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Abstract— The use of Augmented Reality (AR) devices like 

HoloLens has gained significant acceptance for training 

assembly line operators in various industries. When employing 

Computer-Aided Design (CAD) models to create assembly line 

instructions for training purposes, preserving all redundant 

information becomes unnecessary. Utilizing simplified CAD 

models leads to improved run-time performance of the 

applications in which they are employed. This paper introduces 

a novel solution to simplify CAD models by identifying 

continuous chains within the CAD model, with the help of deep 

learning techniques. The proposed method makes it possible to 

suppress such features that do not impede visualization when 

removed. 
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I. INTRODUCTION  

Industry 4.0 has paved way for the smarter machines 

improving the efficiency and effectiveness in many areas like 

production, maintenance and distribution in industries. As a 

part of industry 4.0, Augmented Reality (AR) techniques now 

aid assembly line operators in the training process. The 

research in the field of AR-based task display has started in 

the early 90s [1]. Horejsi et al. [2] compared classical written 

instructions against AR solutions. The results reported show 

that trainees have learnt 43% faster using AR when compared 

to paper-based instructions. In addition, the error rate is 

significantly reduced. AR uses existing real-world 

environments and puts virtual information on top of it to 

enhance the experience. Various industrial companies have 

started to implement such powerful tools on their shop floors. 

AR systems are now considered as promising training 

platforms for complex and highly demanding tasks. Within 

this context, an important category of AR applications is 

related to the processes of machine assembly and 

maintenance [3][4][5]. 

The media used in AR technology are mainly divided into 

two categories of instructions. The first one contains text, 

images, audio and video, while the second leverages 3D 

model-based instructions. The limitation of purely 2D audio-

visual instructions is related to the occlusions that may appear 

in the scene. An example is illustrated in Fig. 1. Here, the 

white color panel is being assembled at the workstation. The 

instructional image showing how the assembly should be 

done is occluding the part where the object needs to be 

assembled (Fig. 1a). On the counterpart, instructions are 

easier to understand and implement if they are expressed with 

the help of 3D models (Fig. 1b) superimposed on the real 

equipment rather than with text and pictures. This helps 

operators to understand in a step-by-step manner what tasks 

need to be done and how to perform them. Such 3D models 

typically provide accurate information about the object, 

maximizing the potential for a reliable AR experience.  

 

 

a) Training using image based instruction 

 

b) Training using 3D model based instruction 

Fig. 1. AR instructions  

 

However, preparing 3D CAD models for efficient use in 

AR industrial applications is a very important step. CAD 

models are created in various forms, adapted to various 

industries and applications. The main drawback is related to 

the huge storage and bandwidth capabilities required. In 

addition to the inherent complexity of the 3D data 

representation, they also include various metadata, specifying 

product structure, constraints, and moving assemblies and 

parts. Thus, their successful integration into AR devices 

requires a preprocessing phase aiming at reducing the related 

complexity of representation. Most of the time, CAD models 

are tessellated under the form of 3D meshes, which are 

widely acceptable in AR. Such meshes contain finely 



detailed, arbitrary topology surfaces with potentially millions 

of vertices. Even though visually they have higher degree of 

closeness to the real-world objects, the computational cost for 

processing and rendering such meshes is very high.  

The quality and degree of realism of an AR experience is 

determined as a sum of the complexity of the animations, the 

number of polygons, and the materials and textures used. A 

possible solution to ensure a reliable experience without 

saturating the fluid rendering is to use simplified versions of 

the original models, which improves the rendering 

performance of AR devices like HoloLens. In our previous 

work [6] we  have discussed and analyzed the importance of 

using simplified models instead of original ones. The 

experimental evaluations performed demonstrated the 

pertinence and feasibility of using simplified versions of 3D 

models. Thus, the related frame rate significantly increased 

without loss in the visual quality.   

In this paper, we focus on eliminating redundant features, 

specifically referred to as continuous chains from the CAD 

models. By removing such continuous chains, we aim to 

optimize the rendering process, resulting in improved 

framerates and thus more efficient AR applications. 

The rest of the paper is organized as follows. Section II 

analyzes the state of the art on both 3D CAD model 

simplification and continuous chain functionality. Section III 

presents the novel simplification methodology proposed. 

Finally, Section IV concludes the paper and opens some 

perspectives of future work. 

II. RELATED WORK 

CAD model simplification techniques play a crucial role 

in optimizing the efficiency and performance of various 

applications, including AR-based training for industrial 

assembly lines. In the literature there are three different types 

of CAD model simplification techniques [7], which are 

feature-based, dimensionality reduction-based and mesh-

based simplification. Among the existing methods, feature-

based simplification [8][9] involves systematically removing 

features until reaching the desired level of detail. However, 

this approach faces limitations when used in assembly 

processes involving CAD models at different workstations. 

Storing information about which part of the CAD model is 

used at each workstation and applying simplification 

accordingly becomes a challenging task. Dimensionality 

reduction [10] is another simplification technique that 

eliminates one or more dimensions from a boundary value 

problem. Although it can be effective in certain scenarios, it 

is not straightforward, since controlling the level of detail to 

be removed can be difficult. In addition, such approaches are 

not universally applicable and thus limited to specific shapes 

and scenarios. 

Both feature-based and dimensionality reduction-based 

simplification methods are not directly suitable for CAD 

models used in AR-based training for industrial assembly 

lines. The main cause comes from the fact that such methods 

may not consider the unique requirements and features 

relevant to assembly instructions. An alternative approach is 

based on mesh simplification [11][12] which were 

thoroughly evaluated in our previous work [6] and the 

method introduced by Lindstrom et al. [13] has outperformed 

the rest of the methods. In this case, the 3D CAD meshes are 

treated as a whole, without specific information about how 

the models have been generated or their corresponding 

features. The primary objective of mesh-based simplification 

is to progressively reduce the number of vertices without 

compromising the visual integrity of the model. 

A promising way to simplify CAD models used for AR 

training is to identify redundant features within each model 

and apply to them mesh simplification strategies. By tailoring 

the simplification process to each feature, it becomes feasible 

to achieve more streamlined and visually acceptable 

simplified models. Among the various features that may be 

considered, in our work we have focused on the identification 

of redundant continuous chains (Fig. 2). When creating a 

CAD model, different parts are generated individually and 

later joined together to form a complete model. To ensure 

seamless transitions between these parts, continuous chains 

are introduced during the mesh construction process. These 

chains are defined as smooth regions of dense mesh 

triangulations, usually consisting of small triangles, that 

either round the edges of one component or connect two 

components together. Once the continuous chains detected, 

we can effectively remove the entire band of a continuous 

chain resulting in a significant reduction in the number of 

vertices. This simplification process helps optimizing the 

CAD models for improved performance without 

compromising the visual integrity of the assembly. In our 

research, we have analyzed a database comprising 730 CAD 

models, and we have observed that nearly 500 of them 

contain continuous chains.  

The state-of-the-art continuous chain detection technique 

is based on the segmentation algorithm introduced by Cohen 

et al. [14]. The algorithm involves calculating the minimum 

and maximum curvature of each vertex, followed by a k-

means clustering and subsequent merging of triangles. The 

segmentation process effectively extracts all vertices that 

present similar curvature values and are thus considered to lie 

on the continuous chain. 

  



(a) 

Cad model (wireframe 

visualization) 

(b) 

Continous chain represented 

in green color 

Fig.  2. Continuous chain functionality  

Despite the effectiveness of continuous chain curvature-

based detection, a significant limitation arises when dealing 

with CAD models exhibiting substantial deviations in 

curvature. Two examples of missed and wrong detection are 

presented in Fig. 3. In both cases, the algorithm fails to 

accurately identify and distinguish the continuous chains. In 

Fig 3.a we can see two continuous one at the top and another 

in the middle, but only the one in the middle is identified. 

Similarly in Fig. 3b we can see that some of the vertices inside 

the continuous chain are not detected, while some of them 

which are not in continuous chains are identified as one. 

While local optimization may be attempted, it is model-

specific and requires manual intervention. To overcome such 

challenges, we propose a novel approach that leverages deep 

learning techniques to identify continuous chains with higher 

accuracy and robustness. 

  

a) Missed identification.  

  

b) Wrong identification 

Fig. 3. Limitations of the curvature-based continuous 

chain identification  

 

III. PROPOSED METHODOLOGY 

 

The proposed methodology comprises three key phases: 

database preparation, 2D segmentation using deep learning 

models, and targeted simplification of the detected 

continuous chains.  

The 3D models are first converted into images by 3D/2D 

projection. Subsequently, an image segmentation algorithm 

is applied to identify the corresponding 2D appearances of the 

continuous chains. The multi-view segmentation results are 

then mapped back onto the original 3D domain. A dedicated 

simplification algorithm is finally designed to effectively 

simplify the identified features while preserving the model’s 

essential characteristics and visual integrity.  

Let us now further detail the three steps involved.  

A. Database creation : 

The initial step in our proposed methodology involves 

creating a comprehensive database of 2D images derived 

from 3D models captured at various angles of view (Fig. 4).  

 

 
Fig.  4. Camera distribution for capturing a set of images 

 

Our database is derived from a total number of 15 3D mesh 

models and comprises three sets of images (See Fig. 5):  

1. Images of the original 3D model captured from different 

angles of view and rendered in wireframe visualization mode. 

We have explicitly defined 50 camera positions which are 

uniformly spread around a sphere.  

2. Images of continuous chain masks extracted from the 

3D model, corresponding to the original images. These masks 

highlight the regions with continuous chains within the 

model.  The masks are obtained by applying the state of art 

segmentation technique [14], and are further adjusted 

manually to remove abnormalities and provide a reliable 

ground truth. 

3. Images of the 3D model with unique face colors 

(randomly selected) corresponding to the original images. 

These images serve to the purpose of mapping the segmented 

results from the 2D domain back to the 3D domain. 

The decision to perform segmentation in the 2D domain, 

rather than directly in 3D, stems from the diverse and non-

continuous nature of the CAD model data. Due to the varying 

structures, shapes and sizes of CAD models, manually 

labelling classes and distinguishing between different model 

types/features becomes challenging. By operating in the 2D 

domain, we can leverage advanced segmentation algorithms 

tailored for 2D image processing, thereby enhancing the 

accuracy and efficiency of the segmentation process. Later in 

the methodology, we efficiently map the segmented results 

back onto the original 3D models using the unique face-

colored images, ensuring a seamless integration of the 

simplified features into the overall 3D representation. After 

that simplifying these features becomes quite straight 

forward. 



 
Fig. 5. Database preparation  

 

B. Training with DL techniques 

Various deep learning techniques have been proposed for 

performing segmentation on 2D images [15][16]. When 

dealing with a limited amount of training data, UNet has 

demonstrated superior performance compared to other 

methods. Given our relatively small training dataset of 15 3D 

models, we have chosen UNet [16] as our primary model for 

segmenting the continuous chains in the 2D domain. To 

accomplish this, we have used a pre-trained UNet model, 

originally designed for segmenting medical images and 

identifying abnormal regions. 

UNet is a convolutional neural network architecture that 

incorporates two consecutive 3x3 convolutions, each 

followed by a rectified linear unit (ReLU), and a 2x2 max 

pooling operation for down-sampling. The input images, 

along with their corresponding segmented masks, are utilized 

to train the network. The training set consists of 13 models, 

comprising a total of 650 images, while 2 additional models  

are reserved for testing. The output of the UNet model is a 

segmented image, effectively highlighting the regions 

representing continuous chains within the CAD models. To 

optimize the default parameters of the UNet model for CAD 

model segmentation, we leveraged the power of Optuna [18], 

an automatic hyperparameter optimization software 

framework specifically designed for machine learning tasks. 

Optuna dynamically constructs search spaces for 

hyperparameters, allowing us to efficiently determine the 

best configuration for our model. In our experimentation, we 

considered the following parameters for our UNet model: 

Learning Rate: 0.001, Optimizer: SGD, Batch Size: 8, Loss 

Function: MAE, and Saturation Epoch: 12. By employing 

Optuna for hyperparameter tuning, we have achieved an 

optimized configuration that significantly improved the 

performance of our UNet model  with respect to the original 

UNet parameters in segmenting continuous chains within 

CAD models. The enhanced model can now be confidently 

utilized in our CAD model segmentation process. Fig. 6 

illustrates the evolution of the training and validation loss 

during the optimization process. We observe a strong 

correlation between the training loss and the validation loss, 

indicating that the model is well-trained and performs well on 

both training and validation datasets. 

 
Fig.  6. Loss graph 

 

Fig. 7 presents the final results of our segmentation 

process, displaying the original CAD model alongside the 

accurately identified continuous chain functionalities. The 

network successfully detects the continuous chains in this 

particular view of the model. It is essential to mention that we 

have a total number of 50 views captured from all sides of the 

same model. These multiple views are crucial in mapping the 

detected functionalities from the 2D domain back onto the 3D 

domain, ensuring a comprehensive representation of the 

continuous chains throughout the entire 3D model. 

 

  
  

  
Fig. 7. Segmentation results 

 

C. 2D to 3D mapping 

Segmentation in the 2D domain yields multiple images, 

each capturing the continuous chain functionality at a specific 

angle. To facilitate mapping between the 2D and 3D domains, 

we employ a unique color identity scheme (See Fig. 8). More 

precisely, each face of the 3D CAD model is assigned a 

distinct color. When the 3D model is converted into a 2D 

image, each face color corresponds to multiple pixels in the 

image. In the final segmented images, we identify the pixel 

colors that represent the segmented region. These pixel colors 

are traced back to a specific face number in the 3D domain. 

Consequently, for each view, we can map the segmented 

region from the 2D domain back to the corresponding region 

in the 3D model. By performing this mapping for different 

views, we aggregate the results to achieve a comprehensive 



identification of the segmented continuous chain in the 3D 

domain.  

 

 

 

Fig 8. 2D to 3D mapping  

D. Simplification of continous chains 

 The key novelty of our algorithm lies in the approach used 

to suppress the continuous chains. Instead of relying solely 

on segmentation techniques to identify these chains, we 

employ a method that focuses on extracting the vertices 

situated on the same vertical plane and subsequently merging 

them. This novel process is achieved through an edge 

collapse operation. To implement this edge collapse, we 

employ a graph traversal technique, which enables us to 

identify the vertices lying on the same vertical plane and their 

corresponding boundary vertices. The metric used for the 

graph traversal algorithm is the shortest Euclidian distance 

between the corresponding vertices.  

 

 
Fig. 9. Identifying vertices for simplification 

 

The flowchart in Fig. 9 provides a deeper understanding of 

how the vertices on the vertical planes are identified along 

with their respective boundary vertices. There are two types 

of vertices, one is from cluster id 1 indicating the vertex 

belongs to a continuous chain and cluster id 0 indicating it is 

a non-continuous chain vertex. At first, we select a random 

vertex from continuous chain and traverse through the 

vertical plane of that particular vertex with the help of 

shortest distance until we reach the boundary vertex on either 

side. Once we find a vertical plane of vertices they are 

separated into another list. We continue the process until all 

the vertices from cluster id 1 that is all the vertices from 

continuous chain are listed along with their respective vertical 

plane vertices and boundary vertices.   

The two boundary vertices are collapsed at their centroid 

creating a single point (See Fig. 10b) representing the 

simplified shape and edges while preserving the overall shape 

and structure of the model.  

 

 

(a) 

Original continous chain in 

wireframe 

(b) 

Boundary vertices collapsed 

at centroid 

 
 

(c) 

All vertices collapsed 

(d) 

Final result 

Fig 10. Merging continuous chain  

 

The final results are illustrated in Fig. 11. The first model 

(Fig. 11a) initially contains 2070 vertices. After the removal 

of continuous chains using the proposed approach, the 

simplified version now consists of only 566 vertices. This 

remarkable reduction in vertices amounts to a simplification 

of approximately 72.7%. Similarly, the second model, known 

as Hood (Fig. 11b), started with 828 vertices. Through the 

application of our simplification technique, the model has 

been reduced to only 157 vertices. This represents a 

remarkable simplification of approximately 81%. There is a 

significant reduction in complexity in turn increasing the 

framerate of the application they are being used in ensuring 

fluid rendering.  Note that that percentage of simplification 

depends on the continuous chains present in the particular 

CAD model. Complex models tend to have more continuous 

chains due to higher number of transitions from one feature 

to another. Also, we can compare it against the state-of-the-



art method [13] which had previously performed better. In 

Fig. 11e&f we can notice the abnormalities in the edges of 

the model where as our method is more visually acceptable. 

These results demonstrate the effectiveness and efficiency of 

our framework in simplifying CAD models, specifically by 

targeting and removing continuous chains. The substantial 

reduction in vertex count leads to improvement in run-time 

performance, making the simplified models more suitable for 

AR-based training in industrial assembly lines. 

 

  
(a)  

Original model 

(b) 

Original model 

  
(c) 

Simplified by our method 

(d) 

Simplified  by our method 

  
(e) 

Simplified by Lindstrom et al. 

                       [ 13] 

(f) 

Simplified by Lindstrom et al. 

  [ 13] 

 

Fig. 11. Final simplified models 

 

 

IV. CONCLUSION AND PERSPECTIVES 

Over the past few years, CAD model simplification has been 

a prominent area of research. Within this context, the trend of 

simplifying CAD models specifically for AR applications has 

emerged more recently. This paper proposes a novel 

approach for 3D CAD mesh simplification by combining 

mesh-based and feature-based simplification. A deep 

learning method is employed to identify redundant 

continuous chains, within the 2D domain. Furthermore, a 

dedicated simplification strategy is developed, focusing on 

collapsing these continuous chains into single chain, thus 

reducing model complexity.  

For future research, advanced deep learning techniques 

can be investigated to achieve a better feature identification 

and segmentation results. Lastly, extending the application of 

the proposed method to various other features in complex 

CAD models will even simplify the models enhancing the 

performance of AR-based training in industrial assembly 

lines and beyond. 

REFERENCES 

[1] Feiner, Steven, Blair MacIntyre, and Dorée Seligmann. Knowledge-
based Augmented Reality. Communications of the ACM 36, 7 (July 
1993), 52-62. 

[2] Hořejší, Petr (2015): Augmented Reality System for Virtual Training 
of Parts Assembly. In: Procedia Engineering, S. 699–706. 
DOI:10.1016/j.proeng.2015.01.422. 

[3] Jürgen Hahn, Bernd Ludwig, Christian Wolff, Augmented reality-
based training of the PCB assembly process, Proceedings of the 14th 
International Conference on Mobile and Ubiquitous 
MultimediaNovember 2015 Pages 395– 
399https://doi.org/10.1145/2836041.2841215 

[4] G. Reinhart, C. Patron,Integrating Augmented Reality in the Assembly 
Domain - Fundamentals, Benefits and Applications, CIRP 
Annals,Volume 52, Issue 1,2003,Pages 5-8,ISSN 0007-
8506,https://doi.org/10.1016/S0007-8506(07)60517-4. 

[5] Davide Manca, Roberto Totaro, Salman Nazir, Sara Brambilla, Simone 
Colombo,Virtual and Augmented Reality as Viable Tools to Train 
Industrial Operators,Elsevier,Volume 31,2012,Pages 825-829,ISSN 
1570-7946,ISBN 9780444595058, https://doi.org/10.1016/B978-0-
444-59507-2.50157-8. 

[6] Abhayadhathri Arige, Traian Lavric, Marius Preda, Titus Zaharia, 
Emmanuel Bricard. Analysis of 3D CAD MESH simplification 
approaches within the framework of AR applications for industrial 
assembly lines. ISIE 2021: IEEE 30th International Symposium on 
Industrial Electronics, Jun 2021, Kyoto (online), Japan. pp.1-6. 

[7] Mun, D., Kim, B.C. Extended progressive simplification of feature-
based CAD models. Int J Adv Manuf Technol 93, 915–932 (2017). 
https://doi.org/10.1007/s00170-017-0491-y 

[8] Lee SH (2005) Feature-based multiresolution modeling of solids.ACM 
Trans Graph 24(4):1417–14413.  

[9] Lee SH, Lee K (2012) Simultaneous and incremental feature-
basedmultiresolution modeling with feature operations in part 
design.Comput Aided Des 44(5):457–483  

[10] Rui Sun, Shuming Gao, Wei Zhao,An approach to B-rep model 
simplification based on region suppression,Computers & 
Graphics,Volume 34, Issue 5,2010,Pages 556-564,ISSN 0097-
8493,https://doi.org/10.1016/j.cag.2010.06.007 

[11] P. Agarwal and S. Suri. Surface approximation and geometric par-
titions. InProceedings Fifth Symposium on Discrete Algorithms,pages 
24–33, 1994.  

[12] M. J. DeHaemer, Jr. and M. J. Zyda. Simplification of objectsrendered 
by polygonal approximations.Computers & Graphics,15(2):175–184, 
1991. 

[13] Lindstrom, Peter & Turk, Greg. (1998). Fast and Memory Efficient 
Polygonal Simplification. IEEE Visual. 
10.1109/VISUAL.1998.745314. 

[14] David Cohen-Steiner and Jean-Marie Morvan. 2003. Restricted 
delaunay triangulations and normal cycle. In Proceedings of the 
nineteenth annual symposium on Computational geometry (SCG '03). 
Association for Computing Machinery, New York, NY, USA, 312–
321. DOI:https://doi.org/10.1145/777792.777839 

[15] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for 
semantic segmentation (2014), arXiv:1411.4038 [cs.CV] 

[16] Seyedhosseini, M., Sajjadi, M., Tasdizen, T.: Image segmentation with 
cascaded hierarchical models and logistic disjunctive normal networks. 
In: Computer Vision (ICCV), 2013 IEEE International Conference on. 
pp. 2168–2175 (2013) 

[17] Ronneberger, O., Fischer, P. and Brox, T., 2015, October. U-net: 
Convolutional networks for biomedical image segmentation. In 
International Conference on Medical image computing and computer-
assisted intervention (pp. 234-241). Springer, Cham. 

[18] ]Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and 
Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter 
Optimization Framework. In Proceedings of the 25th ACM SIGKDD 
International Conference on Knowledge Discovery &amp; Data 
Mining (KDD '19). Association for Computing Machinery, New York, 
NY, USA, 2623–2631. https://doi.org/10.1145/3292500.3330701

https://doi.org/10.1007/s00170-017-0491-y
https://doi.org/10.1145/3292500.3330701


 


