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Abstract: We consider a pure-jump stable Cox-Ingersoll-Ross (α-stable CIR) process driven by a
non-symmetric stable Lévy process with jump activity α ∈ (1, 2), for which estimators of the drift,
scaling and jump activity parameters from high-frequency observations of the process on a fixed time
period have been proposed in previous work [1]. We first present a numerical scheme to simulate
this process. Next, we describe the challenge presented by the non-symmetric stable Lévy process
when computing its density and its derivatives. We finally implement the estimators and carry out
simulations to show good estimation accuracy.
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Introduction

Many fields such as finance and neurosciences use models based on stochastic equations with jump. When
modelling interest rates, this led to an extension of the classical Cox-Ingersoll-Ross process (CIR process)
introduced in [4] to the α-stable CIR processes (see Jiao et al. [6] and [7]) described by

Xt = x0 + at− b

∫ t

0

Xsds + σ

∫ t

0

√
XsdBs + δ

∫ t

0

X
1/α
s− dLα

s t ≥ 0

where (Bt)t≥0 is a standard Brownian motion and (Lα
t )t≥0 a non-symmetric α-stable Lévy process with

α ∈ (1, 2). We assume that the characteristic function of Lα
1 is given by

E(eizL
α
1 ) = exp

(
−|z|α(1 − i tan

πα

2
sgn(z))

)
.

From Theorem 14.15. in Sato [14], such a process is strictly self-similar ie Lα
t

L
= t1/αLα

1 . We denote by φα

the density of Lα
1 .

This paper follows previous work [1], which focused on the estimation of the drift parameters a and b,
the scaling parameter δ and the jump activity α from high-frequency observations of the process on a fixed
time period [0, T ]. The estimation of the drift on a finite time interval is not feasible in the presence of a
Brownian motion, so we considered a pure-jump α-stable CIR process (σ = 0 in the previous equation)

dXt = (a0 − b0Xt)dt + δ0X
1/α0

t− dLα0
t , X0 = x0 > 0 (0.1)

with a0 > 0, b0 ∈ R, δ0 > 0. We know from Fu and Li [5] that (0.1) admits a strong solution and that this
solution is positive.

The estimation proposed in [1] is based on estimating equations. We build a quasi-likelihood by approxi-
mating the conditional distribution of Xt+h given Xt by the stable distribution appropriately centered and
rescaled (see Masuda [10] and Clément and Gloter [3]). We also use the power variation method described by
Todorov [15] to build non-rate optimal estimators, then correct them using the one-step method. The one-
step method was described by Masuda [11] for the estimation of Ornstein-Ulhenbeck type processes. Brouste
and Masuda [2] also used the one-step improvement for a stable Lévy process. We notice that the previous
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study [2] was conducted for a symmetric Lévy. In this paper, we are concerned with a non-symmetric Lévy
process. Numerically, this makes the computation of the density and its derivatives harder, and the one-step
correction more difficult to implement.

The paper is organised as follows. Section 1 presents the numerical scheme used to simulate the process
that solves (0.1). Section 2 describes the challenge presented by the computation of the density of the non-
symmetric stable Lévy process and its derivatives. Section 3 recalls the estimation method proposed in [1] as
well as the asymptotic properties of estimators. Next, we describe in this section how to build the estimators
in practice and we confirm numerically the theoretical convergences.

1. Simulating the process

1.1. Numerical scheme

We want to generate the process (Xt)t∈[0,1] that solves equation (0.1) by using a discretisation scheme. We
know that the solution X is positive with the choice of parameters a0 > 0 and δ0 > 0, we therefore want a
scheme that preserves this positivity. We use the discretisation scheme proposed by Li and Taguchi [8]. For
technical reasons, this scheme uses a truncation and considers a bounded jump coefficient, as the authors
were not able to prove consistency without a truncated jump coefficient. Denoting by XH

t the solution of

dXH
t = (a0 − b0X

H
t )dt + δ0h(XH

t−)dLα0
t , XH

0 = x0 > 0

where h(x) = min{|x|1/α0 , H} for some arbitrarily large constant H > 1, they consider the following positivity

preserving scheme : XH,n
0 = x0 and for i ≥ 0

XH,n
i+1
n

=
|XH,n

i
n

+ a0

n + δ0h(XH,n
i
n

)∆n
i L

α0 |

(1 + b0
n )

. (1.1)

Assuming α0 ∈ (
√

2, 2), they get in Corollary 2.9. a strong rate of convergence. For any p ∈ (0, α2
0 − 2),

setting H = nl for l = (2/α0−1)/(4α0)
1+p(1−α0/2)

, there exists CT,p > 0 such that

sup
t≤T

E(|Xt −Xnl,n
t |) ≤ CT,pn

−L (1.2)

where L = (2/α0 − 1)/(4α0) − l and CT,p converges to infinity as p increases to α2
0 − 2. In practice, H = nl

leads to a very large H for the values of n that we will use (n will be larger than 100 000), hence we will use
H = +∞ which corresponds to no truncation or h(x) = |x|1/α0 .

1.2. Generation of a α-stable random variable

The previous discretisation scheme relies on simulating the independent increments of the Lévy process

∆n
i L

α0 = Lα0
i
n

− Lα0
i−1
n

L
= Lα0

1/n. Using the self-similarity property of (Lα0
t )t∈[0,1], we know that ∆n

i L
α0

L
=

n−1/α0Lα0
1 . Therefore, we only need to simulate independent copies of Lα0

1 . We use the method presented

in Weron [17] to generate Lα,β
1 a α-stable random variable, α ∈ (0, 2) and α ̸= 1, of skewness parameter

β ∈ [−1, 1], with characteristic function

Φα,β(z) = E
(
eizL

α,β
1

)
= exp

(
−|z|α

(
1 − iβ tan

(πα
2

)
sgn(z)

))
. (1.3)

This method is based on the simulation of V a uniform random variable on (−π
2 ,

π
2 ) and an independent

exponential random variable W with mean 1. Using these variables, we get a α-stable random variable Lα,β
1

by

Lα,β
1 = Sα,β × sin(α(V + Bα,β))

(cos(V ))1/α
×
(

cos(V − α(V + Bα,β))

W

)(1−α)/α

, (1.4)
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(d) X0 = 1, a = 1, b = 1, δ = 1, α = 1.2

Fig 1: Simulation of trajectories of the α-CIR process

where

Bα,β =
arctan(β tan απ

2 )

α
, Sα,β =

(
1 + β2 tan2 απ

2

)1/(2α)
. (1.5)

In this paper, we will consider α-stable variables with β = 1, α ∈ (1, 2).

Using independent uniform and exponential random variables, we are now able to simulate independent
copies of Lα

1 = Lα,1
1 . We can now simulate the process (Xt)t∈[0,1] that solves (0.1) using the numerical scheme

(1.1) with H = +∞. For the rest of the simulations, we will consider high-frequency observations (X i
n

)1≤i≤n.

To have a more accurate simulation of our process, we use the numerical scheme with step (1000n)−1. We
show in Figure 1 some simulated trajectories for different parameter values.

2. Computing the density of a strictly α-stable process

To estimate the parameters, we use a quasi-likelihood method based on the density φα of a strictly α-stable
random variable Lα

1 = Lα,1
1 . We now explain how to compute this density and its derivatives efficiently.

2.1. Density of a strictly α-stable process

The characteristic function of Lα
1 has the following expression

Φα,1(z) = E
(
eizL

α
1

)
= exp

(
−|z|α

(
1 − i tan

(πα
2

)
sgn(z)

))
. (2.1)

We could compute the density φα using a Fourier inversion of the characteristic function, but this would
result in an integral on R. We instead use the expression presented in Nolan [13], with an integral on a
bounded interval which allows for an easy numerical computation of this density. In [13], Nolan gives a
computation of the density of a α-stable random variable Y with characteristic function

E
(
eizY

)
= exp

(
−|z|α

(
1 + iβ tan

(πα
2

)
sgn(z)(|z|1−α − 1)

))
(2.2)

= E
(
eiz(L

α
1 −β tan(πα

2 ))
)
.



For such a random variable, and denoting by f its density function, the following representation holds :

f(x, α, β) =



α(x−ξ)1/(α−1)

π|α−1|

∫ π/2

−Bα,β

V (θ, α, β) exp(−(x− ξ)α/(α−1)V (θ, α, β))dθ x > ξ

Γ(1+1/α) cos(Bα,β)

π(1+ξ2)1/(2α) x = ξ

f(−x, α,−β) x < ξ

(2.3)

where ξ = −β tan πα
2 , Γ(a) =

∫∞
0

xa−1e−xdx, Bα,β is defined in (1.5) and

V (θ, α, β) = (cos(αBα,β))1/(α−1)

(
cos θ

sin(α(θ + Bα,β))

)α/(α−1)
cos(αBα,β + (α− 1)θ)

cos θ
.

As highlighted by the characteristic functions (2.2) and (2.1), we have Y = Lα
1 + ξ. Hence, we get φα by

φα(x) = f(x + ξ, α, 1), ∀x ∈ R. (2.4)

This density is available in the Python package Scipy [16] with the scipy.stats.levy stable function, or in the
R package RStableDist [18]. Figure 2 gives the graph of the density for different values of α.
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Fig 2: Graphs of the α-stable density φα (β=1) for different values of α

We can also check that this distribution is coherent with simulations done in Section 1.2. We generate
independent copies of Lα

1 according to equation (1.4) and compare the obtained distribution to the expected
density as computed in (2.4). Figure 3 compares the density to the histogram of the obtained density when
simulating n = 100000 independent copies of Lα

1 .

For the rest of the simulations, we will use the scipy density because it has been optimised and makes the
computations faster, but the explicit expression of the density is useful later when trying to compute the
derivatives.

2.2. Derivatives of the density

The correction that we will apply to our first-step estimator uses the density φα and its derivatives. For
symmetric α-stable distributions, a method for efficient evaluation of the derivatives of the density has been
studied in Matsui and Tamekura [12]. Similarly to what is done for the symmetric process, we use the
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Fig 3: Distribution of simulated α-stable random variable (α = 1.5, β = 1, n = 100000 variables) and
comparison with the expected density φα

derivative of expression (2.3) to get the derivative with respect to x of the density. For x > ξ, we have

f ′(x, α, β) =
αx1/(α−1)

π|α− 1|

(
1

x(α− 1)

∫ π/2

−Bα,β

V (θ, α, β) exp(−xα/(α−1)V (θ, α, β))dθ

− α

α− 1
x1/(α−1)

∫ π/2

−Bα,β

V (θ, α, β)2 exp(−xα/(α−1)V (θ, α, β))dθ

)
,

and for x < ξ
f ′(x, α, β) = −f ′(−x, α,−β).

We conclude using that
φ′
α(x) = f ′(x + ξ, α, 1). (2.5)

We confirm this expression of the derivative by comparing it to a two-point estimate and see that it agrees.
In Figure 4, we give the graph of the derivative of the density for two values of α.
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Fig 4: Graph of φ′
α for α0 = 1.5 and α0 = 1.8

However, contrary to the symmetric case, the bound of the integral given by the Bα,β parameter defined
in (1.5) depends on α. This makes the exact computation of ∂αφ too costly, and leads in practice to very
unstable results. We therefore use a two-point estimate

∂αφ(x, α) =
φ(x, α + h) − φ(x, α− h)

2h
.



3. Monte-Carlo estimators

3.1. Estimation method

This paper is a follow-up to the previous article [1] in which we propose estimators of the parameter
θ = (a, b, δ, α) and study their asymptotic properties. Following [1] we propose a first-step estimator, which
is fairly easy to compute but is not rate optimal. This estimator will then be corrected to reach an efficient
estimator.

We first estimate the jump activity coefficient α0 by the power variation method described in Todorov
[15]

α̃n =
log 2

2 log(V 2
n (1/2, X)/V 1

n (1/2, X))
1V 1

n (1/2,X) ̸=V 2
n (1/2,X) (3.1)

where

V 1
n (p,X) =

n∑
i=2

|∆n
i X − ∆n

i−1X|p with ∆n
i X = X i

n
−X i−1

n
,

V 2
n (p,X) =

n∑
i=4

|∆n
i X − ∆n

i−1X + ∆n
i−2X − ∆n

i−3X|p.

This estimator is easy and quick to compute numerically.

The scaling parameter δ0 is next estimated, using again a power-variation method

δ̃n =

 1

m1/2(α̃n)

1

n

n∑
i=2

n1/2α̃n

∣∣∣X i
n
− 2X i−1

n
+ X i−2

n

∣∣∣1/2
X

1/2α̃n
i−2
n


2

(3.2)

with m1/2(α) = E(|21/αSα
1 |1/2) where Sα

1 has a symmetric α-stable distribution. From Masuda [9], we have

∀ q ∈ (−1, α), E|Sα
1 |q =

2qΓ( q+1
2 )Γ(1− q

α )√
πΓ(1− q

2 )
. Hence m1/2(α̃n) is easy to compute, and so is δ̃n.

To estimate the drift parameters (a, b), we consider the quasi-likelihood function given by (recalling that
θ = (a, b, δ, α))

Ln(θ) =

n∑
i=1

log

 n1/α

δX
1/α
i−1
n

φα (zni (θ))

 with zni (θ) = n1/α
X i

n
−X i−1

n
− a

n + b
nX i−1

n

δX
1/α
i−1
n

. (3.3)

When δ0 and α0 are known, we maximise the quasi-likelihood function (a, b) → Ln(a, b, δ0, α0) to build

the estimators of the drift (ân, b̂n). Similarly, when α0 and δ0 are estimated by α̃n and δ̃n, we maximise
(a, b) → Ln(a, b, δ̃n, α̃n) and we denote by (ãn, b̃n) the resulting estimators.

We introduce the notations hα(x) =
φ′

α

φα
(x), kα(x) = 1 + xhα(z), fα(x) = ∂αφα

φα
(x) and

I11(θ) =

 1
δ2

∫ 1

0
1

X
2/α
s

ds E(h2
α(L1)) −1

δ2

∫ 1

0
Xs

X
2/α
s

ds E(h2
α(L1))

−1
δ2

∫ 1

0
Xs

X
2/α
s

ds E(h2
α(L1)) 1

δ2

∫ 1

0
X2

s

X
2/α
s

ds E(h2
α(L1))

 . (3.4)

We summarise in the next result the asymptotic properties of these estimators.

Theorem 3.1. (i) α̃n given by (3.1) converges in probability to α0 and
√
n(α̃n − α0) stably converges in

law.
(ii) δ̃n given by (3.2) converges in probability to δ0 and

√
n

ln(n) (δ̃n − δ0) is tight.

(iii) For α0 and δ0 known, we have the stable convergence in law

n1/α0−1/2

(
ân − a0
b̂n − b0

)
L−s−−−−→
n→∞

I11(θ0)−1/2N (3.5)



where N is a standard Gaussian variable independent of I11(θ0).

(iv) For α̃n and δ̃n estimating α0 and δ0,
n1/α0−1/2

ln(n)2

(
ãn − a0
b̃n − b0

)
is tight.

(i) is proven in Todorov [15]. (ii) is proven in Theorem 4.3 of [1]. (iii) and (iv) are proven in Theorem 4.2.
of [1].

We compute a preliminary estimator by successively estimating α̃n from (3.1) and δ̃n from (3.2). Then,
we estimate the drift parameters (a, b) by maximising the quasi-likelihood function restricted to the drift
(a, b) → Ln(a, b, δ̃n, α̃n) with Ln defined in (3.3) and we denote by (ãn, b̃n) the resulting estimators. We

obtain a preliminary estimator θ̂0,n = (ãn, b̃n, δ̃n, α̃n). For Theorem 3.1 this estimator is consistent but not

rate optimal as we only prove the tightness of ln(n)−2u−1
n (θ̂0,n − θ0), where

u−1
n =

n1/α0−1/2 Id2 0

0
√
n

(
1
δ0

ln(n)
α2

0

0 1

) , Id2 =

(
1 0
0 1

)
. (3.6)

We correct this non-efficient preliminary estimator θ̂0,n with a one-step procedure :

θ̂1,n = θ̂0,n − Jn(θ̂0,n)−1Gn(θ̂0,n), (3.7)

where Gn = −∇θ logLn(θ) and Jn = ∇θGn. We define

I(θ) =

(
I11(θ) (I21(θ))T

I21(θ) I22(θ)

)
(3.8)

where I11(θ) is defined in (3.4), (I21(θ))T denotes the transpose of I21(θ) and

I21(θ) =

(
1
δ

∫ 1

0
ds

X
1/α
s

E(hαkα(Lα
1 )) − 1

δ

∫ 1

0
Xs

X
1/α
s

dsE(hαkα(Lα
1 ))

I2121 (θ) I2221 (θ)

)
, I22(θ) =

(
E(k2α(Lα

1 )) I2221 (θ)
I2221 (θ) I2222 (θ)

)
where

I2121 (θ) = − 1

δα2

∫ 1

0

ln(Xs)

X
1/α
s

dsE(hαkα(Lα
1 )) − 1

δ

∫ 1

0

ds

X
1/α
s

E(fαhα(Lα
1 ))

I2122 (θ) =
1

δα2

∫ 1

0

ln(Xs)Xs

X
1/α
s

dsE(hαkα(Lα
1 )) +

1

δ

∫ 1

0

Xs

X
1/α
s

dsE(fαhα(Lα
1 ))

I2221 (θ) = − 1

α2

∫ 1

0

ln(Xs)dsE(k2α(Lα
1 )) − E(fαkα(Lα

1 ))

I2222 (θ) =
1

α4

∫ 1

0

ln(Xs)
2dsE(k2α(Lα

1 )) +
2

α2

∫ 1

0

ln(Xs)dsE(fαkα(Lα
1 )) + E(f2

α(Lα
1 )).

Corollary 3.1. We have the stable convergence in law, with I(θ0) defined in (3.8)

u−1
n (θ̂1,n − θ0)

L−s−−−−→
n→∞

I(θ0)−1/2N . (3.9)

This was proved in Corollary 4.1. of [1].

3.2. Simulation results for the first-step estimator

3.2.1. Estimation of α

In Table 1, we present results of numerical simulations conducted with the true value of the parameter
α0 = 1.3. We let the number of data points n range in the set {128, 256, 512, 1024, 2048, 4096}. The process
(Xt) is simulated according to the scheme (1.1) with step (1000n)−1. We show a Monte-Carlo evaluation,
based on nMC = 1000 replications, for the mean and standard deviation of the estimator α̃n given in (3.1).



n Mean of α̃n Standard deviation of α̃n

128 1.473 3.65 ∗ 10−1

256 1.396 1.98 ∗ 10−1

512 1.351 1.27 ∗ 10−1

1024 1.333 8.88 ∗ 10−2

2048 1.319 6.25 ∗ 10−2

4096 1.310 4.65 ∗ 10−2

Table 1. Mean and standard deviation of α̃n with 1000 replications

3.2.2. Estimation of δ

In Tables 2-3, we present results of numerical simulations for the estimator δ̃n given in (3.2) conducted with
the true value of the parameter δ0 = 1, respectively for α0 = 1.3 known and for α0 estimated by α̃n as
described in 3.2.1. We again let n range in the set {128, 256, 512, 1024, 2048, 4096} and simulate (Xt) using
(1.1) with step (1000n)−1. We give an estimation by Monte-Carlo of the mean of the estimators together
with their standard deviations. In these Monte-Carlo experiments, we used nMC = 1000 replications. As
expected, δ̃n converges to δ0 both when α0 is known and when it is estimated, but the convergence is slower
when α0 is unknown and has to be estimated. This corresponds to the loss of rate ln(n) that happens when
estimating δ and α simultaneously.

n Mean of δ̃n Std of δ̃n
128 0.944 2.10 ∗ 10−1

256 0.967 1.41 ∗ 10−1

512 0.983 1.07 ∗ 10−1

1024 0.988 7.60 ∗ 10−2

2048 0.994 5.44 ∗ 10−2

4096 0.998 3.92 ∗ 10−2

Table 2. Mean and standard deviation of δ̃n for α0 = 1.3 known with 1000 replications

n Mean of δ̃n Std of δ̃n
128 0.859 4.93 ∗ 10−1

256 0.899 3.79 ∗ 10−1

512 0.932 3.52 ∗ 10−1

1024 0.941 2.89 ∗ 10−1

2048 0.959 2.31 ∗ 10−1

4096 0.978 1.94 ∗ 10−1

Table 3. Mean and standard deviation of δ̃n for α̃n estimating α0 with 1000 replications

3.2.3. Estimation of the drift for δ0 and α0 known

To have an idea of what the quasi-likelihood function (3.3) looks like, we simulate one sample path of
observations (X i

n
)i=0,...,n with n = 1000, a0 = 3, b0 = 5, δ0 = 1 and α0 = 1.3, and we plot in Figure 5 the

graph of
[0.5, 5] × [3, 8] → R
(a, b) → Ln(a, b, δ0, α0).

This quasi-likelihood function is concave. We see that the maximum in (a, b) is reached near the true value

(a0, b0). Maximising with respect to the two parameters using the Python Scipy package, we get (ân, b̂n) =
(3.047, 5.068). We can see that there is an area where the quasi-likelihood doesn’t vary much. This can lead
to difficulties when maximising it, especially later for estimated values of δ and α.

The maximisation of Ln is conducted using quasi-Newton methods implemented in Python Scipy pack-
age. It necessitates to compute numerically the values of the quasi-likelihood function as detailed in Section
2, and thus involves the numerous evaluations of (φα(zni (θ)))i=1,...,n. To make the estimation faster, these



Fig 5: Views of the quasi-likelihood

computations can be parallelised using the Python package Joblib.

In order to check the convergence (3.5), in which the asymptotic law is conditionally Gaussian, we will
check that for Σ = I11(θ0)−1

n1/α0−1/2(ân − a0)
L−s−−−−→
n→∞

√
Σ11N and n1/α0−1/2(b̂n − b0)

L−s−−−−→
n→∞

√
Σ22N .

We estimate Σ by Σn = I11n (θ0)−1 with

I11n (θ0) =
1

n

n∑
i=1


1
δ20

1

X
2/α0
i−1
n

E(h2
α0

(Lα0
1 )) −1
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X
2/α0
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E(h2
α0

(Lα0
1 ))


where E(h2

α0
(Lα0

1 )) is calibrated once with a Monte-Carlo method with a very large nMC = 100000. The
proof of Theorem 3.1. in [1] shows that I11n (θ0) converges in probability to I11(θ0) > 0 which allows us to
conclude

((Σn)11)−1/2n1/α0−1/2(ân − a0)
L−−−−→

n→∞
N and ((Σn)22)−1/2n1/α0−1/2(b̂n − b0)

L−−−−→
n→∞

N .

n Mean of ân Std of ân Mean of b̂n Std of b̂n
128 3.064 4.25 ∗ 10−1 4.633 5.61 ∗ 10−1

256 3.056 3.53 ∗ 10−1 4.779 4.64 ∗ 10−1

512 3.056 2.86 ∗ 10−1 4.895 4.10 ∗ 10−1

1024 3.038 2.44 ∗ 10−1 4.929 3.24 ∗ 10−1

2048 3.029 2.08 ∗ 10−1 4.976 2.84 ∗ 10−1

4096 3.024 1.69 ∗ 10−1 4.981 2.37 ∗ 10−1

Table 4. Mean and standard deviation of the drift estimators with δ0 = 1 and α0 = 1.3 known, with 1000 replications

From Table 4, we see that assuming δ0 and α0 known the joint estimation of drift parameters works well,
but with a relatively slow rate of convergence n1/α0−1/2. Hence this estimation works better for a value of
α0 closer to 1. This is also highlighted by Figure 6, where the convergence is a lot quicker for α0 = 1.1 where
n1/α0−1/2 ≈ n0.41, than for α0 = 1.3 where n1/α0−1/2 ≈ n0.27.

In Table 5, we see that the asymptotic behaviour of the estimator is as predicted from the theoretical
study, the rate of estimation for (ân, b̂n) is n1/α0−1/2 and the asymptotic rescaled standard deviations are
very close to the theoretical one.

In Figure 7, we plot the distributions of the rescaled errors of estimation together with their Gaussian
limits. We see that the empirical distributions fit very well the theoretical ones.
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Fig 6: Impact of α0 on the convergence of the drift (a0 = 3, b0 = 5, δ0 = 1, n=2048)

((Σn)11)−1/2n1/α0−1/2(ân − a0) ((Σn)22)−1/2n1/α0−1/2(b̂n − b0)
n Mean Std Mean Std

128 7.86 ∗ 10−2 0.954 −6.54 ∗ 10−1 0.946
256 9.75 ∗ 10−2 0.959 −4.75 ∗ 10−1 0.937
512 1.52 ∗ 10−1 0.983 −2.75 ∗ 10−1 0.982
1024 1.25 ∗ 10−1 0.985 −2.32 ∗ 10−1 0.946
2048 1.34 ∗ 10−1 0.964 −1.04 ∗ 10−1 0.998
4096 1.20 ∗ 10−2 0.972 −9.34 ∗ 10−2 0.988

Theoretical limit 0 1 0 1

Table 5. Mean and standard deviation of the rescaled errors

3.3. Simulation results for the one-step correction

In the following, we aim to show that the joint estimation of θ = (a, δ, α) is feasible in practice, assuming
b0 = 5 known, and that the one-step improvement leads to a rate-efficient estimator. The gradient and
Hessian of the quasi-likelihood function Gn and Jn will be computed using finite differences, for reasons
explained in Section 2.2. For this estimation, the theoretical variance is Σ = I(θ0)−1 with

I(θ0) =


1
δ20

∫ 1

0
1

X
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s
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1 )) 1
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1
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∫ 1

0
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1 )) E(k2α(Lα

1 )) I2221 (θ)

I2121 (θ) I2221 (θ) I2222 (θ)


the restriction of I(θ0) (defined in (3.8)) to the estimation of (a, δ, α). We estimate Σ = I(θ0)−1 by Σn = I

−1

n

where the integrals are estimated by Riemann sums, and the expectations are calibrated once with a Monte-
Carlo method with a very large nMC = 100000. For instance

(In(θ0))11 =
1

δ20

1

n

n∑
i=1

1

X
2/α0
i−1
n

E(h2
α0

(Lα0
1 )).

We have proved in [1] that In(θ0) converges in probability to I(θ0) > 0. Hence from (3.8) we have the
convergences in law

((Σn)11)−1/2n1/α0−1/2(â1,n − a0)
L−s−−−−→
n→∞

N ,

((Σn)33)−1/2

√
n

ln(n)

α2
0

δ0
(δ̂1,n − δ0)

L−s−−−−→
n→∞

N ,

((Σn)33)−1/2
√
n(α̂1,n − α0)

L−s−−−−→
n→∞

N .

We consider larger values of n than we did previously, as smaller values such as n = 512 lead to mixed re-
sults. We have once again simulated the process (Xt) using the scheme described in (1.1) with step (1000n)−1.
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Fig 7: Distribution of the rescaled errors of estimation and comparison with N (0, 1)
(a0 = 3, b0 = 5, δ0 = 1, α0 = 1.3, n = 2048)

For these simulations, we chose a0 = 3, b0 = 5, δ0 = 1 and α0 = 1.3. The following results are obtained with
nMC = 1000 replications.

From Tables 6 and 7, we can check the impact of the one-step improvement. While the mean converges
and the standard deviation decreases as n increases for both the preliminary and corrected estimators, we
can see that the corrected estimators have much lower standard deviations. This significant improvement is
also very clear in Figure 8. While both estimators are centered around the true value of the parameters, the
lower variance of the one-step estimator leads to a more accurate estimation.

n Mean of ãn Mean of â1,n Mean of δ̃n Mean of δ̂1,n Mean of α̃n Mean of α̂1,n

2048 3.017 2.854 0.948 0.984 1.322 1.289
4096 3.011 2.913 0.962 0.989 1.314 1.294
8192 3.020 2.932 0.976 0.991 1.307 1.298

Table 6. Mean of the estimators before and after correction,
with 1000 replications

n Std of ãn Std of â1,n Std of δ̃n Std of δ̂1,n Std of α̃n Std of α̂1,n

2048 1.15 0.875 2.22 ∗ 10−1 1.19 ∗ 10−1 6.18 ∗ 10−2 4.43 ∗ 10−2

4096 7.99 ∗ 10−1 5.27 ∗ 10−1 1.87 ∗ 10−1 7.55 ∗ 10−2 4.67 ∗ 10−2 2.24 ∗ 10−2

8192 8.45 ∗ 10−1 4.37 ∗ 10−1 1.44 ∗ 10−1 5.07 ∗ 10−2 3.16 ∗ 10−2 1.21 ∗ 10−2

Table 7. Standard deviation of the estimators before and after correction,
with 1000 replications

In Figure 9, we plot the distributions of the rescaled errors of estimation of the one-step estimator,
together with the standard Gaussian. We see that the empirical distributions of the one-step estimator fit
the theoretical ones.

Remark 3.1. When estimating α in Section 3.2.1, we already had a rate of convergence
√
n, which is

the same as the efficient rate. The improvement visible in Figure 8 comes from the better variance. This
is also true for the estimation of δ. On the other hand, the estimation of the drift gains in rate with this
improvement.

Remark 3.2. We also know from Section 5.6. in [1] that, for some neighbourhood of θ0 V
(η)
n ,

sup
θ∈V

(η)
n

∣∣∣∣uT
nJn(θ)un − I(θ0)

∣∣∣∣→ 0.

So we could try using (uT
n )−1I(θ̂0,n)u−1

n instead of Jn(θ̂0,n) in our one-step procedure. However, numerical

computations show similar results in both cases. Moreover, we would need to estimate I(θ̂0,n) by In(θ̂0,n)
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Fig 9: Distribution of the rescaled errors of estimation after the one-step improvement, and comparison
with N (0, 1) (a0 = 3, b0 = 5, δ0 = 1, α0 = 1.3, n = 5000)

using Riemann sums to estimate the integrals and to compute the expectations, for instance E(hα̃n
(Lα̃n

1 )).

As the matrix In(θ̂0,n) is full, the resulting Monte-Carlo simulation drastically slows down the estimation.
In conclusion, this method would be significantly longer for similar results.

However, this method would be worth considering when working with a symmetric stable process Sα such
as in Brouste and Masuda [2]. In this case a lot of terms in the matrix In(θ̂0,n) are 0, leaving us with only
a few expectations to compute which makes this technique viable.
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Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[17] Aleksander Weron and Rafa lWeron. Computer simulation of Lévy α-stable variables and processes. In
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