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Packet processing on Linux can be slow due to its complex network stack. To solve this problem, there are two main solutions: eXpress Data Path (XDP) and Data Plane Development Kit (DPDK). XDP and the AF XDP socket offer full interoperability with the legacy system and is being adopted by major internet players like Open vSwitch or Facebook. While the performance evaluation of AF XDP against the legacy protocol stack in the kernel or against DPDK has been studied in the literature, the impact of the multiple socket parameters and the system configuration on its latency has been left aside. To address this, we conduct an experimental study to understand the XDP/AF XDP ecosystem and detect microseconds delays to better architect future latency-sensitive applications. Since the performance of AF XDP depends on multiple parameters found in different layers, finding the configuration minimizing its latency is a challenging task. We rely on a classification algorithm to group the performance results, allowing us to easily identify parameters with the biggest impact on performance at different loads. Last, but not least, we show that some configurations can significantly decrease the benefits of AF XDP, leading to undesirable behaviors, while other configurations are able to reduce such round trip delays to an impressive value of 6.5 µs in the best case, including the tracing overhead. In summary, AF XDP is a promising solution, and careful selection of both application and socket parameters can significantly improve performance.

I. INTRODUCTION

Nowadays, cloud applications are deployed as chains of functions that need to communicate between each other to provide full services [START_REF] Gan | An open-source benchmark suite for microservices and their hardwaresoftware implications for cloud & edge systems[END_REF]. While the replacement of a monolithic architecture for the adoption of a microservice one (where several functions interconnect) eases development and deployment, it might also bring several challenges that need to be addressed in order to preserve the Quality of Experience required by the customers.

Hence, latency-sensitive applications, which are increasingly popular, such as live streaming, live gaming, and data query just to mention a few [START_REF] Li | Livenet: A low-latency video transport network for large-scale live streaming[END_REF], [START_REF] Gan | An open-source benchmark suite for microservices and their hardwaresoftware implications for cloud & edge systems[END_REF], call for optimizations at several layers of the service architecture. The final objective being to achieve fast communication between functions to satisfy the customers' Quality of Experience requirements. For instance, one single search at Google leads to thousands of RPCs (Remote Procedure Calls) [START_REF] Barroso | Attack of the killer microseconds[END_REF].

At the network layer, microservices can be smartly placed to bring optimized network overlays where communicating functions are close to each other on the Data Center fabric. Thus, network processing and latency is reduced while avoiding bottlenecks [START_REF] Li | Livenet: A low-latency video transport network for large-scale live streaming[END_REF].

To increase the benefits from this smart microservice placement, one can deploy fast network packet processing solutions on the servers. Note that overlay networks are frequently composed of both hardware and software networking devices. While the former already provides the fastest packet processing, servers where software networking devices live offer by default only slow packet processing capabilities [START_REF] Zhang | The Demikernel Datapath OS Architecture for Microsecond-scale Datacenter Systems[END_REF], [START_REF] Zhuo | Slim: {OS} Kernel Support for a {Low-Overhead} Container Overlay Network[END_REF].

Two main different solutions can be adopted to speed up the processing of network packets: DPDK (Data Plane Development Kit) [START_REF]DPDK Website[END_REF] and XDP (eXpress Data Path) [START_REF]XDP Project GitHub profile[END_REF]. Both solutions offer fast packet processing capabilities by sending, as fast as possible, network packets to the user space of a system, where applications are expected to live, and where parallelism and complex operations are easy to implement. Indeed, the packet processing in the network protocol stack implementation of the kernel system might be very slow due to the complexity of the current code [START_REF] Zhuo | Slim: {OS} Kernel Support for a {Low-Overhead} Container Overlay Network[END_REF], [START_REF] Zhang | The Demikernel Datapath OS Architecture for Microsecond-scale Datacenter Systems[END_REF]. The slow packet processing can moreover be exacerbated when overlay technologies are deployed, such as VxLAN [START_REF] Mahalingam | Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks[END_REF] as packets can be processed multiple times by the entire network stack implementation [START_REF] Zhuo | Slim: {OS} Kernel Support for a {Low-Overhead} Container Overlay Network[END_REF].

DPDK provides a set of libraries to create a direct path between the network interface card (NIC) and the user space programs. By doing so, DPDK completely steals the packet from the kernel, with the side effect of standard Linux networking tools not working anymore [START_REF] Tu | Revisiting the open vSwitch dataplane ten years later[END_REF].

XDP, with the help of the associated AF XDP socket, can be seen as an intermediary solution between DPDK and the default network stack implementation of current systems. AF XDP relies on the XDP hook which is implemented at the NIC driver level in Linux systems to create a short path between the NIC and user space (see Figure 1). A detailed view of the AF XDP architecture is provided in §II. Since AF XDP has full kernel support, usual networking tools (ip, ping, ...) employed in Linux systems are fully compatible with AF XDP.

Understanding every factor potentially impacting the packet processing delay is important to chase out microsecond delays in microservice-based architectures [START_REF] Barroso | Attack of the killer microseconds[END_REF]. We present in this paper an in depth study about the cost of packet processing by AF XDP in a testbed described in §IV, using two different network drivers, Mellanox mlx5 and Intel i40e. To do this, we generated close to 400 different configurations from which we analysed the results using a classification algorithm to determine what parameters lead to the best and the worst latencies ( §VI). All these aspects have not been or only partially covered by the current state of the art ( §VII).

Our results, available in §VI, show that:

• energy saving mechanism have little to no impact on the latency with AF XDP socket with the correct parameters. • with the best combination of parameters, the round-trip latency between two servers can reach 6.5 µs, which includes an approximate 5-10 µs overhead due to our performance tracing technique.

II. ARCHITECTURE OF XDP AND AF XDP A. XDP eBPF (extended Berkeley Packet Filter) is a solution to extend the capabilities of the Linux kernel, without the need to modify or write new kernel modules. eBPF allows running sandboxed program inside hooks points located at several places of the kernel architecture. One of those hooks is called XDP (eXpress Data Path) and is used to install an eBPF program at the earliest stage of the networking stack, inside the network device driver By leveraging the XDP capabilities, firewalls and loadbalancers providing very fast packet processing have been deployed on servers [START_REF]GitHub repository of Katran by Meta[END_REF]. 

B. AF XDP

AF XDP [START_REF] Karlsson | The Path to DPDK Speeds for AF XDP[END_REF], [START_REF]AF XDP -The Linux Kernel documentation[END_REF] is a new socket address family which leverages XDP to receive and send packets directly between a queue of the NIC and some user space process. It was proposed as a way to easily bypass the legacy network protocol stack implementation, as shown in Figure 1.

A memory area, called a UMEM, is shared by both the application and the driver. It is divided into equally sized frames which can be owned by only one of them at a time.

The UMEM relies on two memory rings, Fill (FILL) and Completion (COMP), which are single consumer / single producer. They are used to transfer ownership of the UMEM frames between user space and kernel space. The socket itself has two more rings, RX and TX, used for the actual exchange of the packets. The rings do not contain the actual packets but the addresses of the frames, as well as the length of the data for the last two rings.

Finally, the socket has two more rings, RX and TX, used for the actual exchange of the packets.

As the Linux networking stack is bypassed, most of the processing is done either in user-space by the application or in the driver of the NIC. Therefore, in a simple application, most of the possible performance improvement will be obtained by tweaking NIC hardware and driver settings as well as AF XDP socket parameters.

III. OPTIMIZATION PARAMETERS

As the Linux networking stack is out of the way when using AF XDP, the surface area for optimizations is further reduced to hardware and driver settings and the parameters of the AF XDP socket itself.

A. Hardware and driver settings

Many of the optimizations brought to the networking hardware and drivers are set with the goal to achieve higher rates, in terms of bits per second (bps) or packets per second (pps). However, our goal is to identify the different components impacting latency and its stability (jitter) independently of the throughput of the application. We found that when optimizing for throughput, one may induce higher latency especially at lower packet rates.

1) Interrupt delaying: The NIC historically used to send an interrupt to the kernel for each received packet, but this approach doesn't work well with high packet rates [START_REF] Salim | Beyond softnet[END_REF]. There are two solutions: interrupt coalescing by NAPI or by the NIC itself. NAPI (New API) is a subsystem of the Linux Kernel that improves high-speed networking by mitigating interrupts [START_REF]NAPI article on the Linux Foundation's wiki[END_REF]. Instead of sending an interrupt for each packet, NAPI triggers one interrupt to put the driver in poll mode. In this mode, the driver can be later polled by the kernel to process the packets received since the last interrupt, saving CPU time. On the hardware side, coalescing delays triggering an interrupt when receiving a packet by a certain amount of time or frames, reducing interrupt overhead. Both mechanisms involve waiting before processing a packet, which may have negligible overhead at high packet rates but can be significant at lower rates [START_REF] Salah | Performance analysis and comparison of interrupt-handling schemes in gigabit networks[END_REF].

2) Energy saving mechanisms: Modern CPUs come with energy saving mechanisms, notably C-States, which allow a CPU to enter a lower power state and disable some parts of itself when idle. This can lead to higher latency and jitter as the CPU may be in a energy saving mode when receiving a packet, especially at lower rates.

B. AF XDP socket related parameters

The socket itself and the associated UMEM are also configurable. For the UMEM and the rings, the number of frames as well as their size can be configured. However, more options are available for the socket:

1) Zero-Copy: By default, sending data from user space involves copying at least once the packet between a memory region owned by the application and one owned by the kernel for it to format the data correctly before sending it on the network. However, network drivers supporting XDP can also add support for sending and receiving packets without copying intermediate buffers into the NIC. Furthermore, zero-copy in AF XDP works both on the receiving and sending sides allowing to save latency both ways [START_REF]AF XDP: Introducing zero-copy support[END_REF].

2) XDP USE NEED WAKEUP: By setting the XDP_USE_NEED_WAKEUP option, the application enables the need_wakeup flag on the TX and FILL ring. This flag is set by the driver and when false, enables the application to write and read from the rings directly without sending a syscall to the driver beforehand. When the flag is true, the application runs in the usual mode.

3) Busy Polling: Typically, to signal an application that packets are available, the underlying network driver will send IRQs (interrupts). However, this uses CPU and can downgrade application performance if it runs on the same core as the one sending the IRQs due to context switches. With busy polling, the application has to wake up the driver so it can start processing packets both on the rx and tx sides. This enables all processing to be performed on one core and therefore prevent core-to-core cache transfers which may slow down performances [START_REF] Karlsson | RFC for busy poll support for AF XDP sockets[END_REF].

C. Application parameters 1) Polling: What we call polling is the use of the system call poll() to check for any IO activity. When we enable this option on the application, it will call poll regularly to process IO events. For our benchmarks, servers A and C will behave as traffic generators and receivers, while server B will only behave as a forwarder.

The servers interconnection is shown in Fig. 2. Servers are connected by a DAC cable, the queues (q0 and q1) being on the same port (ie. NIC interface). We estimated the latency difference due to the speed difference in both NIC models to be in the order of nanoseconds in our setup, which is negligible compared to our results. To start off, using the system's ping utility we had 191 µs between Mellanox hosts and 211 µs between Intel ones.

V. METHODOLOGY

To measure latency, we have deployed the xdpsock program[18] on every server which is the default application provided in Linux for testing AF XDP to generate, receive or forward network packets (called pings in this article). To gather delay-related statistics of our network, we added USDT (Userland Statically Defined Tracing) probes [START_REF]Using User-Space Tracepoints with BPF[END_REF] to xdpsock. Using perf [START_REF]Perf Wiki[END_REF], we obtain the time when batch of packets is sent and the time of its reply. As sending and receiving is done on the same server, we avoid clock synchronization issues when gathering timestamps.

1) Ping parameters: xdpsock generates batches of packets at fixed intervals. In our experiments we chose to use batches of 1 packet of 64 bytes length, with a 1 second inter-batch interval. Those parameters are known to be the most challenging at higher rates [START_REF] Tu | Revisiting the open vSwitch dataplane ten years later[END_REF], [START_REF] Høiland-Jørgensen | The eXpress data path: Fast programmable packet processing in the operating system kernel[END_REF], [START_REF] Rizzo | Netmap: A Novel Framework for Fast Packet {I/O}[END_REF], which will be addressed later in our experiments.

2) Tracing overhead: We chose perf and USDT probes as they enable us to add our own probes to xdpsock, while having a limited impact on the performance. Event tracing is only performed on the sender / receiver. To estimate our tracing overhead, we ran experiments with and without activating tracing on the forwarder and computed the time difference between the two versions. Depending on the interbatch interval, the typical tracing overhead was found to be between 5 µs and 10 µs.

3) Hosts configuration and run execution: We used Ansible [START_REF]Ansible official website[END_REF] to configure the servers before each run as well as to run the applications and retrieve the results. This allowed us to run all the configurations from a definition file and ensure that the system would be set up using the correct parameters before each run:

• correct number of queues set on the NIC • flow steering on the NIC to the queue on which the application was listening • rx and tx coalescing on the NIC • selected busy polling values set in the system files • setting the correct C-States level Each benchmark is run alone, during 30 seconds and at least 3 times to ensure consistency between runs. When running with busy polling enabled, we force the application to run on the same core as the driver to benefit from the better cache locality.

VI. RESULTS

In this section we investigate the impact of the various optimization parameters on the latency, for both Intel and Mellanox cards.

To do so, we generated benchmark configurations for every combination of the following parameters: zero-copy, busy poll, need wakeup, C-States level, rx and tx coalescing. This produced around 100 different configurations.

In our first set of experiments, and to avoid any interference from any kind of bottleneck, with decided to send traffic with a 1 second inter-batch interval and batch sizes of 1 packet of 64 bytes as mentioned in §V.

1) Measurements analysis: During our experiments, we noticed that some configurations with zero-copy and no polling mechanism led to very undesirable behaviors on the Intel driver, with latencies similar to the inter-batch intervals. Therefore, we decided to consider those configurations as outliers in our future analysis, while taking them into considerations for our conclusion. To further clean up our traces, we decided also to not consider configurations leading to latencies higher than the one observed with system's pings utility which was around 200 µs in our testbed.

With the remaining configurations, 69 on Mellanox and 40 on Intel, we computed general latency statistics (e.g. mean, median, standard deviations, quartiles, minimum and maximum) for every result and averaged them out per configuration for each NIC vendor (Intel and Mellanox). When analyzing the results, we found that some configurations lead to similar latency, despite having different parameters.

This suggested that one or more parameters coupled together lead to those particular results. However, identifying those clusters by hand is still challenging. Thus we decided to use rely on the k-means clustering algorithm to classify the configuration into multiple groups.

At first, we feed the algorithm with all the metrics that we had computed: mean, median, standard deviation, first and third quartiles, minimum and maximum. However, the resulting clustering failed to classify the traces under good performances and bad performance in a clear manner.

However, feeding K-means with all statistics, except the minimum and maximum observed latencies successfully grab the performance profile. To find the number of clusters, we wanted to obtain a good clustering based on the following criteria: low standard deviation among clusters, small numbers of clusters and significant statistical differences between them. This gave us a number of 4 clusters on Intel and 6 on Mellanox. To visualize the latency distribution of each configuration we decided to use Kernel Density Estimate (KDE) plots, which uses a continuous probability density curve and can be compared to a histogram but easier to read [START_REF]Seaborn's documentation on KDE[END_REF]. As we can see in Fig. 3 where we plot the KDE of our traces assigning them to its respective cluster, it is easy to identify each cluster on the x-axis, which represents the average latency for a specific configuration. According to our cluster analysis, C-States levels as well as the NIC coalescing did not have a significant impact on the results. However, enabling polling on the receiver always lead to worse results for both drivers.

Tables I and II summarize the obtained clusters, ordered from the best configuration (cluster 0) to the worst (cluster 5), along with the observed mean latency, standard deviation and relevant (i.e. always present) parameters.

2) Impact of load on best and worse configuration: Finally, we wanted to test if the best and worst configurations would be impacted by the packet rate, especially when close to the maximum line rate.

We then selected 2 configurations per cluster and re-run the tests with an inter-packet interval close to the line rate. It was computed from minimum latency previously obtained per vendor with equation ( 1), where B is the NIC bandwidth in bits/s, l min the minimal latency and P is the size of a packet in bytes, which we set to 64.

Packets per second

= B × l min 8 × P (1) 
This gave us a result of around 200 pps for Intel and 1750 pps for Mellanox, which we rounded up to an inter-batch interval of 5 ms for Intel and 0.6 ms for Mellanox. This led to lower latencies across all clusters, down to a mean latency of We also tested running the application without an interbatch interval. To do so we added a subsampling argument to our tracing function to not overload perf which could alter our application's performance. This led to higher latencies for Mellanox for the previously best results as we started to have some buffering. On Intel however, this crashed the sender's network driver at least for the NIC on which the program was running, preventing us from obtaining any result at this rate.

A. Conclusion

We ran multiple experiments to find what would be the best parameters for the AF XDP sockets and the related application's datapath to lower the end-to-end latency. We identified clusters of configurations giving similar latencies with a 1 second inter batch interval and found that those combinations stayed relevant at higher packet rates. We finally found minimal latencies of 6.5 µs for Mellanox and 9.7 µs for Intel as well as the corresponding configurations. All these measurements include a measurement overhead estimated at ∼5 µs.

VII. RELATED WORK

The impact of the kernel protocol stack implementation on the packet processing delay has been analyzed in details [START_REF] Cai | Understanding host network stack overheads[END_REF], and it has been shown that the usual packet processing pipeline can be slow, especially for packets needing several rounds of processing, such as packets in a VxLAN tunnel [START_REF] Zhuo | Slim: {OS} Kernel Support for a {Low-Overhead} Container Overlay Network[END_REF]. To alleviate the problem, different strategies has been proposed, such as custom overlay networks aiming at bypassing the network stack [START_REF] Zhuo | Slim: {OS} Kernel Support for a {Low-Overhead} Container Overlay Network[END_REF], [START_REF]Cilium -Linux Native, API-Aware Networking and Security for Containers[END_REF].

One widely accepted solution to the slow packet processing at the OS kernel is, with support of the Network Interface Cards, to take a packet at the earliest stage (basically, after reception of a packet by a NIC port) and send it immediately to the user space of a system. To do so, two different solutions exist today: the Data Plane Development Kit and the eXpress Data Path.

To assess the benefits of DPDK and XDP, the networking community has carried out extensive experimental studies to compare the performance of DPDK vs the Linux kernel [START_REF] Karlsson | The Path to DPDK Speeds for AF XDP[END_REF], [START_REF] Tu | Revisiting the open vSwitch dataplane ten years later[END_REF], XDP vs the Linux kernel [START_REF] Özturk | Performance Evaluation of eXpress Data Path for Container-Based Network Functions[END_REF], [START_REF] Høiland-Jørgensen | The eXpress data path: Fast programmable packet processing in the operating system kernel[END_REF] and DPDK vs XDP [START_REF] Özturk | Performance Evaluation of eXpress Data Path for Container-Based Network Functions[END_REF], [START_REF] Høiland-Jørgensen | The eXpress data path: Fast programmable packet processing in the operating system kernel[END_REF]. Those papers report that XDP can achieve higher throughput than DPDK on a multi-core setting as well as providing more flexibility to integrate into an application on Linux.

A deep understanding of the packet processing path is important to chase out microseconds delays able to impact current latency sensitive cloud applications, frequently deployed in the form of chains of microservices [START_REF] Barroso | Attack of the killer microseconds[END_REF], [START_REF] Gan | An open-source benchmark suite for microservices and their hardwaresoftware implications for cloud & edge systems[END_REF]. Consequently, in this paper we go one step further and carry out an experimental study to understand the nature of latency added at every stage of the AF XDP architecture by exploring multiple parameters related to the socket, the NIC driver and some system parameters. As far as we know, this kind of study has not been reported yet in the literature.

VIII. CONCLUSIONS

The eXpress Data Path and AF XDP are a promising solution to the slow packet processing problem in Linux's kernel space. In this paper, we presented a comprehensive study on the performance of AF XDP from the latency point of view, as we believe, it is a key point to chase out microsecond delays and preserve the Quality of Service of latency sensitive applications. Employing xdpsock, the standard AF XDP testing program, we conducted a set of experiments to analyze every optimization parameters of the AF XDP socket, which allows to easily exchange data packet between a user space program and the driver NIC.

We have run a configuration for every combination of parameters available with the AF XDP socket and the sample AF XDP application. We then identified different clusters of configurations leading to similar results and summarized what parameters lead to those different clusters and what where the latencies we obtained with them. We have also shown that we can achieve below 10 µs latency using a basic AF XDP application when there is no buffering involved.

The results shown here are part of an ongoing project to understand the internals of AF XDP. As a next step, we plan to evaluate the impact of AF XDP on the energy consumption of servers, before and after the multiple optimizations, and evaluate the impact of the parameter optimization on real applications deployed as a chain of microservices, especially for data streaming.
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 1 Fig. 1: XDP and AF XDP in the Linux networking stack.

  IV. NETWORK TESTBEDOur testbed consists of three Dell PowerEdge R520 servers with two Intel Xeon E5-2420 v2 CPUs at 2.20 GHz, and 32 GB of 1600 MHz DDR3. Our servers feature the following NIC models: • Mellanox MT2892 ConnectX-6 100 Gbps with 2 ports • Intel X710 10 Gbps with 4 ports Those NIC are shared among the three servers (A,B,C), A with Mellanox only, C Intel only and B having both. All servers are running Ubuntu 23.04 on kernel 6.2, the driver for the Mellanox NICs is mlx5 and i40e for the Intel ones. Mellanox OFED version 23.07 has been set up on relevant servers.

Fig. 2 :

 2 Fig. 2: Network testbed. Server A and C are traffic generators and receivers. Server B forwards only traffic back to the traffic generator. q0 and q1 refer to queues.

Fig. 3 :

 3 Fig. 3: Kernel density estimate plot of the top 50 configurations for both vendors after k-means clustering. Clusters are ordered from the lowest mean latency to highest.

TABLE I :

 I Clusters, statistics and relevant parameters for Mellanox at 1 packet per second. A parameter not mentioned means that it can be either enabled or disabled.

	Cluster	Mean	Std	Relevant parameters
	0	13.36 µs	1.90 µs	Busy polling enabled, need
				wakeup set to false
	1	70.00 µs	6.17 µs	Busy polling and need wakeup
				enabled
	2	124.57 µs	8.29 µs	Busy polling and zero-copy dis-
				abled
	3	139.86 µs	36.91 µs	Need wakeup enabled, Polling
				enabled on the forwarder and
				busy polling disabled
	4	153.45 µs	38.09 µs	Polling enabled on both for-
				warder and receiver, busy polling
				and need wakeup disabled

TABLE II :

 II Clusters, statistics and relevant parameters for Intel at 1 packet per second. A parameter not mentioned means that it can be either enabled or disabled.6.5 µs on Mellanox and 9.7 µs on Intel with the best cluster, and the different identified clusters stayed relevant.
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