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Abstract

In design optimization of complex systems, the surrogate model approach relying on
progressively enriched Design of Experiments (DOE) avoids efficiency problems
encountered when embedding simulation codes within optimization loops. However,
an efficient a priori sampling of the design space rapidly becomes costly when using
High-Fidelity (HF) simulators, especially in high dimension. On the other hand, in
applications such as aeronautical design, multiple simulation tools are frequently
available for the same problem, generally with a degree of precision inversely
proportional to the CPU cost. Thus, the concept of multi-fidelity proposes to merge
different levels of fidelity within a single model with controlled variance. Based on
recent Reduced-Order Modeling (ROM) techniques, an alternative approach allows to
pursue the objective of mastering the simulation budget by replacing costly models
with their approximate full-field counterparts, providing additional insight to scalar
surrogates built directly from the Quantities of Interest (QoI). Both approaches:
multi-fidelity and ROM, may be combined, allowing for additional flexibility in choosing
the degree of fidelity required in different zones of the design space. This paper reviews
the strategies that seek to improve surrogate-based optimization efficiency, including
ROM, multi-fidelity metamodeling, and DOE enrichment strategies.

Keywords: Multi-fidelity, Variable complexity, Black-box optimization, Non-intrusive
reduced basis, Bayesian optimization
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Introduction
Several computational methods with varying fidelity1 have been developed over the past
decades to simulate fluid dynamics [97]. High-fidelity (HF) simulationmodels such as 3D-
ReynoldsAveragedNavier-Stokes (RANS) andLargeEddySimulations (LES)have reached
a level of maturity that allows them to be sufficiently predictive for use in aeronautical
part design optimization loops [158]. However, these imply extensive computer resource
utilization ranging fromhours to full days of computation on supercomputer architectures
and the generation of several gigabytes of data. On the other hand, Low-Fidelity (LF)
models such as simplified physics, categorization [72,151], mesh coarsening [20,115] or
relaxed convergence criteria [52], can be used to compute fluid flow approximations using
limited resources. TheMulti-Fidelity (MF) optimization approach combines the LF’s and
HF’s respective advantages regarding cost and precision within a common framework.
The first category of MFModels (MFMs) consists of exploring the LF values to determine
the most interesting zones in the design space (for example the region of interest for an
optimization problem) to reduce the calls to the expensiveHF solver. This type ofmethods
is not properly referred to as MFMs, since the HF and LF levels are not merged into a
single model. The MF combination techniques use most of the time a surrogate model to
integrate multiple fidelity levels.
Surrogate modeling consists in building a regression model2 from a set of available

samples obtained from a design of experiments (DOE) allowing to predict the values of
the function at interesting points. It avoids repeated calls to the simulation software in the
design loops. Applications are uncertainty analysis, statistical inference (data-driven) [53,
220] or multi-disciplinary [48,50,132,202], shape [90,199,226] or topology optimization
[142]. Reviews on Surrogate-Based Optimization (SBO) are provided by [73,163,189,195]
where references on DOE techniques, surrogate modeling, and SBO applications are
detailed. Later, SBO techniques applied to the aerodynamic field were reviewed by [232],
and a more general review was published by [231] on surrogates, DOE, and adaptive
strategies in engineering applications. In the present review, we focus on the construction
of surrogate models when multiple levels of fidelity are available, in the SBO context.

1The term fidelity refers here to both the time of a calculation and its accuracy [72].
2This study focuses on surrogate modeling using regression and interpolation. However, surrogate modeling also
includes classification techniques [195,232].
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Alternatively to the SBO frameworks, the evaluation costs may be also reduced by
two families of Reduced-Order Models (ROMs): the intrusive projection-based models
[8,18,238] and Non-Intrusive ROMs (NIROMs) [65,224]. These methods have provided
important savings in the computational cost of CFD models, but also in Numerical
Structural Mechanics (CSM) especially in optimization [225], Uncertainty Quantification
(UQ) [43,114] or inverse resolution [62]. Other approaches combine the MFM and ROM
within a surrogate to solve costly optimization [20,60,103]. The use of multiple fidelities
has been introduced to temper the cost of high-dimensional multi-disciplinary design
breaking the ”curse of dimensionality” [189,209]. This concept allows to predict improved
design location by taking into account a large amount of LF cheap data and few expensive
HF available data.
However, both ROM andMFM based SBO raise predictability issues when ROM-based

surrogates rely on offline sampling, leading to costly optimization procedures [45,82,204].
To address this issue, offline-online strategies, also called adaptive strategies, are employed
to adapt the ROM as the optimization search progresses. These approaches have recently
been highlighted by [231] in its state-of-the-art paper on SBOs as one of the current
solutions to the challenges of large-scale modeling. The enrichment criterion uses a merit
function to predict both the improvement in accuracy and the optimization objective. The
next point to be evaluated is selected to maximize this criterion iteratively until an ade-
quate stopping condition is reached.The goal is to choose themost relevant points in order
to reduce the number of calls to solvers, that would answer a given design problem. The
strategies for selecting sampling points can be classified as infill sampling [82,207] adap-
tive [82,123,219], response-based [27], a posteriori, sequential and online approaches.
Contrary to the domain-based and space-filling approaches where the training database
is selected according to its point-to-point distance distribution, the adaptive selection is
based on the surrogate model’s information.
The solutions to the CPU challenge of repetitive costly simulations reviewed in this

paper aim at reducing the training and evaluation costs of metamodels. On the one hand,
the MFMs combine variable simulation costs and, on the other hand, the ROMs allow
to handle high-dimensional outputs while taking into account the vector representation
of the simulation data (typically the discretized solutions of fluid state variables in CFD).
Compared to scalar approximation models of Quantities of Interest (QoI), they are sup-
posed to provide better insight into the physical model [47]. Also, sampling methods can
be used to minimize the number of calls to expensive solvers while maintaining sufficient
representativeness of the simulated physical model.
This paper reviews scalar and full-field SBO single- and MF frameworks. “Overview

on surrogate-based optimization” section presents the SBO methods. Scalar MFMs are
presented in “Multi-fidelity management” section, ROMs in “Surrogate modeling for full-
field computations” section, and finally, vectorialMFMs based on ROMs in “Multi-fidelity
reduced-ordermethods” section. For each surrogate, the corresponding adaptive sampling
strategies are overviewed.

Overview on surrogate-based optimization
This section presents surrogate-Based optimization (SBO). The surrogatemodels are pre-
sented on “Surrogate modeling” and “Off-line design of experiment” sections introduces
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Fig. 1 The offline SBO strategy

general andnon-adaptive samplingmethods and “Adaptive sampling” section the adaptive
sampling approaches.
In the context of industrial design, theQuantities of Interest (QoI) are used to determine

whether the chosen technological solution meets the functional requirements. A perfor-
mance criterion generally referred to as an objective function J (χ) can be evaluated at
the design point χT = (χ1 ...χd), where d is the design space dimension. This function
is minimized under one or more constraints to meet the design specification. The scalar
QoIs (lift, drag,...) are post-processed from the simulator output f (χ) (velocity, pressure
field,...). The classical optimization problem is defined in a design spaceD by the objective
J , equality and inequality constraints h and g respectively

χ∗ = argmin
χ∈D

J (f (χ))

s.t. gi(f (χ)) ≤ 0, i = 1, ..., p
hj(f (χ)) = 0, j = 1, ..., q

(1)

whereχ is the design variable,D ⊂ R
d ,χ∗ is the optimumof the objective functionJ ∈ R

subjected to the constraints g , h.
In simulation-based optimizations, theQoI are evaluated by post-processing simulation

results, requiring repetitive calls to time-consuming software within the optimization
loops. Therefore, the SBO consists in solving the approximate problem defined by the
approximate quantities noted as ˜J , g̃ , and˜h, respectively

χ̃∗ = argmin
χ∈D

˜J (χ)

s.t. g̃i(χ) ≤ 0, i = 1, ..., p
˜hj(χ) = 0, j = 1, ..., q

(2)

The SBO steps are illustrated in Fig. 1. First, is the off-line phase, samples are evaluated
X = {χ(0) , ... ,χ(M)} using design of experiments (DoE) methods as reviewed by [77,195]
or, in the specific field of aerodynamic applications, by [232]. Once the simulation has
evaluated the samples f(χ(i)) with i = {1, ... ,M}, the surrogate model is built for the QoI
Q = { ˜J , g̃ ,˜h} and the optimization is performed in the online phase.

Surrogate modeling

The approximated quantities are modeled with a surrogate model, or metamodels, for
which common techniques include
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• polynomial regression [192,194],
• Gaussian Process Regression (GPR) including Kriging [55,107,134], developed in the

geostatistical domain by [111],
• Radial Basis Functions (RBF) [68,81,160],
• Moving Least Squares (MLS) [48,113],
• Support Vector Regression (SVR) [201],
• Artificial Neural Networks (ANN) [37].

Although polynomials are extensively cited in the literature, their use is mainly limited
to low-dimensional, linear or quadratic cases [189]. RBF and Kriging metamodels can
handle non-linear engineering approaches. While RBF imply isotropic kernels, Kriging
models that are based on the optimization of anisotropic ones requiring more hyper-
parameters to tune and becoming untractable for high-dimensionality [171]. Excellent
reviews (see “Introduction” section) are available for response surface modeling, however,
the validation of response surfaces is necessary to ensure surfaces are representative of the
underlying physical model. In simulation based applications, the number of data is gen-
erally insufficient to create distinct training validation sets. Specific approaches to model
validation have therefore been proposed, some of them being independent of the surro-
gate method at hand. In the learning phase, an error estimator is needed to optimize the
hyper-parameters of the approximate model. Gaussian-processes are commonly tuned
by the likelihood maximization, employing evolutionary or gradient-based algorithms
[168,213]. Methods estimating the predictor error without generating an additional set of
observations, include CV [58] and the bootstrap [69]. Kohavi [109] compares bootstrap to
CV and concludes to better performance for ten-fold CV, on the specific case considered.
The overall surrogate error is usually validated by Cross-Validation (CV) or sensitivity
estimation [73]. K-fold-CV consists in successively removing k samples from the train-
ing set and estimating the model accuracy on these experiments. Setting k=1 yields the
Leave-One-Out (LOO) procedure. Such methods allow to build the validation test from
available data, to quantify the overall error typically with the Mean Square Error (MSE),
the Root MSE (RMSE) and the Integrated MSE (IMSE) [115]. A more local approach
provides a partition of the design space using the Variable Error Value with Sampling
Points (VESP) [46] assigned to different partitioned regions. Thereafter, surrogate models
are built iteratively using different subsets of samples and tested on the remaining points.
Local accuracy can also be quantified by the Maximum Absolute Error (MAE). The cor-
relation between two function responses can be measured by the coefficient R [78] when
the relationship between the predicted response and the actual response is linear, one
can also find r, the Pearson correlation coefficient [205] or its alternatives for non-linear
models [200].

Off-line design of experiment

Sampling techniques for numerical experiments can be grouped into twomain categories,
namely Classical DoE (CDoE) and Modern DoE (MDoE) or Design and Analysis of Com-
puter Experiments (DACE) [129,196]. Giunta et al. [77] presents general summaries of
CDoEandMDoEmethods used in aeronautics. Toobtain a goodquality approximation on
the whole domain, the points must be distributed as evenly as possible in space. Classical
DoEmethods for physical (in vitro/in vivo) experiments tend to allocate the sample points
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in the way to minimize the effect of the random error term. They include the full factorial
and the fractional factorial design [133], taking samples from regularly spaced sites. Its
main limitation is that the total number of design points increases exponentially with the
problem dimension [19]. The central composite [144] and the Behnken Box design [28]
follow a similar principle but replicate samples are takenmaking thesemethods less inter-
esting for computer (in silico) experiments considered as deterministic. A widely used,
random sampling methods for parameter estimation, albeit costly, is the Markov chain
Monte Carlo (MCMC) [151] algorithms, however the number of simulations involved
rapidly becomes prohibitive since they are based on the Markov chain process which
requires a very high sample size. Quasi-random methods generate well-distributed sets
of points with a controlled size. Various criteria are used to fill the DoE, such as Minimax
and Maximin models, Kullback–Leibler, Audze–Eglais and Maximum Entropy Sampling
(MES) [190]. Another approach maximizes Euclidean distance between all points in the
DoE [141]. Among the modern DoEmethods, [77], one of the most commonly used is the
Latin Hypercube Sampling (LHS) [135], distributing a fixed number of samples indepen-
dently of theDoE dimensions. TheVoronoi LatinizedCentroid Tesselation is an extended
version of the LHS technique [185], improving its coverage. Sampling can also be con-
structed after an Analysis Of VAriance (ANOVA), or using Sobol [203] and Halton [87]
sequences, often used to identify the parameters that most influence the output values
[98]. Above space-filling techniques attempt to distribute the sampling points evenly in
the design space. However, there is no general definition of an a priori number of sam-
ples in aerodynamic problems resulting in the desired precision [232], as QoI are often
non-linear or discontinuous. Therefore, adaptive sampling approaches are developped to
progressively improve the quality of the surrogates.

Adaptive sampling

Sacks et al. [184] introduced sequential sampling using the model information to improve
the sampling’s quality with posterior data. In the literature, a sequential strategy is said to
be adaptive if it improves the DoE without considering the experiment outputs. Sample
location has been found to have a significant impact on the estimated error [34,80] and is
improved when adaptive sampling methods are used to select new samples in areas of the
design space where the error estimate is higher. Liu et al. [123] present a comprehensive
review of global surrogate sampling, classifying the methods into one-shot, sequential,
sequential adaptive, and multiple sampling categories. Another review presents methods
tackling high-dimensional black-box problems by [189]. This section presents some of
the existing enrichment criteria applied to the SBO framework. The objective of adaptive
procedures is to find a sufficiently representative model allowing for an efficient conver-
gence of the optimization problem.They are generally based on an infill criterion (Fig. 2),
selecting new sample χ to be added to the current training set X ⊂ D.
The most common infill sampling criteria are built from stochastic metamodels in a

Bayesian scheme. Zilinskas and Brochu et al. [30,239] select the evaluation points sequen-
tially taking into account a compromise between exploration of high uncertainty areas and
intensification to improve over the current best observation. Regarding single-objective
bound-constrained optimization, the Expected Improvement (EI) was popularised by
[101] in the Efficient Global Optimization (EGO) framework. Later, the EI criterion has
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Fig. 2 The adaptive SBO strategy

been extended to handle constraints [149,150] and to address multi-objective problems.3

In the general EGO framework, [157] compared EI, Augmented EI [95] and theWeighted
MSE Criterion for a noisy optimization benchmark. The weighted EI extension is pro-
posed by [207] in order to control the balance between exploitation and exploration in
a constrained optimization framework. An EGO handling constraints was also applied
by [17,156]. Scott et al. [186] generalized the EGO for multidimensional variables the
Gaussian process and gradient-knowledge for noisy QoIs framework. Another variants
of the EGO were proposed by [40,118,161]. These strategies are also categorized by the
survey [123] as variance-based adaptive sampling approaches including:

• Minimization and maximization of the predicted variance or Mean Square Error
[124],

• Lower Confidence Bounds (LCB) [30],
• Upper Confidence Bounds (UCB) [11]
• Gaussian Process-UCB [206],
• EI [101],
• Probability of Improvement (PI)[30],
• Entropy search [93,217].

Currin et al. [57] applied a two-stage optimal design based on the maximum entropy
criterion to gain insight into a circuit-simulator example. Sacks et al. [184] used two-
stages optimal design based on Integrated Mean Squared Error (IMSE) criterion for the
same example. Mackman and Allen [127] compared sequential sampling methods for
the generation of surrogate aerodynamic models. Regis [169] coupled the Trust Region
method (TR) to the EGO and compared to the standard EI and an adaptive criterion based
on the RBF [171] on several test problems including the groundwater application based
on a 36-dimensional simulation concluding that the proposed strategy is most efficient
in the high-dimensional configuration. Li et al. [120] developed an adaptive DOEmethod
based on accumulative error inspired by the greedy algorithm’s principles [147,216], and
favoring regions of space where the outputs are non-linear. Continuous AndMulti-Modal
regions of thedesign space corresponding tomulti-modal, noisy responseswith a tendency
to abrupt variation are identified and sampled until all suspectedContinuousMulti-Modal
regions are explored. This method was compared to the maximum entropy design and

3See, e.g., Section 2 of [71].
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the maximum distance metric. It was concluded that it outperforms the other methods in
terms of RMSE in the majority of the engineering examples presented.

Multi-fidelity management
The MF approach consists in merging Low-Fidelity (LF) with High-Fidelity (HF) data to
produce surrogate models at affordable costs. A study of MFmethods has been published
by [151] in the context of uncertainty propagation, inference, and optimization. It was
followed by an overview [75], which questions the added value ofMF approaches and how
they can be used most effectively. MF Models (MFMs) have been grouped by [72] into
three categories, the first where only HF quantities are estimated by a surrogate model,
secondly, approaches where both levels are combined within the same metamodel, and
finally, the category in which LF is only an enabler of HF modeling. This last category is
related to the filtering approaches as it consists in interrogating LF to decide when to use
HFmodels. Amore general review is completed by [232] on design space sampling, model
selection, ROM, and assisted surrogate models in aeronautics. MF is presented as one of
the recent solutions to improve simulation efficiency. This section gives an overview of
the main MF approximation methods in order to determine each method’s applicability
according to our knowledge of the problem at hand.

Multi-fidelty data fusion

Corrective approaches The concept of MF was originally introduced in linear additive
[108] and multiplicative [36,85] approaches used in gradient-based optimization and was
applied to a high speed civil transport aircraft wing. Hutchison et al. [96] applied a polyno-
mial correction term on aerodynamic drag approximation. The main idea is to consider
the LF model as a general trend to exploit by adding approximation of the difference (or
ratio) between the LF and HF quantities. The corrective methods relie on the assumption
of a relationship between different levels of fidelity, allowing to better approximate a fine
HF model with its associated coarse LF using additive [44,177,208]

˜JMF (χ) = JLF (χ) + ε̃(χ) , (3)

multiplicative [4,15]

˜JMF (χ) = ˜β(χ)JLF (χ) (4)

or hybrid (also called comprehensive) corrections [235,236]

˜JMF (χ) = ˜β(χ)JLF (χ) + ε̃(χ) . (5)

where JHF ,JLF and ˜JMF are exact HF, LF and MF objective functions, ε̃(χ) and˜β(χ) are
surrogate models of the difference and ratio between JHF (χ) and JLF (χ).
Figure 3 illustrates a non-linear function form in the review of MFMs methods [75].

The comprehensive approximation is closer to the HF targeted function and appears to
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Fig. 3 Illustration of Multi-Fidelity scaling (or corrective) approaches by [75]

Fig. 4 Baseline of an efficient supersonic air vehicle (ESAV) model [122]

be the most accurate. Ng and Eldred [146] originally proposed the MF Polynomial Chaos
Expansion (PCE) in the UQ field [63,64] using an additive correction between fidelity
levels. An improvement of the HK has been proposed by [148] through the use of PCE
and Kriging as a HF surrogate model, then extended by additional polynomial terms to
improve the accuracy within an inviscid RAE 2822 CFD application. The addition of a
first order polynomial to the HK model has been shown to improve predictive perfor-
mance. Lickenbrock et al. and Rumpfkeil et al. [122,183] proposed a MF model based on
a scattered PCE in the context of a CFD case illustrated in Fig. 4. This bi-fidelity CFD case
demonstrated that the MF PCE was able to capture the lift coefficient trends.
Space-Mapping (SM) methods, developed by Bandler et al. in 1994 in cartography
reviewed by [16] and applied to the microwave circuit design make corrections at the
input of a model, rather than at its output. They are based on the assumption that the set
of entry points of a HF model is a geometric transformation of the HF models [14,119].
The main idea is to optimize the link or mapping between the spatial parameters LF and
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the HF model’s spatial parameters to meet optimization specifications. The parameters
are obtained by minimizing the difference between the available HF values and those of
themetamodel. HF points generally update this approximation. Thismethodwas coupled
with the Trust RegionModelManagement (TRMM) by [176]. The parameters, defined on
different design spaces, are linked by a corrected SM. It is used with a TRM of sequential-
quadratic programming for two design optimization problems related to aerospace. These
approaches allow different input dimensions [130] in the LF and HF models.
Fusion models are partly known by co-Kriging models [74,104,110,143,153,180]. The
multi-fidelity co-Kriging extension was originally based on a linear multi-fidelity regres-
sion formulation [54], that was improved by [56] through a Bayes linear formulation in
a UQ framework. The co-Kriging multi-fidelity extension, introduced by [104], is based
on a scaled LF objective function JLF with a factor ρ added to the Kriging-interpolated
correction function ε

JHF (χ) = ρJLF (χ) + ε̃(χ), χ ∈ D (6)

where JHF (χ) and ε̃(χ) are respectively the exact HF objective and the interpolation of
ε(χ) = JHF (χ) − JLF (χ).
Le Gratiet et al. [115] proposed a recursive formulation of co-Kriging to tackle the

complexity reduction related to the inverse of the covariance matrices using a recursive
multi-level formulation. The Hierarchical Kriging (HK) developed by [89] redefines co-
Kriging considering the LF function’s Kriging as the trend of the Kriging model for the
expensive HF function avoiding the difficulty associated with building cross-covariance.
The complexity related to higher dimensional Kriging is typically tackled through the use
of alternative metamodels such as RBF of diffuse approximation where the covariance
matrice and hyperparameters are less computationally demanding. A MF extension of
the RBF regression model is introduced by [173] for experimental and computational
integrated data for a missile configuration, and was later applied by [175] for the surface
pressure of aircraft wings. Durantin et al. [66] developed a co-RBF extension yelding an
accuracy of the same order as that of co-Kriging, while reducing its training cost, especially
in high dimension.
Filtering approaches
To manage MF models in the optimization context, hierarchical methods use the LF

model to filter out unpromising points before evaluating the remaining points with theHF
model [44,59]. This group ofmethods thatmay be considered as filtering techniques [151]
consisting in using the LF to explore the design space may also be coupled to the trust-
region framework [51]. Alexandrov et al. [4] has associated a tuned LF with a numerical
optimizer subject to a confidence region constraint, where the LFmodel is tuned using the
HF model and applied to a wing design optimization problem. Giunta et al. [76] applied
the MFM technique to the multidisciplinary design of high-speed civil transport where
the LF is used to define a sub-region of the most likely optimal location. The HF is then
applied to improve the fidelity level.

Dedicated infill

The efficiency of MFMs is conditioned by the correlation between levels of fidelity and
their evaluation cost. A comparison of surrogate quality criteria [94] concludesMSE to be
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the most efficient in the MFM framework, followed by LOO and Predictive Estimation of
Model Fidelity (PEMF) error. aMFMmetamodel qualitymetric involving PEMFproposed
by [136] chooses betweenmultiple fidelity levels. Song et al. [205] compared the commonly
used R2 metric (or performance criterion) to the Pearson Correlation Coefficient (PCC)
in a context of multiple levels of fidelity in order to introduce the correlation impact
on MFMs. The PCC measure between two random variables describing the correlation
between HF and LF functions is defined by [212] for MFMs:

r2 =

⎛

⎜

⎜

⎝

∑M
i=1(QHF (χ(i)) − Q̄HF (χ(i)))(QLF (χ(i)) − f̄LF (χ(i)))

√

∑M
i=1(QHF (χ(i)) − Q̄HF (χ(i)))2

√

∑M
i=1(QLF (χ(i)) − Q̄LF (χ(i)))2

⎞

⎟

⎟

⎠

2

(7)

whereM is thenumberof observationsof theLFandHFsolversQLF andQHF , respectively
and Q̄LF and Q̄HF the corresponding means. Toal [212] compares the impact of RMSE
and the correlation metrics of the LF and HF functions. It has been observed that the r2

metric is better suited than RMSE to identify the LF-HF correlation. Using the correlation
measures, it was shown that the amount of LF datamust be greater than that of HF and the
LF simulation budget must be no greater than 80% of the total simulation budget but at
least higher than 10% to beworthwhile to use aMF representation. Thus,merging existing
LF data with expensive HF data is not always cheaper than a single-fidelity method [75].
Correlation, cost ratio and other error metrics are crucial to measure the benefit of MF
models, which depends on the context (optimization, UQ, etc.). The efficiency of MFMs
depends on the trade-off between cost and accuracy [75]. Dedicated criteria are used
to maximize the benefit of MF methods in the context of optimization. One concept of
MF infill strategies is to establish a criteria to predict the most promising locations for
new HF samples from a LF model.Other criterion use multiple fidelity levels to estimate
the most promising fidelity level and location within the design space. Some of these
methods take into account the HF/LF cost ratio to control the overall budget. In the
following paragraphs, we provide an overview of the main adaptive approaches in these
two categories.

Trust-RegionMFmanagement

Trust-Region Methods (TRMs) have been used to locate promising points in the MFM
framework [1], with derivative-based infill criteria [3] and extended to be used without
gradients by [130,131] and in a multi-objective framework [61,110]. Rodriguez et al.
[178] coupled a corrected LF model with a TR constrained numerical optimizer. They
proposed a MF optimization framework based on a TR algorithm, the gradient of the
objective function computed using the LF model allows the solution to converge to the
HFmodel’s optimum. The TRMFMuses a ratio between LF andHF, indicating the region
of confidence [151]. The MFMs used by [151] are inspired by the approximation model
management for the optimization in [2] which considers the approximation model as a
level of fidelity in its own right. Corrective methods are used to evaluate the sub-models
within the confidence interval at each iteration k and to improve LF QoIs

QMF (χ) = QLF (χ) + e(χk ) + ∇e(χk )T (χ − χk ) (8)

where e(χk ) is the MFM correction model at iteration k , QLF and QMF , respectively the
LF and MFM QoI.
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AdaptiveMF Kriging

The other way to efficiently manage the optimization in a MFM framework is the EGO
(see “Adaptive sampling” section). The MF co-Kriging provides the variance that can be
directly exploited to enrich the model. Le Gratiet and Le Gratiet and Grainer [115,116]
proposed a sequential version of recursive co-Kriging that uses IMSE and takes into
accountboth the computational cost ratios betweencodefidelity levels and their respective
contributions to the total variance. This method is used to predict a turbulence model
of a particular gas composition where different refinements mesh define two levels of
fidelity. The strategy, called sequential Kriging is used in an optimization framework to
select newpoints of interest. It has been extended to parallel computing and adapted to the
vectorialMFoptimization application of a reservoir by [210] (see “Adaptive reduced-order
models” section). In the same framework, [112] present a two-step space-filling strategy
considering the informationgain in the variance and the cost of each level of outputfidelity.
This strategy was tested with analytical MF extension of the 2D Rosenbrock function, a
constrained optimization problem, and an aerodynamic optimization test case. TheMFM
was demonstrated more efficient than the single-fidelity EGO. The approach adopted is
the merging of L fidelity levels for which the level ln+1 of the next simulation at design
point χn+1 is

ln+1 = argminl∈1,...,L
Cl(χn+1)

σ̄ 2
l (χn+1) − σ̃ 2

l (χn+1)
, (9)

where Cl(χn+1) is the evaluation of the (n + 1)th predicted point cost with the simulator
of level l, σ̄ 2

l (χn+1) and σ̃l are respectively the mean and the variance of the MF surrogate
model at lth fidelity level. The objective is to find the lowest output cost with the highest
information gain.
An adaptation of EI to MF is applied to HK by [234]. The HK scheme of [91] is used to

choose the fidelity level at each iteration. The adapted EI expression includes the fidelity
level l

EIvf (χ, l) =
{

0 if σl(χ) = 0,
(Qbest − ˜Q(χ))�

(

Qbest− ˜Q (χ)
σl (χ)

)

+ σl(χ)φ
(

Qbest− ˜Q (χ)
σl (χ)

)

if σl(χ) > 0,

(10)

where φ(.) and �(.) denote respectively the standard normal probability density and dis-
tribution functions, ˜Q(χ) the posterior mean of Q and σl,l∈[1,2] is the variance of the LF
and HF models respectively.
Guo et al. [80] applied EIvf and observed that compared to a single-fidelity EI, the

search for the optimum was made efficient by LF exploration, were fewer HF calls were
needed to solve the optimization problem. Hao et al. [92] developed an extension of this
EIvf criterion to Gradient-Enhanced Kriging (GEK). LF sample points are first used to
represent the HF function trend close to the optimal solution, thenHF samples are added.
It is demonstrated on analytical test functions that EIvf adaptively determines both the
location and the fidelity level of a new design point. Other variance-based criteria have
been adapted to the variable fidelity framework. A comparative study was carried out
on the LCB [99] criterion between single-fidelity, MF EI, and other EGO criteria [234].
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Eight numerical examples, along with one physics-based aircraft fuselage design, resulted
in 25% and 45% savings thanks to the VF-LCB criterion which showed an improved
exploration/exploitation trade-off. Also, the PI criterion has been adapted to MFMs as an
extended PI

EPI(χ, l) = PIvf (χ) × Corr(χ, l) × CR(l) × η(χ, l), (11)

wherePIvf is thePI built from theMFMco-Kriging of [181], l = 1, ..., L, is the fidelity level,
Corr(χ, l) denotes the posterior correlation coefficient between the HF and fidelity level l
at input χ. CR(l) is the cost ratio between HF and lth fidelity model, η(χ, l) is the sample
density function adopted by [123] to avoid clustering of training data. This criterion
was compared to the Augmented Expected Improvement (AEI) of [95], EIvf of [234],
anotherMFPI variant, and a standard single-fidelity PI.An application to structural design
optimization of themicro-aerial vehicle fuselage and stiffened cylindrical shell was carried
out and led to the conclusion that the proposed VF-PI method is most efficient when the
correlation between the HF and LF models is high. In contrast, the VF-EI method is even
more efficient when the correlations remain low. In the same group of sampling methods
using GPs, the GP-UCB, also known as UCB in the Bayesian framework [30] was adapted
to MFM by [102]. The MF adaptation uses the largest LF uncertainty to add the next
sample. This criterion was compared to the single-fidelity GP-EI, GP-UCB criteria, and
the algorithmMFMutual Information Greedy (MF-MI-Greedy) proposed by [187] where
fidelities are assumed independent. This algorithm maximizes the amount of mutual
information in order to take advantage of LF. MFM is modeled using additive Gaussian
processes based on shared relationships with the target HF function, and the variable
costs of different fidelities are taken into account. The MF-MI-Greedy was demonstrated
to effectively reduce the uncertainty.

Adaptive RBFmodels

Another extension of the EI was proposed by [152] for MF UQ and adapted to RBF surro-
gate modelling. The enrichment aims to minimize both the uncertainty and the objective
function. Several criteria are compared, including the Maximum Uncertainty Adaptive
Sampling (MUAS), evaluated from the MF metamodel and minimized, the MFEI, and
Aggregate Criteria Adaptive Sampling (ACAS) consisting in minimizing the difference
between the MF prediction and the associated uncertainty. Finally, Multi-Criteria Adap-
tive Sampling (MCAS) allows identifying new training points by minimizing the objective
function constrained by a maximal prediction uncertainty. This adaptive sampling strat-
egy was tested on a dynamic Stochastic Radial Basis Functions (SRBF) [218]. It has been
observed that MUAS and MCAS were more exploratory than MFEI and ACAS, and HF
evaluations were well distributed within the design space. MFEI and ACAS concentrate
HF evaluations in the optimum region. The overall results lead to the conclusion that
MFEI are the most efficient adaptive sampling techniques for the proposed CFD shape
optimization test case of a NACA hydrofoil. Such bayesian EGO framework is used with
the the Gaussian Process based model so-called Kriging because it is able to provide vari-
ance andmean values to guide theDoE search. Extension of such frameworkwere adapted
to a reduced complexity surrogate RBF by [26], allowed [66] to obtain time savings for
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comparable optimization results. The same conclusion was drawn by [215], following the
co-RBF comparison with a Random Forest co-surrogate. Gutmann [81] used RBF meta-
models in an EGO approach with a measure of interpolation error, referred to as the
power function. This criterion was modified by [170] to improve its local search property.
The adaptiveMF Sequential Radial Basis Optimization (MFSRBO)methodwas developed
by [174] and tested on an aerodynamic application. The compromise criterion between
fidelity levels [104] of additiveMF surrogate is adapted to anRBFmetamodel. This scheme
uses the difference between HF and l fidelity levels. The AEI criterion proposed by [95]
for co-Kriging is adapted to the MF RBF at the lth fidelity levels as

EI(χ , l) = EI ∗ α1(χ , l) ∗ α2(χ , l) ∗ α3(χ , l), (12)

with α1(χ , l) a discontinuous function of the local prediction error, α2(χ , l) the relative
reduction in the posterior standard deviation and α3(χ , l) is the ratio of the l fidelity to
the highest HF costs Cl

CHF .
Cai et al. [34] adapted the CV metric associated with the Voronoi tesselation [229] to

partition the design space for RBF-based MF metamodeling. Recently, [219] proposed a
MF metamodel based on the stochastic RBF (SRBF) with a MF adaptive sampling based
on CV error and the Voronoi partition, sampling both LF and HF.

Surrogate modeling for full-field computations
The optimization problem formulation (2) and consequently the surrogate approaches
presented in previous sections considerQoI functionals obtained by postprocessing simu-
lation results corresponding in aerospace applications to detailed velocity, pressure, stress,
or thermal fields defined on a finite element/finite volume mesh. The full-field approach
consists in building a Reduced-Order Model (ROM) ˜f (x,χ) of the solver and to express,
objective function and constraints in terms of the approximate field. This approach yields
a better insight into detailed characteristics of the flow at every optimization iteration.
The corresponding optimization problem is stated as

χ∗ = argmin
x∈�,χ∈D

J (˜f (x,χ))

s.t. gi(˜f (x,χ)) ≤ 0, i = 1, . . . , p
hj(˜f (x,χ)) = 0, j = 1, . . . , q

(13)

where x is the set of points defining the space discretization � ⊂ R
n with n the number

of nodes, χ the design variable, ∈ D ⊂ R
d , and χ∗ is the optimum configuration of the

objective function J ∈ R respecting constraints g, h.
The different steps of the full-field SBO are illustrated in Fig. 5. First, the DoE X =

{χ(0) , ... ,χ(M)} is generated in D with one of the a priori sampling methods cited in
“Off-line design of experiment” section. Once the fields f (x,χ(i)), i = {1, ... ,M} have
been computed, the ROM ˜f (x,χ) is built and the optimization is performed with the
functionalsQ(˜f (x,χ)) = {J (˜f (x,χ)), g(˜f (x,χ)),h(˜f (x,χ))}.
“Reduced-order modeling” section reviews the ROM techniques; associated adaptive

strategies are presented in “Adaptive reduced-order models” section.
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ROM Optimization STOPSimulation QoIDoESTART

Fig. 5 The full-field SBO strategy

Reduced-order modeling

While the surrogate modeling techniques cited in the previous Sections can exploit inte-
grated quantities, ROM can capture spatial information in a model approximation by
expressing the solution as a linear combination of a limitednumber ofmodes. Thus assum-
ing that few independent modes govern the system dynamics, a significant reduction in
the solution’s computational cost can be achieved [47]. Applications to the description
of turbulent flow have demonstrated the capture of non-linear features. Aubry et al. [9]
constructed a 5-mode system that qualitatively reproduces the turbulent boundary layer
discontinuity. This approach was extended to diverse types of flows [79,167,214]. The
ROM can be intrusive or non-intrusive (direct or indirect) depending on whether the
physical model is considered as a black box or the reduced Partial Differential Equation
(PDE) is solved online.
Intrusive ROM (IROM) reproduces the physical behavior of a system by approximating
the governing equations and source code and is typically derived by POD and Galerkin
projection. Therefore, it retainsmuch of the physical characteristics of the original system
due to its intrusive nature. Physical models and engineering problems are described by
Partial Differential Equations (PDEs). These equations usually depends on a number of
parameters, corresponding to physical or geometrical properties of themodel as well as to
initial or boundary conditions of the problem, and can be deterministic or subject to some
source of uncertainty. The IROM requires code modifications seeking to reproduce these
physical PDEs to approximate there solutions f (x, t) spatial distribution x at time t (such as
displacement or velocity spatial distribution). The PDE to approximatemay be non-linear
and depending on time t , space x and physical parameters χ. The approximated solution
˜f (x, t) may be obtained, for example, by Galerkin projection onto a subspace spanned by
a set of modes [5,6,227]

˜f (x, t) =
m

∑

k=1
αk (t)�k (x) (14)

where αk (t) are temporal coefficients that capture the time dynamics, �k (x) are spatial
modes. The modes may be obtained by Proper Orthogonal Decomposition (POD) also
known as Karhunen-Loève Expansion (KLE) [126] in the field of turbulence or Principal
Component Analysis (PCA) [100] in machine learning applications. The POD relies on
the extraction of the reduced basis by truncated Singular Value Decomposition (SVD) of
the snapshotsmatrix. This technique produces a low rank global basis of themost impact-
ing modes [198] and has been shown to be appropriate for coherent flow structures that
can be sorted by their energy content [25]. Intrusive POD has been applied by [121]
to estimate state variables and associated variables in transonic flows in gradient-based
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aerodynamic shape optimization, but also inmechanical systems [125]. Other approaches
are Krylov subspace [13] used on large scale systems structural dynamics or turbulence
in CFD, Fourier well suited for periodic signals series as in Harmonic Balance Method
(HBM) [86,230], or Voltera Series [182] applied to structural, aeroelasticity problem,
control engineering, or electrical engineering. The non-linear engineering applications
were reviewed by [38], by [23] for dynamical systems projection-based approaches and by
[193] for aeroelastic identification and more general detailed references about aeroelastic
application [7]. IROMs may cover different kinds of separated representations of the
involved unknown fields as well as different constructors able to address a variety of linear
and non linear models, elliptic,parabolic, and hyperbolic. Extensions were proposed to
general linear evolution schemes such as finite volume schemes for parabolic and hyper-
bolic evolution equations [84]. In a non-exhaustive way, one can also find Reduced-Basis
Method (RBM) [179], Empirical Interpolation Method (EIM) and Discrete EIM (DEIM)
[238]. The evaluation cost of the projected non-linear model is not always more interest-
ing than that of the full model in representing non-linear dynamics. This limitation can be
addressed by several existing approaches and ROM extensions, including POD-DEIM for
which the linear terms may be treated in POD-Galerkin type models, an additional POD
basis is introduced to represent the non-linear terms in the ROM. The location of the
non-linear interpolation points are determined based on a DEIM correction algorithm,
which minimizes the non-linear residuals. Three different model reduction techniques
are compared by [197] the Galerkin projection onto a POD basis representing the prin-
cipal variable, the Galerkin projection onto two separate POD bases, one basis for the
principal variable, a second basis for the nonlinear convection term, and the DEIM for
evaluating the projected nonlinear termswere applied to amode equation and theNavier–
Stokes equations. The nonlinearity arises from the convection phenomenon, the solution
exhibits advection, diffusion, and instability, and the system exhibits oscillatory behavior
that prevails. Provided the number of POD modes is large enough, Galerkin projections
have been shown to perform better, with a reduced nonlinear term that still preserves
energy. The Galerkin projection with the second basis that represents the nonlinearities
also performs well, but the energy preservation criterion is significantly impaired. The
DEIM model reduction technique succeeds for wind flow in the limit cycle regime, but
fails for wind flow in the transient regime, producing reduced order models that exhibit
a fine time singularity. Proper Generalized Decomposition (PGD) [41,42] as well covers
a variety of applications from structural optimization to CFD optimization. Under the
assumption of the influence of PDE uncertainties, the polynomial chaos model (PCE) can
also be used. It is a polynomial of random variables based on the homogeneous chaos
theory of Wiener [106], based an expansion of chaos using Hermite polynomials. These
direct approaches are closer to the behavior of the simulated system since they are directly
applied to the physical equations. Nevertheless, such methods are prone to instability and
non-linearity efficiency problems, and they are also difficult to implement, as they require
a modification of the source code [222].
Non-intrusive ROMs
To avoid this problem, non-intrusive approaches have been introduced, such as Non-

Intrusive POD (NIPOD), also known as Galerkin-free [191] or POD with Interpolation
(PODI) [31]. Unlike direct ROM approaches, indirect ROMs do not require calls to the
differential equation solver to perform the interpolation. As in the intrusive ROM, the
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POD snapshot method, developed by [198], allows to empirically build the basis vectors
keeping the modes whose sum of energies represents at least 90% of the total energy,
while the neglected modes represent less than 1% of the main mode’s energy. This POD
technique was applied by [31] as an interpolation of known designs for inverse design
purposes. Coelho et al. [47] successfully applied a two-step NIPOD on a 3D flexible wing
shape optimization, involving weak code coupling between the solid and fluid models. On
the one hand, the coupling variables were reduced by the POD, expressing the interface
pressure as a linear combination of a fewmodes. On the other hand, the scalar coefficients
obtained by the linear expansion of the POD modes were approximated by polynomial
response surfaces and moving least squares surrogates. The idea of a Non-Intrusive POD
basis in the offline phase, is to store the full-field output (pressure, velocity field, etc.) and
use it to predict the vectors online. In the online phase, the solution vectors are approached
with the linear combination of the basis vectors. First M vectors are sampled and stored
in the so-called snapshot matrix S. The DoE X = {χ(1), . . . ,χ(M)} is generated using an
ad hoc sampling method (LCVT, hypercube,etc.) and S is constructed with the f function
evaluating the DoEX

S =
[

f (x,χ(1)) . . . f (x,χ(M))
]

(15)

where x is the discretised space vector of the size dim×n, dim{1, 2, 3} is the physical space
dimension. When n ≥ M is considered in the following, the snapshots matrix may be
defined as the sum of the mean s̄ of all the snapshots

s̄ = 1
M

M
∑

i=1
f (x,χ(i)) (16)

and the matrix of fluctuations S

S = s̄ ·

⎛

⎜

⎜

⎝

1
...
1

⎞

⎟

⎟

⎠

T

M×1

+ S . (17)

Note the difference between S and S symbols, denoting snapshot and fluctuationmatri-
ces, respectively. To eigen decompose the covariance matrix C = SST , the SVD of a
rectangular matrix S of the size n × M may be considered.

S = ���T (18)

where� and�T matrices are respectively composed of the left and right singular vectors,
of size n × M and M × n, � is a diagonal matrix containing the singular values of S and
equivalent when squared to eigen values of the “big” (n× n) C = SST or “small”M ×M
correlation matrix c = STS . Note that the decomposition may be performed by different
approaches, the most common being “economical” SVD. In the offline phase, this method
is used to obtain the decomposition for the initial dataset, and once in the online phase,
its incremental version [155] uses only the newly added points instead of the overall DoE
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at each iteration. Often the basis is truncated to lower the computational burden thus
speed-up computation. The idea behind the truncation is to consider the most relevant
modes only. The latter are determined by minimizing the relative Frobenius error norm
of the difference between the original S and its reconstruction Sml,LF withml < Ml basis
vectors

ε(m) = ||S −˜Sm||F
||S||F . (19)

Them optimal valuem∗ is evaluated from the minimization of ε(m)

m∗ = argmin
m∈{1 , ... ,M}

ε(m). (20)

Once the NIPOD basis � is obtained, the snapshots matrix S is projected into this basis
to determine the scalar coefficients α(χ(i)) for the DoE points belonging to X

αi(χ) = �(x)T (f (x,χi) − s̄), χi ∈ X , i = 1, ... , M (21)

The˜f (x,χ) can then be approximated for an arbitrary point χ by

˜f (χ, x) = s̄ + �(x)̃α(χ, θ), ∀χ ∈ D (22)

with α̃(χ) the surrogate model of the projection coefficients α(χ) that requires model
paramaters (hyperparameters) θ, to be identified in the offline phase.
The obtained reduced order field is used to evaluation quantities to optimize, or used

in other contexts where the calls to solver and computional ressourses demand is too
high, such as UQ application. In the context of structural highly contrained optimiza-
tion, the idea of CPOD has been introduced by [226,227] in order to insure the precise
estimation of the quantities of interest of all the training experiments while truncating
the POD basis. This method is an extension of the POD in the context of a search for
the representation of objectives and constraints, aiming to take into account constraints
in the search for the optimal POD basis. The constrained orthogonal projection uses
� defined from the QR decomposition and the SVD. Another NIROM extension takle
the local non-linearity for CFD applications, the Local Decomposition Method (LDM), is
proposed by [65] as an extension of NIPOD and inspired by the mixture of experts and
local reduced-order dynamic modeling. It consists in using multiple POD bases adapted
to delimited regions of the design space, distinguished by the sampled snapshots features.
This separation allowed one to adapt the POD approximations to each physical regime, to
capture local non-linearities. Another well-known NIPOD extension is the Gappy-POD
dedicated originally to human face image reconstruction from incomplete data [70]. Such
an approach has been applied by [31], to fill in incomplete data fields from known snap-
shots. Gappy-POD has been used to reconstruct fields in fluid and structural applications
where distributed sensors provide limited field measurements [49]. Another approach
uses the concept of shape manifold for a reduced order representation. Meng et al. [137]



Khatouri et al. Adv. Model. and Simul. in Eng. Sci.            (2022) 9:1 Page 19 of 31

reviews the shape manifold designed for ROM representation of complex shapes encoun-
tered in mechanical problems. The general idea is to define the shape space, known
as POD-morphing [166], in which the structure boundary evolves. The reduced repre-
sentation [164] is obtained by determining the intrinsic dimensionality of the problem,
independent of the original design parameters, and by approximating a hyper surface,
i.e., a shape manifold, connecting all the known admissible shapes using level set func-
tions. Moreover, an optimal parameterization can be obtained for arbitrary shapes, where
the parameters must be defined a posteriori. The family of manifold step algorithms for
predictor–corrector optimization in a reduced shape space guarantees the admissibility
of the solution without additional constraints. Applications include structural optimiza-
tion [165,166], springback minimization in metal forming [117], microstructural design
of materials [223], and inverse problems [138].

Adaptive reduced-order models

The ROM models presented in the former section are often improved during the opti-
mization process in an attempt to target the regions of interest more efficiently. In the
ROM context, adaptive approaches can refer to the procedure of orthogonal basis adap-
tation with each new vector, adding as few samples as possible to build the whole basis.
As for the scalar SBO, there are also approaches aiming at choosing samples to reduce
the calls to expensive solvers. A range of these approaches is presented in the following
paragraphs.
Trust-RegionMethodsAmong intrusive ROMs, [24] applied PODReduced-OrderModels
and TRmethod to minimize the mean drag under rotary control of a cylinder wake in the
laminar regime reducing its relative mean drag by 30%. The Sequential sampling schemes
TR used on the scalar SBO (see “Dedicated infil” section) were coupled to ROM to solve
constrained and unconstrained optimization [172].
Error-based infill methods Among error-based infill methods, a LOO (see “Overview on
surrogate-based optimization” section) approach for POD-basedmodels was proposed by
[29] along with an error estimate of the POD model to select new sample locations. This
strategy was compared to classical a priori uniform sampling and tested on an analytical
test case and the 2D turbulent flow around a RAE2822 airfoil. It was concluded that the
convergence of the LOO-CV adaptive-based procedure was faster. This infill criterionwas
applied to the NIPOD approach by [82] where an improvement of the modal coefficients
was obtained by taking into account each snapshot’s influence to represent the full-field
model. Two cases based on the RAE2822 airfoil demonstrated the error control over the
whole parametric space even in the non-linear transonic region.
Greedy approaches The principle of a greedy algorithm is to choose the most promising
elements (or to suppress the least promising ones) iteratively to obtain the best prediction.
Once the models are built in the off-line phase, the most (or least) predictive features may
be selected during the online phase based on error criteria. The ROM database model’s
accuracy can be adjusted in the offline phase, where a local ROM database is built by a
greedy procedure [162]. The greedy algorithm is used for the selection of snapshots for
the approximation of the parameterized PDE solution [147,216] and in a non-intrusive
framework [67]. Such approach was applied by [10] to time-dependent non linear prob-
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lems using RBF-based NIROM. This model adaptively generates snapshots based on a
greedy approach to minimize the overall computational cost.
Adaptive Gappy POD [32] use an adaptive Gappy POD (GPOD) (see “Reduced-order
modeling” section) for two-dimensional airfoil inverse design. This approach aims at
finding the optimal sensor locations and adaptively improve the POD basis. At each
iteration, the criterion used to achieve the selection is based on theGappy PODmaximum
error. The complete model information is then generated by solving the system between
known, and unknown data at this position, the database is enriched using the resulting
snapshot, and the reduced basis is updated. These steps are then repeated, using the
updated model to calculate the reduced states at each locations around the airfoil.
Active-learning approaches The NIPOD was adapted to an active-learning4 framework
using the partitioning approach in the LDM method [65]. The experimental design is
divided into several parts corresponding to values associated with a shock sensor allowing
to identify the areaswherediscontinuous structureswill likely appear.Once targeted, these
regions are clustered and enriched using error, sensitivity, and global entropymetrics. The
procedure’s application reveals a capacity to better take into account the regions of high
gradient and discontinuity, in the case of a shock problem in a turbulent flow around the
RAE2822 wing in transonic regime.
PCA-based infillWithin the UQ framework, the implementation of [88] is a non-intrusive
method where corrective sampling is used to improve stability and precision. PCA allows
building a new basis that describes the shapes globally. The Bayesian optimization is
performed in the space of reduced dimension of the active components, complemented
by a random embedding in the space of the remaining components, to approach the
optimization problem in reduced dimension.

Multi-fidelity reduced-order methods
Traditionalmulti-fidelity surrogatemodels are based on integrated scalar data fromvector
QoI. The correlation between the different levels of solvers is not always meaningful
through these integrated quantities, therebymissing valuable information. This is why the
approaches have recently been extended to a vector representation using ROMs. Several
approaches can be distinguished between those that combine multiple level of fidelity
on the ROM model, which are categorized as fusion models, and models using the MF
correction approaches. The ROMmethods of the last reviewed section outperform scalar
approaches in complex non-linear optimizations. The MFM extension of these methods
are promising, there references are presented in the present section.
“Multi-fidelity vectorial modeling” section reviews the MF ROM extensions; associated

adaptive strategies are presented in “Adaptive multi-fidelity vector models” section.

Multi-fidelity vectorial modeling

MF fusion

Toal [211] adapted the Gappy POD (see “Reduced-order modeling” section) to a MF
surrogate-based optimization and UQ framework. A bi-variate optimization of a NACA
0012 airfoil is performedby predicting the two-dimensionalHFpressure distribution from

4Active learning consists in adding as little information as possible by selecting a group of features through unidentified
observations that will be labeled by an oracle (e.g., a human annotator) [188].
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its computed LF counterpart. In such framework, [211] demonstrated better accuracy of
the MF Gappy POD than the equivalent Kriging and co-Kriging models of predicting the
drag polar of an airfoil over a bivariate aerodynamic design space. Improving the accuracy
of the drag variation in the design space of an airfoil offers a significant improvement in
optimization performance. The approach has also shown promising results in reducing
the cost of predicting nodal uncertainties in a thermo-mechanical gas turbine rotormodel.
Mifsud et al. [139] developed a bi-fidelity POD extension using two discretization levels of
numerical experiments. It consists on building an optimal set of orthogonal basis vectors
from the two fidelity snapshots subsets. The set of basis are used to construct the overall
response, then predict snapshots in unknown locations. This approach is tested for flow
prediction using RANS at two fidelity levels of mesh refinement. The numerical examples
led to the conclusion that the efficiency depends heavily on the correlation between the
two fidelity levels. Inspired by theCPODof [226], [22] developed theMFNIPODextension
based on QR decomposition allowing to build a bi-fidelity orthogonal basis. This �MF
basis is constructed from the concatenation of the high and low fidelity bases �HF and
�LF respectively, allowing the HF interpolation. The final interpolation of the field is
obtained by projecting theMF field on a reducedMF basis�MF = [�HF |�LF ]. Unlike the
MF NIPOD extension of [139], the MFNIPOD enriches the reduced space obtained from
scarce HF information with LF related orthogonal modes, giving a hierarchical ROM. The
methodwas compared to amodel based on a single-fidelity RBFNeuralNetwork (RBFNN)
and co-Kriging on a constrained 2D analytical optimization and the 19-D optimization
of an industrial compressor blade and its non-axisymmetric hub. The results show that
MFNIPOD outperforms models based on co-Kriging and RBFNN in terms of costs and
accuracy. Combining different data simulations frommultiple fidelity snapshots presents
difficulties because the two sets of fields lie most likely in different spaces. When fidelity
levels are based on different mesh refinement, this problem may be tackled by projecting
the LF outputs onto the finer HF grid [20]. Problems of inconsistency were also addressed
by [154]whoapplied aMFROMusing a common subspace, to a transonicwingproblem.A
reduction in computational training cost between 10% and 73%was observed compared to
a single-fidelity approach of comparable accuracy. In a different approach, the MFROM
and MFNIPOD extensions inspired the development of a model based on MF PCA by
[33]. The Shared Principal Component (SPC) MF surrogate model consists in building
the POD-based model separately with the sampled HF and then LF vectors and linking
them assuming that the HF variations comply with those observed on the LF functions.
Consequently, LF sampled vectors are similar to the principal components of the HF
samples. The separation allows having two different mesh configurations with different
fidelity levels. This method allows the fusion of LF and HF samples within a common
metamodel and is applied to the design of turbomachinery blades. The SPC reduced
the error to about 78% with respect to single-fidelity surrogates. The Space-Mapping
surrogate presented the lowest error ratio among other tested methods. SPC appeared
more efficient than space mapping, co-Kriging, and MFNIPOD [22]. Yonda et al. [233]
used an MF ROM extensions based on the PODI [31] and compared it to non-linear least
squares ROM [83,237]. Two level fidelity simulations of 2D and 3D turbine blades are
tested and used in an optimization loop. The POD-based method directly decomposes LF
flow fields into main components covering a reduced solution subspace, where HF values
are interpolated. Compared to aKrigingmodel based on design space variables, thismodel
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is smaller in size. The POD-based method showed a faster convergence than scalar and
single-fidelity optimization while reaching the same profile efficiency and similar design.
Thenon [210] proposed another MF co-Kriging based on the POD equivalent approach,
the Principal Component Analysis (PCA), from machine learning community. The LF
sampling vectors are directly projected on the reduced basis issued from the HF vectors.
The co-Kriging approximation is performed among both Low- and High-fidelity level
of projected coefficients. The method was applied to pressure maps outputs of a two-
level oil tank model. The MF vectorial metamodel appeared effective with a condition
on the correlation between the fidelity levels of the simulation outputs. Xiao et al. [228]
proposed an alternative efficient approach that deals with the dynamic outputs based
on a Galerkin projection in which a weight is assigned to two and three levels of MF
data constructed by varying the number of basis vectors. Numerical tests show better
results for three-level MF Kriging than single and two-level Kriging models. Following
an online POD based topological optimization, [227] presented a MF approach to build
a POD based ROM incrementally from successive variable-fidelity approximations of
the global physical equations. Considering a non-deterministic framework [39] propose a
sparsenon-intrusivePCEadapted toMFM.Kriging andorthogonal polynomial covariance
function are used to build the full-field model and an iterative scheme detects the optimal
PCE basis in each fidelity level. The Kriging POD was also adapted by [140] to two fidelity
levels. In the same spirit as PCE-Kriging, the basis functions are evaluated froma stochastic
field where it is not necessary to calculate the Kriging trend functions separately.

CorrectiveMF

Poethke et al. [159] presented a method combining MF and POD and compared it to the
scalar co-Kriging and single-fidelity Kriging. Instead of using the scalar objective value,
the correction to the lower fidelity model is applied to the computational domain directly
prior to any form of post-processing. The comparison between Gappy POD and single-
fidelity Krigingwas performed throughUQapplication for a number of gas turbine airfoils
subject to different flow regimes. Wang et al. [221] proposed a multi-fidelity ROM for the
reconstruction of a steady flow field. It performs a HF-LF corrective mapping of the bi-
level ROM modal coefficients separately. This approach was applied to predict the flow
with shock waves of a NACA0012 airfoil achieving better accuracy than the traditional
KrigingROM.Similarly, [128] proposed amulti-fidelity PODrepresentationby computing
the coarser and finer mesh CFD solutions SLF and SHF respectively, and add the POD
interpolated field solution difference SPOD

SMF = SLF + SPOD (23)

Adaptive multi-fidelity vector models

Multifidelity offers an alternative to oversampling theHF response when seeking to repre-
sent meaningful surrogates. To address this challenge, methods to reduce computational
cost involve creatingmany low-fidelity samples to supplement the fewHF samples. The LF
response has some error compared to theHF response, however, the samples are obtained
at amuch lower computational cost. Thesemethods have reduced the computational cost
or reduced the substitution error, or both. Sampling strategies have been adapted to the
MFROM to take advantage of the reduced cost of LF sampling or to adapt theMFROM to
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HF. The adaptive ROMS and MFMs have been demonstrated to be a promising perspec-
tive to MFM ROM models [22,233]. This section explores adaptive schemes involving
MFM vector models.

Error-based sampling

An extension of the DoE Voronoi cells is performed in the framework of sequential
sampling by [210] selecting the points inmultipleVoronoi cells associatedwith the highest
CV errors. Then, for each level of fidelity, a point is selected iteratively from the highest
to the lowest corresponding error in each cell, until the calculation’s budget is reached.
The fidelity level is chosen according to the IMSE weighted by the evaluation costs.
In this paper, it has been observed that the two levels of fidelity should be sufficiently
correlated. Besides, the LF computational cost should be limited to increase the method’s
efficiency. The method has been applied to a POD co-Kriging and is compared to a MF
scalar approach. It was shown that the POD vectorial approach improved the prediction
performance of scalar models even with a poor HF-LF correlation. The corrective MF
approach have been coupled to Gappy POD by [211] allowing to reconstruct the HF
discrete gappy dataset with LF data. Benamara et al. [21] presents aMF adaptive approach
based on the Gappy POD identifying a HF subspace to be covered by the LF vectors.

MF Bayesian framework

The MFNIRB proposed by [105] as an extension to the Non-Intrusive Reduced-Basis
(NIRB)method of [35] takes into account constraints and shows promising results on a 2D
analytical test case [22]. The method was compared to a scalar single-fidelity Kriging and
used the constrained EI [12] criterion to sample iteratively the design space. However, this
attempt is based on HF sampling on low-dimensional parameter space. The EI criterion
was also applied by [145] in aMF reduced-order context. The expression of the EI criterion
is evaluatedusing theLFdata variance andmean.ThismodifiedEI is used to addLFandHF
data, generated from LATIN Proper Generalized Decomposition (PGD) model reduction
framework [41], assisting a mechanical part optimization problem.

Conclusion
This paper presents a non-exhaustive review of surrogate methods that address simula-
tion cost issues in optimizing physical systems modeled with computer codes focusing
on fluid/solid mechanics in potentially multidisciplinary settings. The reviewed meth-
ods’ common feature is the construction of surrogate models based on sequentially
updated Design Of Experiments. The techniques reviewed include scalar, vector, and
multi-fidelity surrogates, along with their associated infill strategies. Surrogate vectorial
multi-fidelity models based on reduced-order approaches appear to outperform response
surface approximations and control the overall simulation budget. However, the multi-
fidelity approach’s feasibility depends on the quality and cost of physical models available
for a given application. The trade-off between cost and accuracy in the multi-fidelity
model is conditioned by the correlation between LF (supposed cheap) and HF (supposed
expensive) simulators and their CPU ratio. The development of dedicated infill techniques
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requires criteria allowing both for the site’s choice and the new simulation’s fidelity level
under the overall simulation budget constraint.
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238. Ştefănescu R, Sandu A, Navon I. POD/DEIM reduced-order strategies for efficient four dimensional variational data
assimilation. J Comput Phys. 2015;295:569–95. https://doi.org/10.1016/j.jcp.2015.04.030.

239. Žilinskas A. A review of statistical models for global optimization. J Glob Optimiz. 1992;2(2):145–53. https://doi.org/
10.1007/BF00122051.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00158-009-0434-9
https://doi.org/10.1007/s00158-009-0434-9
https://doi.org/10.1007/s00158-019-02485-3
https://doi.org/10.1007/s00158-019-02485-3
https://doi.org/10.1016/j.amc.2017.10.055
https://doi.org/10.1115/1.4027161
https://doi.org/10.1016/j.jfluidstructs.2016.06.002
https://doi.org/10.1109/IRCE.2019.00026
https://doi.org/10.1016/j.paerosci.2017.11.003
https://doi.org/10.1016/j.paerosci.2017.11.003
https://doi.org/10.1007/978-3-319-89988-6_2
https://doi.org/10.1080/09544828.2013.788135
https://doi.org/10.1080/09544828.2013.788135
https://doi.org/10.1016/j.procs.2010.04.019
https://doi.org/10.1016/j.jcp.2015.04.030
https://doi.org/10.1007/BF00122051
https://doi.org/10.1007/BF00122051

	Metamodeling techniques for CPU-intensive simulation-based design optimization: a survey
	Abstract
	Introduction
	Overview on surrogate-based optimization
	Surrogate modeling
	Off-line design of experiment
	Adaptive sampling

	Multi-fidelity management
	Multi-fidelty data fusion
	Dedicated infill
	Trust-Region MF management
	Adaptive MF Kriging
	Adaptive RBF models


	Surrogate modeling for full-field computations
	Reduced-order modeling
	Adaptive reduced-order models
	Multi-fidelity reduced-order methods
	Multi-fidelity vectorial modeling
	MF fusion
	Corrective MF
	Adaptive multi-fidelity vector models
	Error-based sampling
	MF Bayesian framework


	Conclusion
	References








