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Introduction

We consider the problem

min x∈C f (x) (1) 
where f : R p → R is C 1 and C ⊂ R p is closed. A point x ∈ C is called Fréchet stationary for f on C if f (y) -f (x) ≥ o(∥y -x∥) for y ∈ C and a vector v is called a regular normal vector to C at x whenever x is Fréchet stationary for the linear form x → -⟨v, x⟩ on C. The notion of regular normal vector lacks basic continuity properties, and in particular limits of regular normals may not correspond to regular normals. The broader notion of criticality aims at recovering a form of continuity, see Section 2.1. But the price is the variational meaning of Fréchet stationarity which may be lost due to lack of regularity (see Example 1). The purpose of this work is to formaly show that despite the widespread use of the notion of criticality in non convex optimization, the vast majority of cases encountered relate to the stronger notion Fréchet stationarity, aligning formal guaranties with practical observations.

We first show that if f and C are assumed to be semi-algebraic, then considering the functions {f v : x → f (x)+⟨v, x⟩}, generically in v, all critical points of f v on C are Fréchet stationary. This result illustrates the fact that the existence of critical points which are not Fréchet stationary is the consequence of a bad alignment of the objective function f and the constraint set C, which

The consequences of lack of regularity on optimality conditions, and optimality measures, was further studied in [START_REF] Levin | Finding stationary points on bounded-rank matrices: A geometric hurdle and a smooth remedy[END_REF] for low rank matrices under the name "apocalypses" with a very similar flavor as [START_REF] Beck | Sparsity constrained nonlinear optimization: Optimality conditions and algorithms[END_REF] for sparsity constraints. This constitutes further motivations to develop algorithmic schemes for low rank matrix optimization which avoid this pathology and are attracted by stationary points in [START_REF] Levin | Finding stationary points on bounded-rank matrices: A geometric hurdle and a smooth remedy[END_REF] followed by [START_REF] Hou | Asymptotic escape of spurious critical points on the low-rank matrix manifold[END_REF][START_REF] Olikier | An apocalypse-free first-order lowrank optimization algorithm[END_REF][START_REF] Olikier | An apocalypse-free first-order low-rank optimization algorithm with at most one rank reduction attempt per iteration[END_REF][START_REF] Olikier | First-order optimization on stratified sets[END_REF]. As mentioned in [START_REF] Olikier | Gauss-southwell type descent methods for low-rank matrix optimization[END_REF], the absence of regularity only has rare consequences in practice and our main motivation is to provide formal guaranties for this observation in the form of genericity results on problem data and convergence guaranties for the projected gradient algorithm.

Genericity in tame optimization: Our first main result, Theorem 1, relates to semialgebraicity or tameness of the considered objective function f and the constraint set C. Studying nonconvex optimization and first order methods under such rigidity assumptions have a long history in optimization. Indeed, semi-algebraicity has numerous structural consequences on the optimization losses [START_REF] Bolte | The lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF][START_REF] Bolte | Tame functions are semismooth[END_REF][START_REF] Ioffe | An invitation to tame optimization[END_REF]. Furthermore, virtually all losses met in an optimization context are covered by tameness assumptions, see the numerous examples in [START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality[END_REF][START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods[END_REF], and the connection with deep learning in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF][START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF]. One can take advantage of these properties, for which semi-algebraicity is a mild sufficient condition, to analyse optimization algorithms and optimization landscapes. Examples include sequential convergence of deterministic optimization algorithms [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF][START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality[END_REF][START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods[END_REF][START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF][START_REF] Bolte | Majorization-minimization procedures and convergence of sqp methods for semi-algebraic and tame programs[END_REF][START_REF] Pauwels | The value function approach to convergence analysis in composite optimization[END_REF], as well as the analysis of stochastic first order methods [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF][START_REF] Bianchi | Convergence of constant step stochastic gradient descent for non-smooth non-convex functions[END_REF][START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF][START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF][START_REF] Bolte | Nonsmooth automatic differentiation: a cheap gradient principle and other complexity results[END_REF].

Genericity is a notion that is used to express the fact that a certain behavior is typical. It is most often expressed in measure theoretic terms (Lebesgue almost everywhere), or topological terms (residual sets are countable intersections of sets with dense interior). In general, the two notions do not coincide (see for example [START_REF] Oxtoby | Measure and category[END_REF]Theorem 1.6]), but in the semi-algebraic setting they coincide and sometimes correspond to a stronger notion: being the complement of the union of finitely many lower dimensional embedded smooth manifolds. This is essentially due to the stratification property [53, 4.8]. Genericity results in an optimization context relate to the typical structure of the data of optimization problems [START_REF] Daniilidis | Generic identifiability and second-order sufficiency in tame convex optimization[END_REF][START_REF] Bolte | Generic optimality conditions for semialgebraic convex programs[END_REF][START_REF] Daniilidis | Continuity and differentiability of set-valued maps revisited in the light of tame geometry[END_REF][START_REF] Pham | Genericity in polynomial optimization[END_REF][START_REF] Drusvyatskiy | Generic minimizing behavior in semialgebraic optimization[END_REF][START_REF] Bolte | Qualification conditions in semi-algebraic programming[END_REF][START_REF] Lee | Generic properties for semialgebraic programs[END_REF] and generic desirable properties of optimization methods [START_REF] Nie | Optimality conditions and finite convergence of lasserre's hierarchy[END_REF][START_REF] Bianchi | Stochastic subgradient descent escapes active strict saddles on weakly convex functions[END_REF][START_REF] Davis | Proximal methods avoid active strict saddles of weakly convex functions[END_REF][START_REF] Davis | A nearly linearly convergent first-order method for nonsmooth functions with quadratic growth[END_REF]. Our first main result falls in this category, we show that for a generic semi-algebraic f and a fixed semi-algebraic set C, there is no critical point which is not Fréchet stationary for the resulting constrained minimization problem. A consequence of this result is that for a generic smooth semi-algebraic function f and a fixed closed set C, the "apocalypses" described in [START_REF] Levin | Finding stationary points on bounded-rank matrices: A geometric hurdle and a smooth remedy[END_REF] do not exist.

Projected gradient algorithm: Our second main result, Theorem 2, concerns the projected gradient algorithm proposed independently by Glodstein [START_REF] Goldstein | Convex programming in hilbert space[END_REF] and Levitin Polyak [START_REF] Levitin | Constrained minimization methods[END_REF] for convex optimization with subsequent contributions in the convex setting [START_REF] Bertsekas | On the goldstein-levitin-polyak gradient projection method[END_REF][START_REF] Calamai | Projected gradient methods for linearly constrained problems[END_REF][START_REF] Dunn | Global and asymptotic convergence rate estimates for a class of projected gradient processes[END_REF][START_REF] Dunn | On the convergence of projected gradient processes to singular critical points[END_REF]. Our analysis is a consequence of a detailed analysis of the proximal gradient algorithm, the proximal mapping generalizing the projection. Convergence of the proximal point algorithms in a non-convex setting was considered in [START_REF] Spingarn | Submonotone mappings and the proximal point algorithm[END_REF][START_REF] Kaplan | Proximal point methods and nonconvex optimization[END_REF][START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF], convergence of the proximal gradient algorithms under semi-algebraic assumptions was given in [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods[END_REF]. In the nonconvex setting, existing convergence guaranties are related to a notion of criticallity, weaker than Fréchet stationarity and we show that the analysis can be extended to obtain a quantitative version of Fréchet stationarity. This can be seen as an extension of the L-stationarity result obtained in [START_REF] Beck | Sparsity constrained nonlinear optimization: Optimality conditions and algorithms[END_REF] for the projected gradient algorithm under sparsity constraints to general sets, and constitutes an element of answer regarding the convergence guaranties of the projected gradient algorithm related to the concerns raised in [START_REF] Levin | Finding stationary points on bounded-rank matrices: A geometric hurdle and a smooth remedy[END_REF].

Notations

Throughout the paper, the ambiant space is R p . We denote by ⟨•, •⟩ and ∥ • ∥, the Euclidean scalar product and Euclidean norm. We denote a set valued map F , from R p to subsets of R p with the notation F : R p ⇒ R p . For a subset C ⊂ R p , we denote by T C , NC , N C the tangent, regular normal and normal cones respectively which are seen as set valued maps R p ⇒ R p with empty values outside C. Relevant definitions are introduced along the paper.

Main results

We introduce the required elements of variational geometry in Section 2.1 and state our two main results in Section 2.2 and Section 2.3.

Notions of stationarity

We use the notations and denominations of [START_REF] Rockafellar | Variational analysis[END_REF]. First recall the definitions of the objects of interest.

Definition 1 (Tangent and Normal Cones). For x ∈ C, w ∈ R p is an element of the tangent cone of C at x, written w ∈ T C (x) if 

x k -x τ k → w for some sequence (x k ) k∈N ,
∈ N C (x) if ∃(x k ) k∈N , (v k ) k∈N , x k ∈ C, v k ∈ NC (x k ), k ∈ N, x k → x, v k → w, k → ∞.
T C , NC and N C can be seen as set valued maps R p ⇒ R p by assigning empty values for x ̸ ∈ C.

We gather known facts about these cones, the following is taken from Theorem 6.21 and 6.28 [START_REF] Rockafellar | Variational analysis[END_REF].

Proposition 1. Let C ⊂ R p be closed, then for all x ∈ C, T C (x) is a closed cone and NC (x) is the polar of T C (x): NC (x) = {v ∈ R p , ⟨v, w⟩ ≤ 0, ∀w ∈ T C (x)}.
Let f : R p → R be C 1 . Suppose that x ∈ C is a local minimum of f restricted to C, then the two equivalent conditions hold:

-∇f (x) ∈ NC (x) proj T C (x) (-∇f (x)) = 0.
(2)

A point x ∈ C which satisfy (2) is called Fréchet stationary for f on C, in which case, f (y) -f (x) ≥ o(∥y -x∥). (3) 
This implies the stronger condition -∇f (x) ∈ N C (x), an x ∈ C satisfying this condition is called critical for f on C.

Proposition 1 suggests to use (2) as an optimality condition for constrained optimization, however the proposed quantity lacks basic continuity in general, which is troublesome for many applications. This motivates the introduction of the normal cone to C, N C which is the graph closure of the regular normal cone to C, recovering some form of continuity and the possibility to pass to limits. Typical optimization results fall in this scope and provide guaranties in terms of criticality, -∇f (x) ∈ N C (x), in the context of (1) which is necessary but not sufficient for [START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality[END_REF]. While this constitutes a bona fide optimality condition, in the sense that if it is not satisfied, x is not a local extremum, it may result in meaningless notion of criticality contrary to the interpretation of Fréchet stationarity in [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods[END_REF].

Example 1. Let C ⊂ R 2 be the set of 1-sparse vector, then N C (0, 0) = T C (0, 0) = C while NC (0, 0) = {0}. Set f : (x, y) → (x -1) 2 + y 2 , then (0, 0
) is critical for f on C but this does not have much variational meaning since f has directional derivative 2 in the y direction which is in T C (0, 0) and is actually admissible with respect to the constraint induced by C.

To ellaborate on this remark and illustrate the relevance of the normal cone in comparison to the regular normal cone, we quote Rockafellar and Wets [START_REF] Rockafellar | Variational analysis[END_REF] regarding the phenomenon presented in Example 1:

This possibility causes some linguistic discomfort over 'normality', but the cone of such limiting normal vectors comes to dominate technically in formulas and proofs, [. . .] Many key results would fail if we tried to make do with regular normal vectors alone.

This absence of regularity is related to the main motivations in [START_REF] Levin | Finding stationary points on bounded-rank matrices: A geometric hurdle and a smooth remedy[END_REF] to propose algorithms which do not suffer from it.

Genericity of Fréchet stationarity

We start by introducing the necessary tools from semi-algebraic geometry. An introduction to semi-algerbaic and tame geometry is found in [START_REF] Coste | Istituti editoriali e poligrafici internazionali Pisa[END_REF][START_REF] Coste | An introduction to semialgebraic geometry[END_REF] and a comprehensive overview is given in [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF], see also [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF]. We recall all the required concepts with necessary bibliographic pointers.

Semi-algebraic geometry

Let us first introduce the required definitions.

Definition 2. Let p, q ∈ N be arbitrary.

A basic semi-algebraic set S ⊂ R p is the solution set of a polynomial system of inequalities.

S = {x ∈ R p , P (x) = 0, Q 1 (x) > 0, . . . Q m (x) > 0} (4) 
where P, Q 1 , . . . , Q m are polynomials of p variables and m ∈ N.

A semi-algebraic set is the finite union of basic semi-algebraic sets.

A function

f : R p → R q is semi-algebraic if its graph {(x, z) ∈ R p+q , z = f (x)} is semi-algebraic. A set-valued map F : R p ⇒ R q is semi-algebraic if its graph {(x, z) ∈ R p+q , z ∈ F (x)} is semi-algebraic.
Example 2 (semi-algebraic functions). Euclidean norm, square root, quotients, rational powers, matrix rank are semi-algebraic functions. Semi-algebraic functions are closed under composition.

Semi-algebraic objects are closed under many relevant operations: intersection, unions, complementation and Cartesian product [START_REF] Coste | Istituti editoriali e poligrafici internazionali Pisa[END_REF]. The Tarski-Seidenberg principle [21, Theorem 2.3] allows to characterize semi-algebraic sets as the smallest o-minimal structure [20, Exercise 1.17]. Therefore the general tools of o-minimal geometry apply to the semi-algebraic setting. Furthermore, many results for semi-algebraic sets naturaly extend to the o-minimal setting. In this spirit, we gather below properties which will be useful in order to prove our genericity result.

Proposition 2. Let p, m ∈ N be arbitrary and C ⊂ R p and F : R p ⇒ R m be semi-algebraic.

1. The projection of C onto a subspace is semi-algebraic . 4. If F is a differentiable function (single valued), then its Jacobian is a semi-algebraic function.

5. The image of C by F , F (C) ⊂ R m is semi-algebraic.

6. C can be partitioned into a finite union of disjoint semi-algebraic smooth embedded submanifolds .

Proof of Proposition 2: These are well known and can be found in [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF][START_REF] Coste | An introduction to semialgebraic geometry[END_REF][START_REF] Coste | Istituti editoriali e poligrafici internazionali Pisa[END_REF], we provide proof arguments and detailed pointers for completeness.

1. This is Tarski-Seidenberg Theorem, up to a rotation, see [START_REF] Coste | An introduction to semialgebraic geometry[END_REF]Theorem 2.3]. An equivalent formulation of this result is [START_REF] Coste | An introduction to semialgebraic geometry[END_REF]Theorem 2.6] states that every first order formula (quantification on variables), involving semi-algebraic sets or functions, polynomials, inequalities, equalities and the logical negation, conjunction and disjunction, describes a semi-algebraic object. In the following, we describe each set of interest with such a first order formula, which implies that they are semi-algebraic (see [21, Section 2.1.2] and [20, Theorem 1.13]).

2.

z ∈ T C (x) ⇔ ∀ϵ > 0, ∃y ∈ C, y ̸ = x, ∥y -x∥ ≤ ϵ, y -x ∥y -x∥ - z ∥z∥ ≤ ϵ z ∈ NC (x) ⇔ ∀w ∈ T C (x), ⟨z, w⟩ ≤ 0 z ∈ N C (x) ⇔ ∀ϵ > 0, ∃y ∈ C, ∃v ∈ NC (y), ∥x -y∥ ≤ ϵ, ∥v -z∥ ≤ ϵ.
3.

x ∈ int C ⇔ ∃ϵ > 0, ∀y ∈ R p , ∥x -y∥ > ϵ or y ∈ C x ∈ cl C ⇔ ∀ϵ > 0, ∃y ∈ C, ∥y -x∥ ≤ ϵ.
4.

M = J F (x) ⇔ M ∈ R m×p , ∀ϵ > 0, ∃δ > 0, ∀y ̸ = x, ∥y -x∥ > δ or ∥F (y) -F (x) -M (y -x)∥ ∥y -x∥ ≤ ϵ 5. z ∈ F (C) ⇔ ∃x ∈ C, z ∈ F (x).
6. This is the geometric notion of stratification, see for example in [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF]Claim 4.8].

□

Semi-algebraic sets come with a notion of integral dimension, denoted by dim C for a semialgebraic set C, which agrees with the classical notion of dimension for affine sets or embedded manifolds. The following facts can be found in [20, Proposition 3.17, Theorem 3.22] and will be useful to prove our genericity result.

Proposition 3. Let p, m ∈ N be arbitrary.

1. If B ⊂ A ⊂ R p are semi-algebraic, then dimB ≤ dimA. 2. If A, B ⊂ R p are semi-algebraic, then dim A ∪ B = max{dim A, dim B}.

For any

A ⊂ R p semi-algebraic, dim cl A = dim A, dim cl A \ A < dim A.
4. For f : R p → R m and A ⊂ R p , both semi-algebraic, dim f (A) ≤ dim A.

Main result

The following is our first main result. It is stated in the semi-algebraic setting, but it can be extended to functions and sets which are definable in the same o-minimal structure as the arguments rely on the elements described in Proposition 2 and Proposition 3 which hold for definable functions and sets [START_REF] Coste | Istituti editoriali e poligrafici internazionali Pisa[END_REF][START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF].

Theorem 1. Let f : R p → R be continuously differentiable and C ⊂ R p be closed, both semialgebraic. Then there is V ⊂ R p , which is a finite union of semi-algebraic embedded manifolds of dimension at most p -1, such that for all v ̸ ∈ V , all critical point of f v : x → f (x) + ⟨v, x⟩ on C are Fréchet stationary.

Proof of Theorem 1: By Proposition 2 item 2, NC and N C are semi-algebraic.

We work with NC : C ⇒ R p . It follows from Definition 1 that for any S ⊂ C, we have for all x ∈ S, NC (x) ⊂ NS (x). We may consider a partition of C into M 1 , . . . , M m embedded smooth manifolds by Proposition 2 item 6. For each i = 1, . . . , m, we have M i ⊂ C and therefore NC (x) ⊂ NM i (x). But NM i (x) is simply the normal space of M i at x as described by differential geometry. Therefore the graph of NC restricted to M i is contained in the normal bundle of M i which can be seen as an embedded submanifold of R 2p of dimension p, see for example [START_REF] Lee | Introduction to Smooth Manifolds[END_REF]Theorem 6.23]. Therefore, the graph of the restriction of NC to M i is of dimension at most p by Proposition 3 item 1. The graph of NC is the union of its restriction to M i , i = 1, . . . , m and it is therefore of dimension at most p by Proposition 3 item 2.

Set G the closure of graph NC in R 2p , it is semi-algebraic by Proposition 2 item 3. We have that (x, z) ∈ G if and only if there is a sequence 

x k → x and z k → z such that z k ∈ NC (x k )
v ∈ R p ∃x ∈ C, -∇f (x) -v ∈ N C (x) \ NC (x) ⇔ ∃x ∈ C, v ∈ R(x) so that v ∈ R p , ∃x ∈ C, -∇f (x) -v ∈ N C (x) \ NC (x) = proj v graph R.
where proj v (x, z) = z for any x, z ∈ R p . Setting V = proj v graph R, we have that dimV ≤ p -1 by Proposition 3 item 4. By Proposition 2 item 6, V is a finite union of semi-algebraic embedded submanifolds of dimension p -1 at most by Proposition 3 item 2. □ Remark 1. The result of Theorem 1 holds generically in v, as understood in both measure theoretic terms (almost everywhere), or topological terms (residual). We perturb f using a linear form, but one could consider a peturbation of the form x → ϵ∥x -c∥ 2 for small ϵ > 0, and the same result would hold generically in c ∈ R p . It is easy to see that the critical point example in Example 1 would not persist under generic perturbation and Theorem 1 provides a general ground for this observation.

Projected gradient is attracted by Fréchet stationary points

Given a non-empty closed set C ⊂ R p , the projection of x ∈ R p on C, denoted by proj C (x) is given by the non-empty set proj C (x) = arg min z∈C ∥x -z∥.

Given an initial point x 0 ∈ C and a step-size parameter, γ > 0, the projected gradient algorithm iterates.

x k+1 ∈ proj C (x k -γ∇f (x k )). ( 5 
)
The following is our second main result. It is a consequence of the analysis of the proximal gradient algorithm proposed in Section 3.2

Theorem 2. Let f : R p → R be C 1 with L-Lipschitz gradient and C ⊂ R p be non-empty and closed. Then for any step size γ < 1/L, any accumulation point of the projected gradient algorithm, x, is Fréchet stationary such that

f (y) ≥ f (x) - 1 γ ∥y -x∥ 2 , ∀y ∈ C, (6) proj 
C (x -s∇f (x)) = {x}, ∀0 < s < γ. Furthermore proj T C (x k ) (-∇f (x k )) → 0 as k → ∞.
Proof : From [50, Exercise 8.14]: ∂δ C (x) = NC (x), where δ C is the indicator function of C with value 0 on C an +∞ outside. Note that δ C satisfies the hypotheses of Lemma 3 for any δ > 0.

We have for any that f = γf has Lγ < 1 Lipschitz gradient and the proximal gradient algorithm with unit step on f and g = δ C in ( 7) is equivalent to the projected gradient algorithm on f with step size γ so that Theorem 4 applies. We obtain that all accumulation points x are Fréchet stationary such that x ∈ proj C (x -γ∇f (x)) from Theorem 4, which means that dist(x -γ∇f (x)) = γ∥∇f (x)∥. The quantitative statement on Fréchet stationarity follows from Theorem 4 applied to f = γf .

Let us prove unicity of the projection fix 0 < s < γ. The case ∇f (x) = 0 is obvious so let us eliminate it. Denote by B 1 the ball of center x -γ∇f (x) and radius γ∥∇f (x)∥ and B 2 the ball of center x -s∇f (x) and radius s∥∇f (x)∥. Let us show that for any x ∈ B 2 , x ̸ = x, we have

∥x -x + γ∇f (x)∥ = ∥x -x + s∇f (x) + (γ -s)∇f (x)∥ < s∥∇f (x)∥ + (γ -s)∥∇f (x)∥ = γ∥∇f (x)∥
where the strict inequality is from the triangle inequality. Indeed, either the triangle inequality is strict, or x-x+s∇f (x) = α(γ -s)∇f (x) for some α ≥ 0. In this second case, since x ∈ B 2 , by taking the norm, we obtain s ≥ α(γ -s), so that x = x -t∇f (x) where t = s -α(γ -s) ≥ 0 and t ≤ s. The case t = 0 is excluded because we assumed that x ̸ = x and we have 0 < t ≤ s < γ, so that

∥x -x + γ∇f (x)∥ = ∥(γ -t)∇f (x)∥ = |γ -t| ∥∇f (x)∥ < γ∥∇f (x)∥
We have shown that any x ∈ B 2 different from x is actually in intB 1 and therefore at positive distance from C, otherwise this would contradict dist(x -γ∇f (x)) = ∥∇f (x)∥. Since x ∈ C, it is the unique element in B 2 ∩ C which proves unicity of the projection.

We conclude regarding the last statement proj T C (x k ) (-∇f (x k )) → 0 by combining the fact that dist( NC (x k ), -∇f (x k )) → 0 from Theorem 4 and Lemma 1. □ Lemma 1. Let T ⊂ R p be a closed cone, not necessarily convex and N be its polar, N = {v ∈ R p , ⟨w, v⟩ ≤ 0, ∀w ∈ T }, then for any x ∈ R p , ∥proj T (x)∥ ≤ dist(x, N ).

Proof : Set z = proj T (x), if ∥z∥ = 0, then there is nothing to prove. Assume that ∥z∥ > 0. Set T = {λz, λ ≥ 0} and Ñ its polar, we have

T ⊂ T, Ñ ⊃ N, proj T (x) = z.
Both Ñ and T are convex cones and by Moreau's identity [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]Section 4.b], we have x = proj T (x) + proj Ñ (x) so that

∥proj T (x)∥ = ∥x -proj Ñ (x)∥ = dist(x, Ñ ) ≤ dist(x, N ).
□ Remark 2 (Comments on Theorem 2). It was identified in [START_REF] Beck | Sparsity constrained nonlinear optimization: Optimality conditions and algorithms[END_REF] that for sparsity constraints, local minimizers need to be fixed point of the projected gradient algorithm (a condition termed L stationarity) and the projection has to be univalued. Theorem 2 shows that for general sets, the projected gradient algorithm will be attracted by such points, generalizing the result of [START_REF] Beck | Sparsity constrained nonlinear optimization: Optimality conditions and algorithms[END_REF] for the Iterative Hard Thresholding algorithm, as illustrated in Figure 1. This result is related to the notion of proximal normals [50, Exemple 6.16], the sequences are actually attracted by the set of points x ∈ C such that -∇f (x) is a proximal normal of C at x. The last assertion in Theorem 2 ensures that the so called "serendipity" phenomenon described in [37, Definition 2.8] does not affect the projected gradient algorithm. If we assume in addition that f and C are semi-algebraic, then the sequence actually converges, as shown in [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods[END_REF]. Finally if f is convex one can add a factor 1 2 in front of the quadratic term in (6).

Numerical illustration

We illustrate the relevance of the result of Theorem 2, first with the avoidance of a critical point which is not Fréchet stationary as in Example 1, and second with the avoidance of bad local minima on a grid. These are illustrative toy examples, and in both cases the observed behavior could be justified with elementary dedicated arguments. Exploring consequences of Theorem 2 in practical application will be a matter of future research.

Sparsity constraints

We consider as in Example 1 the set C of 1-sparse vectors in R 2 and a loss function is f : (x, y) → (x -1) 2 + y 2 whose global minimum on the constraint set is x = 1, y = 0. We depict in Figure 1 the sequence generated by the projected gradient algorithm in (5) for various step sizes and initializations, representing both the gradient and the projection steps explicitly. The point (0, 0) is critical but not Fréchet stationary, none of the three sequences converges to this point. Instead, they all converge to the global minimum, illustrating the result of Theorem 2.

Nonlinear optimization on a grid We consider the problem of minimizing a convex quadratic function, where the constraint set is a regular grid in R 2 . In this setting, all feasible points are local minimizers, hence Fréchet critical. Yet Theorem 2 predicts that not all of them are attractors of the projected gradient algorithm. We illustrate this with several projected gradient sequences in Figure 1 displaying explicitely the points which do not satisfy the quantitative estimate (5) (with factor 1 2 for convex functions, see Remark 2). The sequences stop when they reach these stationary points as predicted by Theorem 2. 6) (with an additional factor 1 2 from Remark 2). We display several projected gradient sequences which all stop at the points satisfying these estimates.

The proximal gradient algorithm

In this section we provide a general result for the proximal gradient algorithm, from which Theorem 2 follows. We first recall the necessary notations and concepts. This section can be seen of independent interest.

Technical results from nonmooth analysis

The following extends the notion of gradient in a natural way.

Definition 3 (Regular subdifferential). Let f : R p → R ∪ {+∞} and consider x ∈ R p such that f (x) < +∞. Then v ∈ ∂f (x) if f (y) ≥ f (x) + ⟨v, y -x⟩ + o(∥y -x∥).
This notation means that lim inf y→x f (y)-f (x)-⟨v,y-x⟩ ∥y-x∥ ≥ 0.

We obtain an optimality condition as a consequence of the definition in [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 10.1].

Theorem 3 (Fermat Rule). If x ∈ R p is a local minimizer of a lower semicontinuous function f : R p → R ∪ {+∞}, then 0 ∈ ∂f (x).

Conversely, a point x ∈ R p with f (x) finite satisfying 0 ∈ ∂f (x) has non-negative first order variations around x, in the sense that f (y) -f (x) ≥ o(∥y -x∥). Such a point is called Fréchet critical. While calculus is in general out of scope for this type of object, it is possible to obtain sum rules when combined with a C 1 function.

Lemma 2 (Smooth sum rule). Let g : R p → R ∪ {+∞} be lower semicontinuous and consider x ∈ R p such that g(x) < +∞. Let f : R p → R be C 1 , then ∂(f + g)(x) = ∂g(x) + ∇f (x).

Proof : From [50, Corollary 10.9] we have ∂(f +g)(x) ⊃ ∂g(x)+∇f (x). Let us prove the reverse inclusion. Choose v ∈ ∂(f + g)(x), we have by Definition 3 and continuous differentiability.

lim inf y→x f (y) + g(y) -f (x) -g(x) -⟨v, y -x⟩ ∥y -x∥ ≥ 0 lim y→x f (y) -f (x) -⟨∇f (x), y -x⟩ ∥y -x∥ = 0.
We deduce by a substraction that lim inf y→x g(y) -g(x) -⟨v -∇f (x), y -x⟩ ∥y -x∥ ≥ 0, which shows that v -∇f (x) ∈ ∂g(x) which is the desired result. □

The proximal gradient algorithm and Fréchet stationarity

Given a lower-semi continuous function g : R p → R ∪ {+∞}, the proximity operator of g is defined as the possibly empty valued mapping

prox g (x) = arg min y∈R p g(y) + 1 2 ∥y -x∥ 2 .
The following Lemma provides a sufficient condition for prox g to be well behaved. This is [50, Theorem 1.25], we provide a short proof for completeness.

Lemma 3. Let g : R p → R ∪ {+∞} be lower semicontinuous, finite at least at one point, such that g + 1+δ 2 ∥ • ∥ 2 is bounded below for some δ > 0. Then prox g : R p ⇒ R p has non-empty values, is locally bounded and upper semi-continuous, in the sense that for any converging sequences y k ∈ prox g (x k ), k ∈ N, x k → x, y k → y, we have y ∈ prox g (x).

Proof : By assumption, there is no escape at infinity, the prox operation is compact valued and locally bounded. Let (x k ) k∈N and (y k ) k∈N be sequences such that y k ∈ prox g (x k ) for all k ∈ N, and x k → x, y k → y as k → ∞. For any z ∈ R p , and any k ∈ N, we have

g(z) + 1 2 ∥z -x k ∥ 2 ≥ g(y k ) + 1 2 ∥y k -x k ∥ 2 .
Hence for any z ∈ R p , we have by lower semi-continuity

g(z) + 1 2 ∥z -x k ∥ 2 ≥ lim inf k→∞ g(y k ) + 1 2 ∥y k -x k ∥ 2 ≥ g(y) + 1 2 ∥y -x∥ 2
which is what we wanted to prove. □

We now state the main result of this section.

Theorem 4. Let f : R p → R be C 1 with 1 -δ Lipschitz gradient for some δ ∈ (0, 1) and g be as in Lemma 3. Fix x 0 ∈ R p ; and consider the recursion

x k+1 = prox g (x k -∇f (x k )). (7) 
Any accumulation point x of (x k ) k∈N are Fréchet critical for f + g such that

x ∈ prox g (x -∇f (x)) ( 8)

f (y) + g(y) ≥ f (x) + g(x) -∥y -x∥ 2 , ∀y ∈ R p .
Furthermore, dist(-∇f (x k+1 ), ∂g(x k+1 )) → 0 as k → ∞.

Proof : One can check that x k+1 ∈ arg min y f (x k ) + ⟨∇f (x k ), y -x k ⟩ + 1 2 ∥y -x k ∥ 2 + g(y) by completing the square.

Combining with the descent lemma for Lipschitz gradient functions[41, Lemma 1.2.3], we have

f (x k ) + g(x k ) ≥ f (x k ) + ⟨∇f (x k ), x k+1 -x k ⟩ + 1 2 ∥x k+1 -x k ∥ 2 + g(x k+1 ) = f (x k ) + ⟨∇f (x k ), x k+1 -x k ⟩ + 1 -δ 2 ∥x k+1 -x k ∥ 2 + g(x k+1 ) + δ 2 ∥x k+1 -x k ∥ 2 ≥ f (x k+1 ) + g(x k+1 ) + δ 2 ∥x k+1 -x k ∥ 2 .
Now suppose that the sequence (x k ) k∈N has an accumulation point x. In this case f (x k ) + g(x k ) is decreasing, and it converges to a finite value. Therefore the increments x k+1 -x k tend to 0 and prox g (x k -∇f (x k )) also tends to x. Using Lemma 3, we have that x ∈ prox g (x -∇f (x)) so that, using Fermat rule in Theorem 3 and Lemma 2

x ∈ arg min For the last point, using Fermat rule in Theorem 3 for the prox operator leads to

x k+1 -x k + ∇f (x k ) = x k+1 -x k + ∇f (x k ) -∇f (x k+1 ) + ∇f (x k+1 ) ∈ -∂g(x k+1 ) so that dist(-∇f (x k+1 ), ∂g(x k+1 )) ≤ ∥x k+1 -x k ∥ + ∥∇f (x k ) -∇f (x k+1 )∥ → k→∞ 0, which is the second result. □ Remark 3 (Comments on Theorem 4). If in addition, the function f and the set C are assumed to be semi-algebraic, then the sequence actually converges [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods[END_REF]. The quadratic lower bound provides a quantitative estimate of Fréchet stationarity. Furthermore, if f is convex, then one can add a factor 1 2 in front of the quadratic term in (8), since the inequality (10) can be tightened.

Conclusion

Our main results in Theorem 1 and Theorem 2 ensure that the lack of Clarke regularity has minimal effect on the optimality conditions in nonconvex constrained optimization, and that it does not affect the projected gradient algorithm. A by product of the analysis is a global quantitative estimate for Fréchet stationarity of accumulation points of the projected gradient algorithm with a strong variational interpretation and a natural connection to the convex setting where the negative quadratic term vanishes. This generalizes the analysis of Iterative Hard Thresholding in [START_REF] Beck | Sparsity constrained nonlinear optimization: Optimality conditions and algorithms[END_REF] and illustrates the fact that the projected gradient algorithms constitutes a strong baseline in light of the observations made in [START_REF] Levin | Finding stationary points on bounded-rank matrices: A geometric hurdle and a smooth remedy[END_REF]. Future work will be dedicated to the exploration of the consequences of this observation. Finally it is a natural to ask if this type of favorable property would extend to different proximal decomposition algorithms in a nonconvex setting, such as alternating methods or momentum methods.
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  for all k ∈ N. In other words, we have G = graph N C . By Proposition 3 item 3, the semi-algebraic set H = cl(graph NC ) \ graph NC ⊂ R 2p has dimension at most p -1. The set H can be understood as the graph of the possibly empty-valued map S : x ⇒ N C (x) \ NC (x). Now consider the set valued map R : x ⇒ S(x) + ∇f (x). Using Proposition 3 item 4 the dimension of graph R is at most p -1 because it is the image of H, by the map (x, z) → (x, z + ∇f (x)) which is semi-algebraic by Proposition 2 item 4. Now we have the following equivalence, for any
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 1 Figure 1: Left: Illustration of the avoidance of the non Clarke regular point of Example 1, the constraint set is depicted by the thick black lines and the thiner lines display several projected gradient sequences with different step-sizes. Right: Avoidance of bad local minima. The feasible set is a grid and the contour of the convex quadratic objective is displayed. Every feasible point is a local minimum and the shape of the point indicate those which satisfies the quantitative estimate (6) (with an additional factor1 2 from Remark 2). We display several projected gradient sequences which all stop at the points satisfying these estimates.
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 22 x + ∇f (x)∥ 2 (9) 0 ∈ ∂ g(y) + 1 2 ∥y -x + ∇f (x)∥ 2 y=x = ∂g(x) + ∇f (x)which is the Fréchet stationarity. This actually ensures that -∇f (x) is a proximal subgradient of g, and using [50, Proposition 8.46] and the descent Lemma, for all y ∈ R p ,g(y) ≥ g(x) + ⟨-∇f (x), y -x⟩ -1 (y) ≥ f (x) + ⟨∇f (x), y -x⟩ -1 2 ∥y -x∥ 2(10)f (y) + g(y) ≥ f (x) + g(x) -∥y -x∥ 2 .

  in C and (τ k ) k∈N in R + decreasing to 0. Furthermore, v ∈ R p is an element of the regular normal cone of C at x, written w ∈ NC (x) if Finally, v ∈ R p is an element of the normal cone of C at x, written w

	⟨v, y -x⟩ ≤ o(∥y -x∥),	y ∈ C,
	where the inequality is understood as lim sup y→x	⟨v,y-x⟩ ∥y-x∥ ≤ 0.
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