tn is the sampling time associated with

rn. Recent works on scattering in biological tissues have established that rn, as defined above,

converges in distribution towards an α-Rayleigh distribution as M increases [26]

rn
d→

M→∞
αR(αn, γn) (2)

where d→
M→∞

denotes convergence in distribution, the parameters αn ∈ (0, 2] and γn ∈ R+ are

the characteristic index and spread associated with the nth voxel.

This paper considers the case where the ultrasound image r is made up by multiple biological

tissues with high scatter density (i.e., M → ∞), each with its own echogenicity and therefore

its proper speckle statistics. In view of this spatial configuration, we propose to model r by an

α-Rayleigh stationary process with piecewise constant parameters. More precisely, we assume

that there is a set of stationary classes {C1, . . . , CK} such that

∀rn ∈ Ck, rn ∼ αR(αk, γk) (3)

1Part of this work has been presented at IEEE ICASSP’11, Prague, Czech Republic, May 2011 [34], and at EUSIPCO’11,

Barcelona, Spain, Sep. 2011 [35].
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where αk and γk are the parameters associated with the class Ck (i.e., the kth biological tissue).

As a consequence, it is possible to express the distribution of rn by means of the following

mixture of α-Rayleigh distributions

rn ∼
K∑
k=1

ωkαR(αk, γk) (4)

where K is the number of classes and ωk represents the relative weight (or proportion) of the kth

class with
∑

k ωk = 1. Lastly, to take into account the spatial coherence inherent to biological

tissues we will consider that the class of a given voxel depends on those of its neighbors.

It should be noted that the proposed α-Rayleigh mixture model is closely related to two other

mixture models. On the one hand it generalizes the Rayleigh mixture model, which has been

extensively applied to ultrasound image modeling. On the other, it can be shown that before being

transformed by acquisition and demodulation, radio frequency ultrasound signals are distributed

according to a symmetric α-stable distribution [26]. Hence, the proposed α-Rayleigh mixture

model can be interpreted as a transformation of the symmetric α-stable mixture model studied

in [37]. In addition, it is interesting to mention that the α-Rayleigh distribution has been used

successfully for SAR images in [38], [39]. The methods proposed in [38], [39] have been

recently applied to characterize tissues in annotated ultrasound images [26]. This paper extends

those methods by including in the estimation problem the identification of regions in the image

with similar α-Rayleigh parameters (each region being associated with a different tissue). This is

achieved by proposing a novel Bayesian estimation algorithm based on the α-Rayleigh mixture

model (4) coupled with a Markov random field prior that captures the spatial coherence inherent

to biological tissues. Finally, akin to [17], [19], [22], [23], note that the model (4) uses a

simplified image representation based on regions and does not describe the boundaries between

tissues explicitly.

The following section addresses the problem of estimating the parameters of the spatially

coherent α-Rayleigh mixture model introduced in (4) and performing the segmentation of ultra-

sound images.

III. BAYESIAN MODEL

A label vector z = (z1, . . . , zN)T is introduced to map observations r to classes C1, . . . , CK

(i.e., zn = k if and only if rn ∈ Ck). This label vector will allow each image observation to
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be characterized and different kinds of tissues to be discriminated. Note that the weights ωk

are directly related to the labels through the probabilities P[zn = k] = wk for k = 1, . . . , K.

Consequently, the unknown parameter vector for the mixture (4) can be defined as (θ, z) where

θ = (αT ,γT )T with α = (α1, . . . , αK)T and γ = (γ1, . . . , γK)T . This section studies a Bayesian

model associated with (θ, z). This model requires defining the likelihood and the priors for the

unknown parameters.

A. Likelihood

Assuming that the observations rn are independent and using the mixture model (4), the

likelihood of the proposed Bayesian model can be written as

p(r|θ, z) =
K∏
k=1

∏
{n|zn=k}

pαR(rn|αk, γk) (5)

where {n|zn = k} denotes the subset of indexes n = 1, . . . , N that verify zn = k,

pαR(rn|αk, γk) = rn

∫ ∞
0

λ exp [−(γkλ)αk ] J0(rnλ) dλ (6)

is the probability density function (pdf) of an α-Rayleigh distribution with parameters αk and

γk and J0 is the zeroth order Bessel function of the first kind.

B. Parameter priors

1) Labels: It is natural to consider that there is some correlation between the probabilities

P[zn = k] of a given voxel and those of its neighbors. Since the seminal work of Geman [40],

MRFs have become very popular to model neighbor correlation in images. MRFs assume that

the distribution of a pixel conditionally to all other pixels of the image equals the distribution

of this pixel conditionally to its neighbors. Consequently, it is important to properly define the

neighborhood structure. The neighborhood relation between two pixels (or voxels) i and j has to

be symmetric: if i is a neighbor of j then j is also a neighbor of i. There are several neighborhood

structures that have been used in the literature. In the bidimensional case, neighborhoods defined

by the four or eight nearest voxels represented in Fig. 1 are the most commonly used. Similarly,

in the tridimensional case the most frequently used neighborhoods are defined by the six or

fourteen nearest voxels represented in Fig 2. In the rest of this paper 4-pixel neighborhoods will

be considered for 2D images and 6-voxel neighborhoods for 3D images. Therefore, the associated
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Fig. 1. 4-pixel (left) and 8-pixel (right) neighborhood structures. The pixel considered appears as a void red circle whereas its

neighbors are depicted in full black and blue.

Fig. 2. 6-voxel (left) and 14-voxel (right) neighborhood structures. The voxel considered appears as a void red circle whereas

its neighbors are depicted in full black and blue.

set of neighbors, or cliques, can only have vertical, horizontal and depth configurations (see [40],

[41] for more details).

Once the neighborhood structure has been established, the MRF can be defined. Let zn denote

the random variable indicating the class of the nth image voxel. In the case of K classes,

the random variables z1, . . . , zN take their values in the finite set {1, . . . , K}. The whole set

of random variables z forms a random field. An MRF is then defined when the conditional

distribution of zn given the other pixels z−n = (z1, . . . , zn−1, zn+1, . . . , zN) only depends on its

neighbors zV(n), i.e.,

P[zn|z−n] = P[zn|zV(n)] (7)

where V(n) contains the neighbors of zn according to the neighborhood structure considered.

In this study we will first consider 2D and 3D Potts Markov fields as prior distributions for

z. More precisely, 2D MRFs are considered for single-slice (2D) ultrasound images whereas 3D

MRFs are used for multiple-slice (3D) images. In light of the Hammersley-Clifford theorem, the

corresponding prior for z can be expressed as follows:

p(z) =
1

C(β)
exp

 N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

 (8)
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where β is the granularity coefficient, C(β) is the normalizing constant or partition function

[42] and δ(·) is the Kronecker function. The hyperparameter β tunes the degree of homogeneity

of each region in the image. A small value of β induces a noisy image with a large number

of regions, contrary to a large value of β that leads to few and large homogeneous regions.

In this work, the granularity coefficient β will be fixed a priori. However, it is interesting to

mention that the estimation of β has been receiving a lot of attention in the literature [31], [43]–

[46]. Estimating the granularity coefficient using one of these methods is clearly an interesting

problem that will be investigated in future work. Finally, it is interesting to note that despite not

knowing C(β), drawing labels z = (z1, . . . , zN) from the distribution (8) can be easily achieved

by using a Gibbs sampler [47].

2) α-Rayleigh parameters: The prior for each characteristic index αk (k = 1, . . . , K) is a

uniform distribution on (0, 2]

αk ∼ U(0, 2). (9)

This choice is motivated by the fact that the only information available a priori about this

parameter, is that it can take values in the interval (0, 2].

The prior for each spread parameter γk is an inverse gamma distribution with hyperparameters

a0 and b0

γk ∼ IG(a0, b0), k = 1, . . . , K. (10)

This choice is motivated by the fact that the inverse gamma distribution allows either very

vague or more specific prior information to be incorporated depending on the choice of the

hyperparameters a0 and b0 (a0 = b0 = 1 will be used in our experiments corresponding to a

vague prior distribution).

Assuming a priori independence between the parameters αk and γk, the prior for θ is

p(θ) = p(α)p(γ) =
K∏
k=1

p(αk)p(γk). (11)

We will also assume that the α-Rayleigh parameters are independent from the labels associated

with the image voxels. Thus the joint prior for the unknown parameters (θ, z) can be expressed

as

p (θ, z) = p (z) p (θ) (12)

where p (z) has been defined in (8) and p (θ) in (11).
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Figure 3 presents the proposed Bayesian model as a directed acyclic graph (DAG) summarizing

the relationships between the different parameters and hyperparameters.
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Fig. 3. Directed acyclic graph (DAG) for the α-Rayleigh mixture model (the fixed nonrandom hyperparameters

appear in dashed boxes).

C. Posterior Distribution of (θ, z)

Using Bayes theorem, the posterior distribution of (θ, z) = (α,γ, z) can be expressed as

follows

p (θ, z|r) =
p(r|θ, z)p(θ, z)

p(r)

∝ p(r|θ, z)p(θ, z)

(13)

where ∝ means “proportional to” and the likelihood p(r|θ, z) and the joint prior p(θ, z) have

been defined in (5) and (12).

Unfortunately the posterior distribution (13) is too complex to derive closed form expressions

for the minimum mean square error (MMSE) or MAP estimators of the unknown parameters α,

γ and z 2. One can think of using the EM algorithm [48] that has received much attention for

mixture problems (see [19], [22] for applications to ultrasound images). However, EM algorithms

have many known shortcomings. For instance, they suffer from convergence to local maxima

or saddle points of the log-likelihood function and sensitivity to starting values [49, p. 259].

Note that analyzing the concavity properties of the logarithm of (5) is not easy because the α-

Rayleigh distribution does not belong to the exponential family. An interesting alternative is to

2note that p(θ,z) involves the potential of a Potts Markov field and its intractable partition function C(β) and that p(r|θ,z)

is the product of N indefinite integrals
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use a Markov Chain Monte Carlo (MCMC) method generating samples that are asymptotically

distributed according to the target distribution (13) [47]. The generated samples are then used to

approximate the Bayesian estimators. This strategy has been used successfully in many image

processing applications [50]–[54]. One sampling technique allowing the parameters of ultrasound

images to be estimated is studied in the next section.

IV. HYBRID GIBBS SAMPLER

This section studies a hybrid Metropolis-within-Gibbs sampler for generating samples that

are asymptotically distributed according to (13). The histogram of the generated samples is

guaranteed to converge to the posterior (13) [47, p. 269]. One of the most popular methods for

generating samples distributed according to a distribution whose pdf or probability masses are

known up to a multiplicative constant is the Gibbs sampler. The conventional Gibbs sampler

draws samples according to the conditional distributions associated with the distribution of

interest (here the posterior (13)). When a conditional distribution cannot be sampled easily,

one can resort to a Metropolis-Hastings (MH) move, which generates samples according to an

appropriate proposal and accept or reject these generated samples with a given probability. The

resulting sampler is referred to as Metropolis-within-Gibbs sampler (see [47] for more details

about MCMC methods). The sampler investigated in this section is based on the conditional

distributions P[z|α,γ, r], p(α|z,γ, r) and p(γ|z,α, r) that are described in the next paragraphs

(see also Algorithm 1 below).

A. Conditional probability P[z|α,γ, r]

The label vector z can be updated coordinate-by-coordinate using Gibbs moves. More pre-

cisely, the conditional probabilities P[zn|z−n, rn, αk, γk] can be computed using the Bayes rule

P[zn = k|z−n, rn, αk, γk] ∝ p(rn|zn = k,α,γ)p(zn|z−n) (14)

where k = 1, . . . , K (it is recalled that K is the number of classes) and where z−n is the vector

z whose nth element has been removed. These posterior probabilities can be expressed as

P[zn = k|z−n, rn, αk, γk] ∝ πn,k , exp

 ∑
n′∈V(n)

βδ(k − zn′)


× rn

∫ ∞
0

λ exp [−(γkλ)αk ] J0(rnλ) dλ.

(15)
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Algorithm 1 Proposed Hybrid Gibbs Sampler
Initialization:

− Sample α0
k (k = {1, . . . , K}) from the pdf in (9).

− Sample γ0k (k = {1, . . . , K}) from the pdf in (10).

− Generate z01 , z
0
2 , . . . , z

0
N with probabilities P [z0n = k] = 1

K
.

for t = 1, 2, . . . to T do

— Update α —

for k = 1, 2, . . . to K do

1. Propose α∗k ∼ N(0,2)(α
(t−1)
k , σ2

α,k) (see (17)).

2. Compute the acceptance ratio using expression (18).

3. Draw u ∼ U(0, 1).

if (u < ratio) then

4. Set α(t)
k = α∗k.

else

5. Set α(t)
k = α

(t−1)
k .

end if

end for

— Update γ —

for k = 1, 2, . . . to K do

6. Propose γ∗k ∼ N+(γ
(t−1)
k , σ2

γ,k) (see (19)).

7. Compute the acceptance ratio using expression (20).

8. Draw u ∼ U(0, 1).

if (u < ratio) then

9. Set γ(t)k = γ∗k .

else

10. Set γ(t)k = γ
(t−1)
k .

end if

end for

— Update z —

for n = 1, 2, . . . to N do

11. Draw zn from {1, . . . , K} with probabilities (16).

end for

end for
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The integral rn
∫∞
0
λ exp [−(γkλ)αk ] J0(rnλ) dλ is evaluated using the approximations presented

in paragraph IV-D. Once all the quantities πn,k, k = 1, . . . , K, have been computed, they are

normalized to obtain the posterior probabilities π̃n,k , P[zn = k|z−n, rn, αk, γk] as follows

π̃n,k =
πn,k∑K
k=1 πn,k

. (16)

Note that the posterior probabilities of the label vector z in (15) and (16) define an MRF. Finally,

samples zn are generated by drawing discrete variables from {1, . . . , K} with the respective

probabilities {π̃n,1, . . . , π̃n,K}. Because of its large dimension, sampling z according to (16) is

the most computationally intensive step of the proposed hybrid Gibbs sampler. Therefore it is

important to chose an efficient implementation for this step. In this work z has been sampled

using a parallel chromatic Gibbs sampler [55].

B. Conditional probability density function p(α|γ, z, r)

The conditional pdf p(α|γ, z, r) can be expressed as follows

p(α|γ, z, r) ∝ p(r|α,γ, z)p(α)

where p(r|α,γ, z) is defined in (5) and p(α) =
∏K

k=1 p(αk). The generation of samples accord-

ing to p(α|γ, z, r) is not easy to perform. We propose in this paper to sample α coordinate-

by-coordinate using MH moves. In this work, the proposal distribution is a truncated normal

distribution centered on the previous value of the chain with variance σ2
α,k

α∗k ∼ N(0,2)(α
(t−1)
k , σ2

α,k) (17)

where α∗k denotes the proposed value at iteration t and α(t−1)
k is the previous state of the chain.

The hyperparameters σ2
α,k are adjusted during the burn-in period to ensure an acceptance ratio

close to 1
3
, as recommended in [56, p. 316]. This adjustment is performed dynamically by a

feedback loop that increases or decreases σ2
α,k depending on αk’s acceptance ratio over the last

50 iterations. Note that the proposal (17) results from the so-called random walk MH algorithm

[47, p. 245]. Finally, since the prior for αk is uniform, the MH acceptance rate of the proposed

move can be expressed as follows

ratio = min

1,
N(0,2)(α

(t−1)
k |α∗k, σ2

α,k)

N(0,2)(α∗k|α
(t−1)
k , σ2

α,k)
×

N∏
{n|zn=k}

pαR(rn|α∗k, γk)
pαR(rn|α(t−1)

k , γk)

 (18)
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where the likelihoods pαR(rn|α∗k, γk) and pαR(rn|α(t−1)
k ) have been computed using the approx-

imations described in Section IV-D.

C. Conditional probability density function p(γ|α, z, r)

The conditional pdf p(γ|α, z, r) can be expressed as follows

p(γ|α, z, r) ∝ p(r|α,γ, z)p(γ)

where p(r|α,γ, z) is defined in (5) and p(γ) =
∏K

k=1 p(γk). Again, we propose to sample

γ coordinate-by-coordinate by using MH moves. The proposal distribution associated with this

move is a truncated normal distribution centered on the previous value of the chain with variance

σ2
γ,k

γ∗k ∼ NR+

(
γ
(t−1)
k , σ2

γ,k

)
(19)

where γ∗k denotes the proposed value at iteration t, γ(t−1)k is the previous state of the chain and

NR+ is the Gaussian distribution truncated on R+. The acceptance ratio for this move is

ratio = min

1,
NR+

(
γ
(t−1)
k |γ∗k, σ2

γ,k

)
NR+

(
γ∗k|γ

(t−1)
k , σ2

γ,k

) × N∏
{n|zn=k}

pαR(rn|αk, γ∗k)p(γ∗k|a0, b0)
pαR(rn|αk, γ(t−1)k )p(γ

(t−1)
k |a0, b0)

 (20)

where the prior distribution p(γk|a0, b0) has been defined in (10). Again, the likelihoods pαR(rn|αk, γ∗k)

and pαR(rn|αk, γ(t−1)k ) have been computed using the approximations described in Section IV-D.

In the particular case αk = 2, the likelihood simplifies to a Rayleigh distribution for which the

prior p(γk) = IG(a0, b0) is conjugate. As a result the generation of samples from the posterior

p(γk|αk, z, r) reduces to drawing samples from the following inverse gamma distribution

γ
(t)
k ∼ IG

a0 +
N∑

{n|zn=k}

1, b0 +
1

2

N∑
{n|zn=k}

r2n

 (21)

where we recall that a0 = 1 and b0 = 1.

D. Approximation of the Likelihood

Evaluating the likelihood function defined in (5) involves the computation of the following

indefinite integral ∫ ∞
0

λ exp [−(γkλ)αk ] J0(rnλ) dλ. (22)
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In the case where observations are represented using 8-bit precision (i.e., 256-gray levels) the

integral can be pre-computed for each level and stored in a look-up-table. The data used in

this work is represented using 32-bit precision and the integral had to be solved numerically.

This computation is time-consuming and is required for every observation and at every step of

the sampler. An efficient way to alleviate this computational complexity is to use the following

asymptotic expansions [57], [58][57], [58][57], [58]

pαR(rn|αk, γk) =
P∑
p=0

apr
2p+1
n + o

(
r2(P+1)+1
n

)
(23)

as rn → 0 and

p(rn|αk, γk) =
P∑
p=1

bpr
−αkp−1
n + o

(
r−αk(P+1)−1
n

)
(24)

as rn →∞, where the coefficients ap and bp are

ap =
1

αkγk

(−1)p

(p!)222p
Γ

(
2p+ 2

αk

)
γ−2p−1k

bp =
(−1)p−1 2pαk+1

p! πγk
Γ2

(
pαk + 2

2

)
sin
(pπαk

2

)
γpαk+1
k .

The decision between using (23) or (24) for a particular value rn has been determined by a

threshold which has been computed off-line. This threshold and the choice of P have been

studied empirically by comparing (23) and (24) to a numerical solution of the true density (5).

Appropriate threshold and P values have been selected off-line for different values of αk and

stored in a look-up-table that is used by the proposed algorithm. Other considerations regarding

the implementation of (23) and (24) have been studied in [57].

V. EXPERIMENTAL RESULTS

This section presents experimental results conducted on synthetic and real data to assess the

performance of the proposed α-Rayleigh mixture model and the associated Bayesian estimation

algorithm. In these experiments the algorithm convergence has been assessed using the “between-

within variance criterion”, initially studied by Gelman and Rubin [59] and often used to monitor

convergence [60, p. 33]. This criterion requires running M parallel chains of length L with

different starting values and computing the so-called potential scale reduction factor (PSRF)

that compares the between-sequence and within-sequence variances [59]. A PSRF close to 1
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indicates good convergence of the sampler. In our experiments we have observed PSRF values

smaller than 1.01 which confirm the good convergence of the sampler (a PSRF bellow 1.2 is

recommended in [61, p. 332]). These values were computed using M = 25 parallel chains of

length L = 1, 000 whose first 900-steps were discarded.

A. Synthetic Data

To validate the proposed Bayesian method under controlled ground truth conditions (i.e.,

known true class labels z and statistical parameters (α,γ)), the algorithm described in Section

IV was first applied to the synthetic 3-component α-Rayleigh mixture displayed in Fig. 4(a).

The parameters associated with the mixture components of the 3 different 2D regions are α =

[1.99, 1.99, 1.8]T and γ = [1, 5, 10]T . Figure 4(b) shows the resulting observation vector r, which

is the only input provided to the algorithm. Note that the different observations are clearly

spatially correlated. The proposed Gibbs sampler has been run for this example using a two-

dimensional random field with a 4-pixel neighborhood structure and a granularity coefficient

β = 1. Figure 5 shows histograms of the parameters generated by the proposed Gibbs sampler.

These histograms are in good agreement with the actual values of the different parameters.

Moreover, the MMSE estimates and the corresponding standard deviations for the different

parameters are reported in Table I. These estimates have been computed from a single Markov

chain of 25, 000 iterations whose first 100 iterations (burn-in period) have been removed. The

MMSE estimates are clearly in good agreement with the actual values of the α-Rayleigh mixture

components. Figure 4(c) shows the class labels estimated by the MAP rule applied to the last

samples of the Markov chain. The three classes are recovered with a few misclassifications due

to the complexity of the problem.

In order to illustrate the effect of the granularity parameter, we have considered other values

of the parameter β. Fig. 4(d) and (e) show the class labels obtained with β = 1.2 and β =

0.8. We observe that increasing β from 1.0 to 1.2 reduces significantly the number of isolated

misclassifications at the expense of increasing errors at the boundaries between the different

classes. Decreasing β from 1 to 0.8 increases the number of misclassifications both at the

boundaries and within regions.
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(a) (b)

(c) (d) (e)

Fig. 4. (a) True labels, (b) observations, MAP label estimates for (c) β = 1, (d) β = 1.2 and (e) β = 0.8.

TABLE I

PARAMETER ESTIMATION

true value MMSE estimates standard deviation

α1 1.99 1.99 0.002

γ1 1.00 1.00 0.003

α2 1.99 1.99 0.003

γ2 5.00 5.01 0.025

α3 1.80 1.79 0.006

γ3 10.00 9.96 0.036

B. Simulated 3D ultrasound image

The synthetic image studied previously is a toy image that differs from a real ultrasound

image in many aspects. These aspects include the spatial organization of skin tissue as well as

the different physical phenomena intervening in the formation of ultrasound images (i.e., noise,

limited spatial resolution, voxel anisotropy, attenuation, etc.). In order to consider a more realistic
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p(α1|r) p(γ1|r)

p(α2|r) p(γ2|r)

p(α3|r) p(γ3|r)

Fig. 5. Histograms of parameters generated using the proposed Gibbs sampler.

scenario, the second set of experiments considers a simulated 3D phantom of skin tissue. This

3D phantom image has been simulated using a 3D ultrasound simulator [62], which has been

configured with the parameters of the dermocup ultrasound system (Atys Medical, France) used

in the in-vivo experiments of section V-C. Three slices of the 30-slice 3D phantom are shown in

Figs. 6(a), 6(b) and 6(c). The size of each slice is 400× 300 pixels. These images are displayed
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using logarithmic compression; however the proposed algorithm has been applied to B-mode

images in linear scale. The 3D skin phantom contains three skin layers (epidermis, papillary

dermis and reticular dermis), and one ellipsoidal intra-dermic lesion. Figs. 6(d)-(f) and Figs.

6(g)-(i) show the corresponding MAP estimated labels obtained with the proposed method using

β = 1.0 and β = 1.2. We observe that in both cases the skin layers and the lesion are clearly

recovered with a few misclassifications due to the complexity of the problem. The number of

classes for this experiment has been set to K = 4 since there are 3 types of healthy tissue in

addition to the lesion. These results were computed using a 3D MRF and a single Markov chain

of 1, 000 iterations whose first 900 iterations (burn-in period) have been removed.

C. Application to real data

After validating the proposed Gibbs sampler on synthetic data, this section applies the proposed

algorithm to the segmentation of two skin lesions. Experiments were conducted using 3D

high frequency B-mode ultrasound images of in-vivo skin tissues. These were acquired with

a dermocup system (Atys Medical, France), equipped with a single-element focalized 25MHz

wide-band (40-percent) probe sampled at 100MHz with a 53µm mechanic lateral step. The

proposed α-Rayleigh mixture model describes the statistics of envelope (B-mode) ultrasound

images without logarithmic compression [26]. Therefore all experiments have been conducted

using this type of data. However, to simplify their visual interpretation, results are displayed

using logarithmic compression, which is a standard practice in ultrasound imaging [63]. Note

that since α-Rayleigh envelope signals arise from symmetric α-stable radio frequency signals

[26] it would be possible to apply the proposed method directly to the radio frequency ultrasound

image by replacing the α-Rayleigh mixture model (5) by a symmetric α-stable mixture model

[37].

In this work the number of classes K is assumed to be known a-priori. This important

parameter is set by the dermatologist who determines visually the number of tissues within

the region to be processed. For skin tissues the number of classes depends on the number of

layers contained in that region (i.e., epidermis, papillary (upper) dermis, reticular (lower) dermis,

hypodermis) in addition to the lesion. More details regarding the number of classes are available

in section V-C6.

The Potts granularity coefficient β has been chosen heuristically by testing a few values
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(a) Phantom (slice 5/30) (b) Phantom (slice 10/30) (c) Phantom (slice 15/30)

(d) MAP z (slice 5/30) (e) MAP z (slice 10/30) (f) MAP z (slice 15/30)

(g) MAP z (slice 5/30) (h) MAP z (slice 10/30) (i) MAP z (slice 15/30)

Fig. 6. Simulated (log-compressed) US images of skin layers with an intradermic lesion and the corresponding

estimated labels. Figs. (a)-(c) depict three slices of the 30-slice 3D digital phantom. MAP label estimates for (d)-(f)

β = 1 and (g)-(i) β = 1.2.

between 0.5 and 1.5. These tests have suggested that segmentation results best agree with expert

annotations for β ∈ (1, 1.5). Finally, β was set to 1 in order to minimize the risk of over-

smoothing the segmentation results, which was the main concern of dermatologists. Section

V-C4 presents segmentation results obtained with other values of β with discussions. Future

work will study the estimation of β jointly with the other unknown parameters of the model, as

in [52].
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1) Justification of the α-Rayleigh mixture model: the α-Rayleigh mixture model used in this

work is based on the assumption that the statistics of single-tissue regions can be well described

by an α-Rayleigh distribution. To support this assumption Fig. 7 compares the histogram obtained

from a B-mode ultrasound image of in-vivo forearm dermis with the corresponding α-Rayleigh,

Nakagami and Gamma distribution fits (additional fits are provided in [26]). To better illustrate

fitting at the tails, Fig. 7 displays the probability density functions in logarithmic scale. We

observe that the α-Rayleigh distribution provides the best fit and is the only one to accurately

describe the heavy-tail of the histogram.

Fig. 7. Comparison of the B-mode histogram obtained from forearm dermis, and the corresponding estimations using the

Nakagami, Gamma and α Rayleigh distributions. Plots presented in logarithmic scale to illustrate fitting at the tails.

2) Preliminary 2D and 3D experiments: The two following experiments illustrate the im-

portance of introducing spatial correlation between the mixture components. Fig. 8(a) shows a

skin lesion outlined by the red rectangle. This region is displayed with coarse expert annotations

(yellow curve) in Fig. 8(b). It should be noted that annotations approximately localize the lesion

and do not represent an exact ground truth. The following experiments have been conducted with

granularity coefficient β = 1 and the number of classes K = 2 since there are only two types of

tissue (i.e., lesion and healthy reticular dermis) within the region of interest (ROI). The results

have been computed from a single Markov chain of 1, 000 iterations whose first 900 iterations
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(burn-in period) have been removed.

First, the proposed Bayesian algorithm was used to label each voxel of the ultrasound image

as healthy or lesion tissue. The estimated labels obtained using a bidimensional random field

are displayed in Fig. 8(c). For comparison purposes, Fig. 8(d) shows the estimation results when

labels are considered a priori independent, as in [34]. Due to the proposed MRF prior for the

labels, the spatial correlations between image voxels are clearly recovered with the proposed

segmentation procedure.

(a) Dermis view with skin lesion (ROI = 100× 100× 3).

(b) ROI (slice 2) (c) MRF Labels z (d) Independent Labels z

Fig. 8. Log-compressed US images of skin lesion and the corresponding estimated labels (healthy = white, lesion

= red) [34]) .

In a second experiment the algorithm was applied in three dimensions using a tridimensional

random field. Three slices of the 3D B-mode image associated with the ROI are shown in Figs.

9(a), 9(b) and 9(c). Figs. 9(d), 9(e) and 9(f) show the results obtained when labels are considered

a priori independent, as in [34]. The labels estimated with the proposed 3D method are displayed

in Figs. 9(g), 9(h) and 9(i) where healthy voxels are represented in white and lesion voxels in

red. The size of the 3D images is 100×100×3 voxels and computing class label estimates using
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1, 000 iterations of the proposed algorithm required 43.5 seconds (see Section V-C7 for more

details about the computational complexity). We observe that most of the MAP labels are in

very good agreement with the expert annotations. The improvement obtained when considering

correlations in the 3rd dimension can be assessed by comparing Figs. 8(c) and 9(h), which have

been computed from the same data slice. We observe that using a 3D MRF reduces significantly

the number of misclassifications and improves the agreement with the expert annotations.

(a) ROI (slice 1) (b) ROI (slice 2) (c) ROI (slice 3)

(d) Ind. Labels z (slice 1) (e) Ind. Labels z (slice 2) (f) Ind. Labels z (slice 3)

(g) MRF Labels z (slice 1) (h) MRF Labels z (slice 2) (i) MRF Labels z (slice 3)

Fig. 9. Log-compressed US images of skin lesion and the corresponding estimated labels (healthy = white, lesion

= red). Figs. (d)-(f) show the results obtained by considering that voxel labels are independent, as in [34]. Figs.

(g)-(i) show the results obtained with the proposed 3D Markov random field (MRF) method.
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3) Comparison with a state of the art method: The proposed algorithm has been compared

with the state of the art method proposed in [23]. This method considers implicitly that the image

is a mixture of two Rayleigh components and separates them using an LS algorithm. Comparison

has been performed with 2D and 3D random fields. The following experiments were conducted

with granularity coefficient β = 1 and number of classes K = 4 since there are 3 types of

healthy tissue within the ROI in addition to the lesion. The results have been computed from

a single Markov chain of 1, 000 iterations whose first 900 iterations (burn-in period) have been

removed.

Fig. 10(a) shows a skin lesion contained in the ROI outlined by the red rectangle. This region

is displayed with coarse expert annotations in Fig. 10(b). The proposed 2D Bayesian algorithm

was used to label each voxel of the ROI as healthy or lesion tissue. Then, from the vector of

voxels that were labeled as lesion we extracted the contour of the largest connected region. The

results displayed in Fig. 10(c) show the regular shape of the contour obtained by our method,

whereas the LS method with strong regularization yields a more irregular contour.

(a) Dermis view with skin lesion (ROI = 160× 175× 16).

(b) ROI (slice 7) (c) 2D Segmentation contour

Fig. 10. Log-compressed US images of skin melanoma tumor and the corresponding estimated segmentation

contours (proposed = green, [23] = red). Figure (c) proposed 2D algorithm and level set.
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The proposed algorithm was also applied to a 3D B-mode image using a tridimensional random

field. The results for eight slices of the image associated with the ROI depicted in Fig. 10(a)

are shown in Figs. 11(a) - 11(h). The same color code is used for the contours as in the 2D

experiment. The regular shape of the contour obtained by the proposed method is more visible

and the recovered lesion fits better the area depicted by the expert. Finally, Fig. 12 shows two

viewpoints of a 3D reconstruction of the lesion’s surface. We observe that the tumor has a semi-

ellipsoidal shape which is cut at the upper left by the epidermis-dermis junction. The tumor

grows from this junction towards the deeper dermis, which is at the lower right.

Finally, it should be noted that in the in-vivo experiments the proposed algorithm has been

applied to regions of interest, as opposed to entire 3D images. This has been motivated by

the fact that dermatological ultrasound imaging is used to examine specific regions that have

been previously identified by the dermatologist. The method presented in this work should be

understood in that clinical context and is not intended to be used in unsupervised applications.

4) Segmentation results for different values of β: To assess the influence of the granularity

coefficient, this section presents segmentation results obtained by repeating the previous experi-

ment using different values of β. As explained previously, this hyper-parameter tunes the amount

of correlation that the Potts Markov field introduces between the class labels. A small value of

β defines a weak prior distribution that is very sensitive to noise, contrary to a large value of β

that leads to a strong prior that promotes few and large homogeneous regions.

Fig. 13(a) shows the 8th slice of the B-mode 3D ROI previously displayed in Figs. 10 and 11.

For visual interpretation this image is displayed in logarithmic scale. Figs. 13(b)-(f) show the

8th slice of the 3D MAP class labels obtained with the proposed algorithm for different values

of β. These results were computed using K = 4 and are displayed using the following color

code: lesion = black, epidermis = white, pap. dermis = dark gray and ret. dermis = light gray.

These estimates have been computed from a single Markov chain of 1, 000 iterations whose first

900 iterations (burn-in period) have been removed.

We observe that the best results are obtained for β = 1 and β = 1.25. The results obtained by

fixing the granularity coefficient to a small value (β < 1) are corrupted by ultrasound speckle

noise and fail to capture the different skin layers. On the other hand, fixing β to a too high value

(i.e., β > 1.5) enforces too much spatial correlation and yields a segmentation with artificially

straight boundaries.
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(a) Slice 1 (b) Slice 3

(c) Slice 5 (d) Slice 7

(e) Slice 9 (f) Slice 11

(g) Slice 13 (h) Slice 15

Fig. 11. 3D segmentation of an 8-slice image.

5) Segmentation results for different numbers of classes K: As explained previously, this

work assumed that the number of classes K is known a-priori. For skin tissues the number

of classes depends on the number of layers contained in that region (i.e., epidermis, papillary

(upper) dermis, reticular (lower) dermis, hypodermis) in addition to the lesion. The number of

classes will typically vary from K = 3 for very small lesions (contained in the upper dermis) to
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Fig. 12. 3D reconstruction of the melanoma tumor.

K = 5 for lesions that have invaded the lower dermis. In any case the number of classes should

be at least equal to the number of tissues that must be identified.

Note that increasing the number of classes beyond the number of tissues will outline differences

within a same biological tissue. To illustrate this point the proposed method has been applied

to one of our 3D ultrasound images using one additional class. Fig. 14(b) shows one slice of

the MAP labels estimated using one class per tissue (one class per skin layer plus one class for

the lesion), i.e., K = 4. Fig. 14(c) shows results obtained when considering an additional class,

i.e., K = 5. We observe that introducing an additional class has not modified significantly the

estimation of the lesion boundaries. The proposed method has assigned an additional class to

the core of the lesion, which may correspond to a necrotic tissue. Moreover, using too many

additional classes will result in empty or redundant classes. Fig. 14(d) shows one slice of the

MAP labels obtained with two additional classes (K = 6). We observe that this result is very

similar to the one obtained for a single additional class (K = 5). In this case the proposed method
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(a) Dermis view with skin lesion (slice 8) (b) MAP Class Labels (β = 0.5)

(c) MAP Class Labels (β = 0.75) (d) MAP Class Labels (β = 1.0)

(e) MAP Class Labels (β = 1.25) (f) MAP Class Labels (β = 1.5)

Fig. 13. Log-compressed US images of skin lesion and the corresponding estimated class labels (lesion = black,

epidermis = white, pap. dermis = dark gray, ret. dermis = light gray).

has assigned one additional class to the core of the lesion and left the other supplementary class

unassigned, indicating that K = 5 is a more suitable number of classes.

On the other hand, underestimating the number of classes can degrade the performance of the
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proposed method significantly. Fig. 14(a) shows one slice of the segmentation results obtained

when there are not enough classes to represent all tissues, i.e., K = 3. In this case the papillary

dermis and the reticular dermis have been merged into a single class. As a result the estimation

of the boundary between the lesion and the papillary dermis is less accurate.

(a) K = 3 (slice 15/30) (b) K = 4 (slice 15/30)

(c) K = 5 (slice 15/30) (d) K = 6 (slice 15/30)

Fig. 14. Tissue labeling results (central slice) of a 3D ultrasound image containing a lesion. (a) Using too few

classes results in a common class for papillary and reticular dermis. (b) Correctly using one class per tissue. (c)

The introduction of a supplementary class reveals the core of the lesion. (d) The introduction of two supplementary

classes results in an empty class.

6) Segmentation of entire 3D B-mode images: In this work the proposed algorithm has been

applied to regions of interest, as opposed to entire 3D images. This is motivated by the fact

that dermatological ultrasound is used to reexamine carefully regions that have been previously

identified using a faster screening modality, typically a dermatoscope (magnifying glass). The

method presented in this work should be understood in that clinical context and is not intended
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for batch processing entire 3D images nor for fully unsupervised applications.

However, for completeness the proposed method has also been applied to an entire B-mode

ultrasound image. It should be noted that identifying the hypodermis (the lower part of the

image) is difficult because the ultrasound system is calibrated to target the upper dermis, which is

where lesions are commonly found. The hypodermis is significantly more affected by attenuation,

resolution degradation and noise.

Figure 15 shows one slice of the ultrasound image and the corresponding 3D MAP class labels

estimated with the proposed algorithm. For visual interpretation Fig. 15(a) is displayed using

logarithmic scale. The results shown in Fig. 15(b) have been computed using K = 5 classes

because there are 4 types of healthy tissue in addition to the lesion. We observe that the lesion

and its core have been accurately detected. Also, the boundaries between the skin layers have

also been correctly identified. The hypodermis has been mostly associated to the same class

as the lesion, probably because both tissues are very hypoechogenic. Increasing the number of

classes did not improve this result.

(a) Log-compressed Ultrasound image (8th slice) (b) Labels (8th slice)

Fig. 15. Log-compressed US images of skin lesion and the corresponding estimated class labels computed on the

entire image.

7) Computational Complexity: Table II provides averaged execution times for 500 iterations

of the proposed algorithm for several image sizes in 2D and 3D and several numbers of classes.

The time required to reach convergence can be calculated by multiplying these values by 9
5
,

which corresponds to a burn-in period of 900 iterations. These tests have been computed on a

workstation equipped with an Intel Core 2 Duo @2.1 GHz processor, 3MB L2 and 3GB of RAM
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memory. The main loop of the Gibbs sampler has been implemented on MATLAB R2010b (The

MathWorks Inc., Natick, MA, 2010). However, C-MEX functions have been used to compute

the likelihood and to draw samples of z from (15).

TABLE II

COMPUTING TIMES (IN SECONDS) OF 500 ITERATIONS FOR DIFFERENT IMAGE SIZES AND NUMBER OF CLASSES.

K = 2 K = 4 K = 8 K = 16

64× 64 4.9 10.2 18.5 35.0

128× 128 8.1 14.6 27.0 51.7

256× 256 19.7 36.1 63.5 123.0

512× 512 73.7 126.0 223.2 427.0

64× 64× 16 20.8 36.6 68.3 129.5

128× 128× 16 75.1 141.5 254.0 524.4

256× 256× 16 317.7 578.1 1060.5 2300.5

512× 512× 16 1175.7 2225.0 4316.8 9600.0

Finally, table III provides the average computing times for the LS method [23] for different

image sizes. These results have been computed using the time and space sampling steps indicated

in [23] (∆t = 0.1, ∆x = 1, ∆y = 1 and ∆z = 1). Average estimates were obtained by repeating

each experiment 10 times. Note that a comparison between these computing times and those

of the proposed method has to be made with some precautions since the LS method has been

implemented in [23] using MATLAB whereas the proposed method uses C-MEX functions. .

TABLE III

AVERAGE COMPUTING TIMES FOR THE LEVEL SET METHOD [23] FOR DIFFERENT IMAGE SIZES.

250 iterations time to convergence

64× 64 0.77 sec. 0.77 sec. ( 250 iterations)

128× 128 2.38 sec. 9.52 sec. (1000 iterations)

256× 256 12.23 sec. 73.35 sec. (1500 iterations)

512× 512 22.95 sec. 183.6 sec. (2000 iterations)
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VI. CONCLUSION

A spatially coherent finite mixture of α-Rayleigh distributions was proposed to represent the

statistics of envelope ultrasound images backscattered from multiple tissues. Spatial correlation

was introduced into the model by a Markov random field that promotes dependance between

neighbor pixels. Based on the proposed model, a Bayesian segmentation method was derived.

Bidimensional and tridimensional implementations of this segmentation method were presented

using a Markov chain Monte Carlo algorithm that jointly estimates the unknown parameters

of the mixture model and classifies voxels into different tissues. The method was successfully

applied to several high frequency 3D ultrasound images. Experimental results showed that the

proposed technique outperforms a state of the art method in the segmentation of in-vivo lesions.

A tridimensional reconstruction of a melanoma tumor suggested that the resulting segmentations

can be used to assess lesion penetration in dermatologic oncology. Future work includes the

characterization of the performance of the segmentation algorithm and the study of estimation

algorithms for the granularity coefficient defining the Markov random field prior. A comparison

with an ML estimator followed by median filtering is also an area of interest for potential future

work.
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