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Abstract—Transmission system operators target to maximize
renewable power injection into the grids while preserving power
lines’ safety. Recently, decentralised approaches are developed us-
ing Power Transmission Distribution Factors (PTDFs), and con-
sider model-based control strategies for local sub-transmission
area. However, the computation of the models is complex due
to the time-varying nature of the parameters. In order to
answer these shortcomings, the present paper proposes a real-
time parameter estimation using past observations of the power
flow on a finite time window. Simulations results validate the
proposed approach.

Index Terms—Predictive control, congestion management,
PTDF.

I. INTRODUCTION

The energy transition of power grids faces an increase of
generations from renewable energies connected to the power
grids. The transmission system operators’ (TSO) objective is
to maximize the injections on the grid for such generations
while preserving the safety of the power lines. This objective
is handled by power congestion management and the related
computational methods are important for the guarantees they
can offer regarding the equipment damage and cascading
failures implications [1].

Due to the large size of power grids, controlling the grid as a
whole is both complex and sensitive. The recent decentralized
approaches [2] focus on controlling some predefined sub-
transmission areas, alternatively called zones, associated to
a particular geographical area. These areas are known to
face power congestion issues due to high generations from
renewable sources. The local controls to tackle power con-
gestion, acting on levers like curtailment/storage/topological
changes, have been shown to exhibit the expected impact on
the congestion despite the interconnection uncertainty with the
rest of the grid. This work is building on a series of recent

works [2] [3] [4], all based on a Model Predictive Control
(MPC) [5] approach.

In the existing works, a discrete-time prediction model
associated to each area uses a linearization of the power
flow equations based on Power Transfer Distribution Factors
[6] (PTDFs). These parameters for power flow equations
evolve in time and can be represented by the percentage of
increase of power flow a given line would receive due to
an increase of generation at a given bus. The use of time-
invariant PTDFs is an advantage for the MPC’s computation.
As a drawback, the computation of these time-invariant PTDFs
requires the topology of the whole power grid to get just the
values concerning the sub-transmission areas, and thus a time-
consuming computation done at an off-line stage. In order
to avoid time-invariant PTDFs computed off-line by means
of optimal power flow analysis, exploiting tools like [7], the
current work aims at estimating the parameters of the power
flow equations dynamically at each time step and with the
ultimate goal of including them in the prediction-based control
design.

As a first attempt in this endeavor, the method we propose
is based on parameter estimation using past observations on
a finite time window. More precisely, the power flows and the
power generations recorded over time will be used to fit the
parameters in a classical least squares framework [8] [9]. A
discussion on the impact of the observation window and the
computation will be done. A biased estimation is expected to
be retrieved whenever the past horizon considered is too long
as the distant past data might not be relevant for the current
mode of functioning. At the same time, if the past horizon is
too short, inaccuracy can occur and complementary tools need
to be found for regularization.



II. THE PRINCIPLES OF CONGESTION MANAGEMENT
BASED ON MODEL PREDICTIVE CONTROL

In this section, we recall in a concise manner all the
elements needed in order to construct a mathematical model
for the evolution of the power flows within a selected sub-
transmission area, described by a subset of buses, generators,
and batteries along with the power lines in the selected zone
to be controlled. For more details on the construction of the
state space model, the interested reader is referred to [4].
Main sets of topological information: Z: set of buses in the
zone; ZG ⊂ Z: set of buses with a generator in the zone;
ZB ⊂ Z: set of buses with a battery in the zone; L: set of
power lines in the zone.
Parameter: nN , nG, nB , nL: cardinality of Z,ZG,ZB ,L re-
spectively; T : sampling time of a time step; τC : delay of
curtailment power control, equal for all generators; τB : delay
of battery power control, equal for all batteries, 1 ≤ τB < τC ;
cb: battery coefficient of power injection of battery b; PG

g :
generation capacity of generator g, so the maximal reachable
generation power (installed capacity).

Time-varying parameter: ψG
g,l(t): PTDF between line l and

generator g at time t; ψB
b,l(t): PTDF between line l and battery

b at time t; ψN
n,l(t): PTDF between line l and bus n at time t.

State variable: Fl(t): power flow of line l; PC
g (t): cur-

tailment power of generator g, which is the limitation of
generation capacity; PB

b (t): battery power of battery b; EB
b (t):

battery energy of battery b; PG
g (t): generation power of

generator g at t; zGg (t): generation power of generator g at
t+ 1, equivalently PG

g (t+ 1), but obtained at time t; PA
g (t):

available power of generator g at time t.
Disturbance: δPT

n (t): transit power disturbance at time t,
describing the unknown power variation at bus n due to power
flows transiting between the zone and the rest of the network;
δPA

g (t): available power disturbance at time t of generator g.
Control: δPC

g (t): curtailment power control decided at time t
on generator g; δPB

b (t): battery power control decided at time
t on battery b.

The system dynamics of the zone model is defined, ∀l ∈
ZL, ∀g ∈ ZC , ∀b ∈ ZB , ∀n ∈ ZN as:

Fl(t+ 1) = Fl(t) +
∑

b∈ZB

ψB
l,b(t) · δPB

b (t− τB)+∑
g∈ZG

ψG
l,g(t)·

[
zGg (t)− PG

g (t)
]
+

∑
n∈ZN

ψN
l,n(t) · δPT

n (t)

PC
g (t+ 1) = PC

g (t) + δPC
g (t− τC)

PB
b (t+ 1) = PB

b (t) + δPB
b (t− τB)

EB
b (t+ 1) = EB

b (t)− T · cBb · [PB
b (t) + δPB

b (t− τB)]
PG
g (t+ 1) = zGg (t)
PA
g (t+ 1) = PA

g (t) + δPA
g (t)

(I)

zGg (t) = min ( PA
g (t) + δPA

g (t),

PG
g − PC

g (t)− δPC
g (t− τC)

) (II)

In practice, the curtailment control delay τC is 45 sec-
onds, while the battery control delay τB is 5 seconds. To
determine the appropriate curtailment control at present, the

controller must anticipate the future impact of the control.
Model Predictive Control (MPC) is chosen for this purpose, as
it can foresee the outcomes over a prediction horizon, enabling
informed decision-making and control actions. More details
about the control strategy are in [2] [4], where the model-based
predictive control for congestion management was presented.

III. REAL-TIME PTDF ESTIMATION

The previous works of [3] and [4] builds on the working
hypothesis that the power flow equation of (I) exhibits PTDFs
with constant values computed offline based on MATPOWER
library [7], i.e.,

ψG
l,g(t) = ψG,mat

l,g , ψB
l,b(t) = ψB,mat

l,b , ψN
l,n(t) = ψN,mat

l,n

(III)
In the present work, we revisit this hypothesis. The PTDF are
now time-varying, and the estimation of these PTDF is data-
based: a collection of data estimates the values of the PTDF
using regression analysis. The ultimate goal for the control
design point of view is to use these time-varying PTDFs
for the prediction mechanism. Ideally (from the robustness
of the controller), the reconstructed PTDFs are equal to the
values computed offline. If this ideal situation differs from the
real system operation conditions, then one can represent more
accurately the current state of functioning using the estimated
PTDFs values, thus leading to better controls, which exploits
most of the information available.

Indeed, a possible cause of errors in the [3] and [4] is
that the offline computation of PTDF from [7] assumes the
generation of only one generator is changing at a time, but
the superposition principle might not be applicable for several
generators simultaneously. This work aims at estimating the
time-varying PTDFs : ψG

l,g(t), ψ
B
l,b(t), ψ

N
l,n(t) from (I).

A. Receding-horizon parameter estimation and constrained
least squares formulation

The quality of the PTDFs’ estimation has an important
impact on the model-based prediction capabilities and con-
sequently on the optimal control. For this reason, at each time
step t of the simulation, the estimation of the PTDFs will
be updated. The estimation is based on a receding horizon
strategy and two approaches are considered and detailed next:

• a variable-length horizon starting from the beginning of
the simulation and including all the available historical
data;

• a fixed horizon, the data considered for the estimation
corresponds to a fixed number of previous steps of the
simulation, 10 and 30 steps are used in the numerical
examples.

The estimation of the time-varying PTDFs is formulated in
terms of an optimisation problem. Let us introduce the Power
flow variations δFl and generation power variations δPG

g :

δFl(t) = Fl(t+1)−Fl(t), δPG
g (t) = zGg (t)−PG

g (t) (IV)



Fig. 1. past horizon Hp, made of past observations usable at time t

thus, the power flow equation of (I) for a given line l ∈ L can
be written as:

δFl(t) =
∑

b∈ZB

δPB
b (t− d) · ψB

l,b(t)

+
∑

g∈ZG

δPG
g (t) · ψG

l,g(t)

+
∑

n∈ZN

δPT
n (t) · ψN

l,n(t)

(V)

The aim is to formulate Eq. (V) in matrix form, and the
following notations of column vectors are instrumental:

δF (t) =

 δF1(t)
... l

δFnL(t)

 ∈ RnL

, δPB(t) =

 δP
B
1 (t)
... b

δPB
nB (t)

 ∈ RnB

,

δPG(t) =

 δP
G
1 (t)
... g

δPG
nG(t)

 ∈ RnG

, δPT (t) =

 δP
T
1 (t)
... n

δPT
nN (t)

 ∈

RnN

.
Let ΨB(t) =

[
ψB
l,b(t)

]
∈ RnL×nB

, ΨG(t) =
[
ψG
l,g(t)

]
∈

RnL×nG

, ΨN (t) =
[
ψN
l,n(t)

]
∈ RnL×nN

, and the block matrix
Ψ(t) =

[
ΨB(t) ΨG(t) ΨN (t)

]
∈ RnL×(nB+nG+nN ). Each

block corresponds to some PTDF values (batteries, generators
or buses) at time t.

Consequently, the power flow equation (V) can be formu-
lated in a compact form, by considering all lines l:

δF (t) = Ψ(t) ·

δPB(t− τB)
δPG(t)
δPT (t)

 (VI)

Considering the available information on the past Hp-step
horizon from t − Hp to t − 1 as illustrated in Fig. 1, lead
to the definition of the matrices of observation:

∆F (t) =
[
δF (t−Hp)

t· · ·δF (t− 1)

]
∈ RnL×Hp ,

∆PB(t− τB) =
[
δPB(t−Hp − τB)

t· · ·δPB(t− 1− τB)

]
∈

RnB×Hp , ∆PG(t) =
[
δPG(t−Hp)

t· · ·δPG(t− 1)

]
∈

RnG×Hp , ∆PT (t) =
[
δPT (t−Hp)

t· · ·δPT (t− 1)

]
∈

RnN×Hp , and the block matrix ∆P (t) =

∆PB(t− τB)
∆PG(t)
∆PT (t)


collecting the past observations from t−Hp up to t− 1.

A working assumption of pseudo-constant PTDFs over the
observation horizon will be made in order to exploit the struc-
ture of the dependencies at the computation stage. It should

be noticed that the receding-horizon principle employed here,
re-inforces the time-varying PTDFs nature of the estimation.
Practically, at each sampling instant a linear regression will be
employed to estimate point-wise (at time t) the PTDFs Ψ(t):

∆F (t) = Ψ(t) ·∆P (t) + S(t) (VII)

where S(t) ∈ RH×nL

corresponds to the slack matrix of the
residuals between the left-hand side and the remaining terms
on the right-hand side. ∆F (t) and ∆P (t) are collections of
available data, namely past observations. We want to select
the PTDFs in Ψ(t), such that the Frobenius-norm of the slack
matrix S(t) is the smallest, noted ∥.∥F .

Thus, the optimization problem O1 is defined as:

O1(t) = min
Ψ(t)

∥∆F (t)−Ψ(t) ·∆P (t)∥F (VIII)

Additionally, the PTDFs represent a percentage of gen-
eration distribution over a line, which is directed but flow
is allowed in both directions, so the percentage can also
be negative. To impose a percentage-like solution for the
coefficients, a constraint is added by defining the all-ones
matrix J ∈ R(nB+nG+nN )×nL

:

−J ≤ Ψ ≤ J (IX)

With these main principles, several versions of estimations
can be obtained according to the length of the observation win-
dow and the weight on the information within the respective
window. One can enumerate some intuitive choices: use all
the available data (with obvious storage complexity); use the
data from a finite window; impose a forgetting factor on the
data coming from a long observation window, that last point
is not investigated here.

B. Topological aspect of the solution

Based on the physical balance, the PTDFs are defined in
relationship with the following property: for any given bus, the
generation must be entirely distributed on the lines connected
with the bus. This topological property can be translated
through constraints on the PTDFs estimates: the sum of the
PTDFs of all lines connected to this bus is equal to 100%.

The above property should be valid for any type of PTDF
coefficient, either ψB , ψG or ψN :∑
l∈L s.t. n=fromBus of l

ψl,n −
∑

l∈L s.t. n=toBus of l

ψl,n = 100% (X)

As lines are directed edges, the direction partitions the sums
into two categories: incoming with a positive sign, and outgo-
ing with an opposite sign. The respective constraints (X) need
to be accounted for in the optimization problem constructing
the PTDF estimates at each sampling time.

C. Numerical results with all past data collected

A comparison of results based on the methods used for
estimation is presented next. It should be noted that for the
simulations, no information regarding the transit power distur-
bances ∆PN is available and thus the hypothesis ∆PN = 0
is adopted. In real-world scenarios, such information may be



available and thus enable the estimation of the PTDF ΨN ,
which is not possible here.

Four methods were considered for illustration, the first one,
the baseline using the grid properties and three others are based
on data observation:

• MATPOWER’s computation of the PTDF, based on the
topology and the properties of the power network

• Use of the explicit unconstrained optimum via Matlab’s
built-in pseudoinverse function

• Solving a Least Squares optimization problem, Eq.(VIII)-
(IX) encoded with Yalmip [10] and solved with Gurobi
[11].

• The optimization framework with additionally the topo-
logical constraints, i.e. Eq. (VIII)-(IX)-(X).

Along the simulations, the estimation at each step can use
all the past observations. Gradually the number of past obser-
vations grows and structurally helps in estimating accurately
the PTDFs using the optimisation-based procedure. It can
be observed that results based on pseudoinverse and least
squares are equal. Three types of behavior are apparent. Firstly,
MATPOWER’s method and the two Least Squares methods
result in the same PTDFs. A clear example in this sense is the
PTDF estimation between branch 1 and the battery, cf. Fig. 2.
The battery remains inactive for the first 400 seconds, offering
no observations for PTDF estimation. It becomes operational
afterward, contributing to the estimation process. The PTDF
converge rapidly towards MATPOWER’s PTDFs.
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Fig. 2. PTDF estimate between branch 1 and the battery, located at bus 6

A second interesting behavior can be observed between
the two Least Squares methods: with and without topology
constraint. Convergence to to the same PTDF is obtained, but
the limit values are different from MATPOWER’s value. For
example, the PTDF estimation of branch 5 with generator 3,
Fig. 3.

Third, a case where each method converges towards a
different PTDF value. For example, the PTDF estimate of
branch 7 with generator 4, cf. Fig. 4, where the Least Squares
method without topology constraint converges to -43%, MAT-
POWER’s PTDF to -45% and the Least Squares method with
topology constraint converges to -46%.

In summary, when the two Least Squares methods converge
to distinct values, the one incorporating topology constraints
is usually closer to MATPOWER’s PTDF.
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Fig. 3. PTDF estimate between branch 5 and generator 3 located on bus 5
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Fig. 4. PTDF estimate of branch 7 with generator 4, all-step horizon

D. Numerical results for estimation over a finite receding
horizon window of past collected data

Previous tests assumed that all past observations are col-
lected and stored during the simulation. In the context of a
receding-horizon policy, this equates to a dynamically expand-
ing receding horizon estimation, where the past observation
window gradually grows. In practical scenarios with limited
storage, we relax this structural property and adjust the esti-
mation to a fixed window for the receding horizon.

The goal is to evaluate the impact of the size of horizon on
the PTDF estimation. The PTDF estimation between branch
7 and generator 4 is chosen as example. Two cases are
illustrated: a 30-step and a 10-step window, with Fig. 5 and
6 respectively; to be compared with the case of all past
observations of Fig.4. For the 30-step window case, the
Least Squares method without the topology constraint behaves
similarly to the estimation using all past observations depicted
in Fig 4. The convergence is similar, with a slight variation
in the PTDF asymptotic value. The addition of the topology
constraint leads to estimations with higher fluctuations.

For the 10-step window case, the shortness of the obser-
vation window implies locally a lack of excitation within
the observation window and leads to singularities in the
computation of the PTDF values.

To tackle the high variability of the estimates, we in-
troduce a regularized version of the Least Squares method
with topology constraint. The PTDF estimation variables are
decomposed into two parts: the default time-invariant PTDF
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Fig. 5. PTDF estimate of branch 7 with generator 4, 30-step horizon
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Fig. 6. PTDF estimate of branch 7 with generator 4, 10-step horizon

Ψmat of Eq.(III), plus a new variable ∆Ψ(t) that represents
the variation of the PTDF with respect to Ψmat.

Ψ(t) = Ψmat +∆Ψ(t) (XI)

where Ψmat is the matrix similar to Ψ(t) but with the entries
replaced by the elements in Eq.(III). Since the time-invariant
PTDFs Ψmat respect the topology constraint in Eq.(X), the
variation variables ∆Ψ(t) should not change this property:∑
l∈L s.t. n=fromBus of l

δψl,n(t)−
∑

l∈L s.t. n=toBus of l

δψl,n(t) = 0

(XII)
where δψl,n(t) are the entries of ∆Ψ(t). Thus, the optimisa-
tion problem becomes:

O2(t) = min
∆Ψ(t)

∥∆F (t)−Ψ(t)·∆P (t)∥F+c∥∆Ψ(t)∥F (XIII)

The first term focuses on accurately determining the PTDFs
through precise linear regression. The second term introduces
flexibility in PTDF variations while preventing unrealistic
values. The parameter c serves as a weighting factor and is
set to 1 in these simulations.

In experiments, the case with a 30-step horizon and regu-
lation exhibited no difference compared to previous methods,
but significantly improved the behavior of the 10-step horizon
case.The PTDF estimation of branch 7 with generator 4
is depicted on Fig. 7. One can observe that whenever the
PTDF estimation was previously reaching extreme values,
e.g., at 200 or 800 seconds of simulation, the regularization
mechanism leads to a selection of the time-invariant PTDF
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Fig. 7. PTDF estimate: branch 7, gen 4, 10-step horizon, regularization

values. The additional term in the cost function does not
influence significantly the PTDF estimation the rest of the
time.

IV. CONCLUSION

The paper investigated different methods for the real-time
estimation of the Power Transmission Distribution Factors
(PTDFs). These factors represent the parameters of the dy-
namical model used by the controller for prediction purposes.
The numerical examples show a good convergence whenever
the persistent excitation is ensured despite the fact that the
controller used a time-invariant prediction model. As future
research direction, the goal is to determine the efficiency
of the controllers based on a time-varying dynamical model
employing the different PTDF estimations.
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