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. We first present a numerical scheme to simulate this process. Next, we describe the challenge presented by the non-symmetric stable Lévy process when computing its density and its derivatives. We finally implement the estimators and carry out simulations to show good estimation accuracy.

Introduction

Many fields such as finance and neurosciences use models based on stochastic equations with jump. When modelling interest rates, this led to an extension of the classical Cox-Ingersoll-Ross process (CIR process) introduced in [START_REF] Cox | A theory of the term structure of interest rates[END_REF] to the α-stable CIR processes (see Jiao et al. [START_REF] Jiao | Alpha-CIR model with branching processes in sovereign interest rate modeling[END_REF] and [START_REF] Jiao | The alpha-Heston stochastic volatility model[END_REF]) described by

X t = x 0 + at -b t 0 X s ds + σ t 0 X s dB s + δ t 0 X 1/α s-dL α s t ≥ 0
where (B t ) t≥0 is a standard Brownian motion and (L α t ) t≥0 a non-symmetric α-stable Lévy process with α ∈ (1, 2). We assume that the characteristic function of L α 1 is given by E(e izL α 1 ) = exp -|z| α (1 -i tan πα 2 sgn(z)) .

From Theorem 14.15. in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], such a process is strictly self-similar ie L α t L = t 1/α L α 1 . We denote by φ α the density of L α 1 . This paper follows previous work [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF], which focused on the estimation of the drift parameters a and b, the scaling parameter δ and the jump activity α from high-frequency observations of the process on a fixed time period [0, T ]. The estimation of the drift on a finite time interval is not feasible in the presence of a Brownian motion, so we considered a pure-jump α-stable CIR process (σ = 0 in the previous equation)

dX t = (a 0 -b 0 X t )dt + δ 0 X 1/α0 t-dL α0 t , X 0 = x 0 > 0 (0.1)
with a 0 > 0, b 0 ∈ R, δ 0 > 0. We know from Fu and Li [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF] that (0.1) admits a strong solution and that this solution is positive. The estimation proposed in [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF] is based on estimating equations. We build a quasi-likelihood by approximating the conditional distribution of X t+h given X t by the stable distribution appropriately centered and rescaled (see Masuda [START_REF] Masuda | Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process[END_REF] and Clément and Gloter [START_REF] Clément | Joint estimation for SDE driven by locally stable Lévy processes[END_REF]). We also use the power variation method described by Todorov [START_REF] Todorov | Power variation from second order differences for pure jump semimartingales[END_REF] to build non-rate optimal estimators, then correct them using the one-step method. The onestep method was described by Masuda [START_REF] Masuda | Optimal stable Ornstein-Uhlenbeck regression[END_REF] for the estimation of Ornstein-Ulhenbeck type processes. Brouste and Masuda [START_REF] Brouste | Efficient estimation of stable Lévy process with symmetric jumps[END_REF] also used the one-step improvement for a stable Lévy process. We notice that the previous study [START_REF] Brouste | Efficient estimation of stable Lévy process with symmetric jumps[END_REF] was conducted for a symmetric Lévy. In this paper, we are concerned with a non-symmetric Lévy process. Numerically, this makes the computation of the density and its derivatives harder, and the one-step correction more difficult to implement.

The paper is organised as follows. Section 1 presents the numerical scheme used to simulate the process that solves (0.1). Section 2 describes the challenge presented by the computation of the density of the nonsymmetric stable Lévy process and its derivatives. Section 3 recalls the estimation method proposed in [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF] as well as the asymptotic properties of estimators. Next, we describe in this section how to build the estimators in practice and we confirm numerically the theoretical convergences.

Simulating the process

Numerical scheme

We want to generate the process (X t ) t∈[0,1] that solves equation (0.1) by using a discretisation scheme. We know that the solution X is positive with the choice of parameters a 0 > 0 and δ 0 > 0, we therefore want a scheme that preserves this positivity. We use the discretisation scheme proposed by Li and Taguchi [START_REF] Li | On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case[END_REF]. For technical reasons, this scheme uses a truncation and considers a bounded jump coefficient, as the authors were not able to prove consistency without a truncated jump coefficient. Denoting by X H t the solution of

dX H t = (a 0 -b 0 X H t )dt + δ 0 h(X H t-)dL α0 t , X H 0 = x 0 > 0
where h(x) = min{|x| 1/α0 , H} for some arbitrarily large constant H > 1, they consider the following positivity preserving scheme : X H,n 0 = x 0 and for i ≥ 0

X H,n i+1 n = |X H,n i n + a0 n + δ 0 h(X H,n i n )∆ n i L α0 | (1 + b0 n ) . (1.1) 
Assuming α 0 ∈ ( √ 2, 2), they get in Corollary 2.9. a strong rate of convergence. For any p ∈ (0, α 2 0 -2), setting H = n l for l = (2/α0-1)/(4α0) 1+p(1-α0/2) , there exists C T,p > 0 such that

sup t≤T E(|X t -X n l ,n t |) ≤ C T,p n -L (1.2)
where L = (2/α 0 -1)/(4α 0 ) -l and C T,p converges to infinity as p increases to α 2 0 -2. In practice, H = n l leads to a very large H for the values of n that we will use (n will be larger than 100 000), hence we will use H = +∞ which corresponds to no truncation or h(x) = |x| 1/α0 .

Generation of a α-stable random variable

The previous discretisation scheme relies on simulating the independent increments of the Lévy process

∆ n i L α0 = L α0 i n -L α0 i-1 n L = L α0 1/n . Using the self-similarity property of (L α0 t ) t∈[0,1] , we know that ∆ n i L α0 L = n -1/α0 L α0 1 .
Therefore, we only need to simulate independent copies of L α0 1 . We use the method presented in Weron [START_REF] Weron | Computer simulation of Lévy α-stable variables and processes[END_REF] to generate L α,β 1 a α-stable random variable, α ∈ (0, 2) and α ̸ = 1, of skewness parameter

β ∈ [-1, 1], with characteristic function Φ α,β (z) = E e izL α,β 1 = exp -|z| α 1 -iβ tan πα 2 sgn(z) . (1.3)
This method is based on the simulation of V a uniform random variable on (-π 2 , π 2 ) and an independent exponential random variable W with mean 1. Using these variables, we get a α-stable random variable L α,β 

1 by L α,β 1 = S α,β × sin(α(V + B α,β )) (cos(V )) 1/α × cos(V -α(V + B α,β )) W (1-α)/α , (1.4) 0 0.2 0.4 0.6 0.8 1 0 2 4 (a) X0 = 1, a = 1, b = 1, δ = 1, α = 1.8 0 0.2 0.4 0.6 0.8 1 0 1 2 3 (b) X0 = 1, a = 1, b = -1, δ = 1, α = 1.5 0 0.2 0.4 0.6 0.8 1 0 1 2 3 (c) X0 = 1, a = 1, b = 0, δ = 1, α = 1.5 0 0.2 0.4 0.6 0.8 1 0 1 2 3 (d) X0 = 1, a = 1, b = 1, δ = 1, α = 1.2
B α,β = arctan(β tan απ 2 ) α , S α,β = 1 + β 2 tan 2 απ 2 1/(2α)
.

(

In this paper, we will consider α-stable variables with β = 1, α ∈ (1, 2).

Using independent uniform and exponential random variables, we are now able to simulate independent copies of L α 1 = L α,1 1 . We can now simulate the process (X t ) t∈[0,1] that solves (0.1) using the numerical scheme (1.1) with H = +∞. For the rest of the simulations, we will consider high-frequency observations (X i n ) 1≤i≤n . To have a more accurate simulation of our process, we use the numerical scheme with step (1000n) -1 . We show in Figure 1 some simulated trajectories for different parameter values.

Computing the density of a strictly α-stable process

To estimate the parameters, we use a quasi-likelihood method based on the density φ α of a strictly α-stable random variable L α 1 = L α,1 1 . We now explain how to compute this density and its derivatives efficiently.

Density of a strictly α-stable process

The characteristic function of L α 1 has the following expression

Φ α,1 (z) = E e izL α 1 = exp -|z| α 1 -i tan πα 2 sgn(z) . (2.1)
We could compute the density φ α using a Fourier inversion of the characteristic function, but this would result in an integral on R. We instead use the expression presented in Nolan [START_REF] Nolan | Numerical calculation of stable densities and distribution functions[END_REF], with an integral on a bounded interval which allows for an easy numerical computation of this density. In [START_REF] Nolan | Numerical calculation of stable densities and distribution functions[END_REF], Nolan gives a computation of the density of a α-stable random variable Y with characteristic function

E e izY = exp -|z| α 1 + iβ tan πα 2 sgn(z)(|z| 1-α -1) (2.2) = E e iz(L α 1 -β tan( πα 2 )) .
For such a random variable, and denoting by f its density function, the following representation holds :

f (x, α, β) =                α(x-ξ) 1/(α-1) π|α-1| π/2 -B α,β V (θ, α, β) exp(-(x -ξ) α/(α-1) V (θ, α, β))dθ x > ξ Γ(1+1/α) cos(B α,β ) π(1+ξ 2 ) 1/(2α) x = ξ f (-x, α, -β) x < ξ (2.3) where ξ = -β tan πα 2 , Γ(a) = ∞ 0 x a-1 e -x dx, B α,β is defined in (1.5) and V (θ, α, β) = (cos(αB α,β )) 1/(α-1) cos θ sin(α(θ + B α,β )) α/(α-1) cos(αB α,β + (α -1)θ) cos θ .
As highlighted by the characteristic functions (2.2) and (2.1), we have Y = L α 1 + ξ. Hence, we get φ α by

φ α (x) = f (x + ξ, α, 1), ∀x ∈ R. (2.4)
This density is available in the Python package Scipy [START_REF] Virtanen | SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF] with the scipy.stats.levy stable function, or in the R package RStableDist [START_REF] Wuertz | Rmetrics core team members. stabledist: Stable Distribution Functions[END_REF]. Figure 2 gives the graph of the density for different values of α. We can also check that this distribution is coherent with simulations done in Section 1.2. We generate independent copies of L α 1 according to equation (1.4) and compare the obtained distribution to the expected density as computed in (2.4). Figure 3 compares the density to the histogram of the obtained density when simulating n = 100000 independent copies of L α 1 .
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For the rest of the simulations, we will use the scipy density because it has been optimised and makes the computations faster, but the explicit expression of the density is useful later when trying to compute the derivatives.

Derivatives of the density

The correction that we will apply to our first-step estimator uses the density φ α and its derivatives. For symmetric α-stable distributions, a method for efficient evaluation of the derivatives of the density has been studied in Matsui and Tamekura [START_REF] Matsui | Some improvements in numerical evaluation of symmetric stable density and its derivatives[END_REF]. Similarly to what is done for the symmetric process, we use the 3) to get the derivative with respect to x of the density. For x > ξ, we have

f ′ (x, α, β) = αx 1/(α-1) π|α -1| 1 x(α -1) π/2 -B α,β V (θ, α, β) exp(-x α/(α-1) V (θ, α, β))dθ - α α -1 x 1/(α-1) π/2 -B α,β V (θ, α, β) 2 exp(-x α/(α-1) V (θ, α, β))dθ ,
and for x < ξ f ′ (x, α, β) = -f ′ (-x, α, -β).
We conclude using that φ ′ α (x) = f ′ (x + ξ, α, 1).

(2.5)

We confirm this expression of the derivative by comparing it to a two-point estimate and see that it agrees.

In Figure 4, we give the graph of the derivative of the density for two values of α. However, contrary to the symmetric case, the bound of the integral given by the B α,β parameter defined in (1.5) depends on α. This makes the exact computation of ∂ α φ too costly, and leads in practice to very unstable results. We therefore use a two-point estimate

∂ α φ(x, α) = φ(x, α + h) -φ(x, α -h) 2h .

Monte-Carlo estimators

Estimation method

This paper is a follow-up to the previous article [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF] in which we propose estimators of the parameter θ = (a, b, δ, α) and study their asymptotic properties. Following [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF] we propose a first-step estimator, which is fairly easy to compute but is not rate optimal. This estimator will then be corrected to reach an efficient estimator.

We first estimate the jump activity coefficient α 0 by the power variation method described in Todorov [START_REF] Todorov | Power variation from second order differences for pure jump semimartingales[END_REF] 

αn = log 2 2 log(V 2 n (1/2, X)/V 1 n (1/2, X)) 1 V 1 n (1/2,X)̸ =V 2 n (1/2,X) (3.1) 
where

V 1 n (p, X) = n i=2 |∆ n i X -∆ n i-1 X| p with ∆ n i X = X i n -X i-1 n , V 2 n (p, X) = n i=4 |∆ n i X -∆ n i-1 X + ∆ n i-2 X -∆ n i-3 X| p .
This estimator is easy and quick to compute numerically.

The scaling parameter δ 0 is next estimated, using again a power-variation method

δn =    1 m 1/2 (α n ) 1 n n i=2 n 1/2 αn X i n -2X i-1 n + X i-2 n 1/2 X 1/2 αn i-2 n    2 (3.2) with m 1/2 (α) = E(|2 1/α S α 1 | 1/2
) where S α 1 has a symmetric α-stable distribution. From Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], we have

∀ q ∈ (-1, α), E|S α 1 | q = 2 q Γ( q+1 2 )Γ(1-q α ) √ πΓ(1-q 2 )
. Hence m 1/2 (α n ) is easy to compute, and so is δn .

To estimate the drift parameters (a, b), we consider the quasi-likelihood function given by (recalling that θ = (a, b, δ, α))

L n (θ) = n i=1 log   n 1/α δX 1/α i-1 n φ α (z n i (θ))   with z n i (θ) = n 1/α X i n -X i-1 n -a n + b n X i-1 n δX 1/α i-1 n . (3.3) 
When δ 0 and α 0 are known, we maximise the quasi-likelihood function (a, b) → L n (a, b, δ 0 , α 0 ) to build the estimators of the drift (â n , bn ). Similarly, when α 0 and δ 0 are estimated by αn and δn , we maximise (a, b) → L n (a, b, δn , αn ) and we denote by (ã n , bn ) the resulting estimators. We introduce the notations

h α (x) = φ ′ α φα (x), k α (x) = 1 + xh α (z), f α (x) = ∂αφα φα (x)
and

I 11 (θ) =   1 δ 2 1 0 1 X 2/α s ds E(h 2 α (L 1 )) -1 δ 2 1 0 Xs X 2/α s ds E(h 2 α (L 1 )) -1 δ 2 1 0 Xs X 2/α s ds E(h 2 α (L 1 )) 1 δ 2 1 0 X 2 s X 2/α s ds E(h 2 α (L 1 ))   . (3.4)
We summarise in the next result the asymptotic properties of these estimators.

Theorem 3.1. (i) αn given by (3.1) converges in probability to α 0 and √ n(α n -α 0 ) stably converges in law.

(ii) δn given by (3.2) converges in probability to δ 0 and √ n ln(n) ( δn -δ 0 ) is tight. (iii) For α 0 and δ 0 known, we have the stable convergence in law

n 1/α0-1/2 ân -a 0 bn -b 0 L-s ----→ n→∞ I 11 (θ 0 ) -1/2 N (3.5)
where N is a standard Gaussian variable independent of I 11 (θ 0 ).

(iv) For αn and δn estimating α 0 and δ 0 , n 1/α 0 -1/2 ln(n) 2

ãn -a 0 bn -b 0 is tight.

(i) is proven in Todorov [START_REF] Todorov | Power variation from second order differences for pure jump semimartingales[END_REF]. (ii) is proven in Theorem 4.3 of [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF]. (iii) and (iv) are proven in Theorem 4.2. of [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF].

We compute a preliminary estimator by successively estimating αn from (3.1) and δn from (3.2). Then, we estimate the drift parameters (a, b) by maximising the quasi-likelihood function restricted to the drift (a, b) → L n (a, b, δn , αn ) with L n defined in (3.3) and we denote by (ã n , bn ) the resulting estimators. We obtain a preliminary estimator θ0,n = (ã n , bn , δn , αn ). For Theorem 3.1 this estimator is consistent but not rate optimal as we only prove the tightness of ln(n) -2 u -1 n ( θ0,n -θ 0 ), where

u -1 n =    n 1/α0-1/2 Id 2 0 0 √ n 1 δ0 ln(n) α 2 0 0 1    , Id 2 = 1 0 0 1 . (3.6)
We correct this non-efficient preliminary estimator θ0,n with a one-step procedure :

θ1,n = θ0,n -J n ( θ0,n ) -1 G n ( θ0,n ), (3.7) 
where G n = -∇ θ log L n (θ) and J n = ∇ θ G n . We define

I(θ) = I 11 (θ) (I 21 (θ)) T I 21 (θ) I 22 (θ) (3.8) 
where I 11 (θ) is defined in (3.4), (I 21 (θ)) T denotes the transpose of I 21 (θ) and

I 21 (θ) = 1 δ 1 0 ds X 1/α s E(h α k α (L α 1 )) -1 δ 1 0 Xs X 1/α s dsE(h α k α (L α 1 )) I 21 21 (θ) I 22 21 (θ) , I 22 (θ) = E(k 2 α (L α 1 )) I 22 21 (θ) I 22 21 (θ) I 22 22 (θ)
where

I 21 21 (θ) = - 1 δα 2 1 0 ln(X s ) X 1/α s dsE(h α k α (L α 1 )) - 1 δ 1 0 ds X 1/α s E(f α h α (L α 1 
))

I 21 22 (θ) = 1 δα 2 1 0 ln(X s )X s X 1/α s dsE(h α k α (L α 1 )) + 1 δ 1 0 X s X 1/α s dsE(f α h α (L α 1 )) I 22 21 (θ) = - 1 α 2 1 0 ln(X s )dsE(k 2 α (L α 1 )) -E(f α k α (L α 1 )) I 22 22 (θ) = 1 α 4 1 0 ln(X s ) 2 dsE(k 2 α (L α 1 )) + 2 α 2 1 0 ln(X s )dsE(f α k α (L α 1 )) + E(f 2 α (L α 1 )).
Corollary 3.1. We have the stable convergence in law, with I(θ 0 ) defined in (3.8)

u -1 n ( θ1,n -θ 0 ) L-s ----→ n→∞ I(θ 0 ) -1/2 N . (3.9) 
This was proved in Corollary 4.1. of [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF].

Simulation results for the first-step estimator

Estimation of α

In Table 1, we present results of numerical simulations conducted with the true value of the parameter α 0 = 1.3. We let the number of data points n range in the set {128, 256, 512, 1024, 2048, 4096}. The process (X t ) is simulated according to the scheme (1.1) with step (1000n) -1 . We show a Monte-Carlo evaluation, based on n M C = 1000 replications, for the mean and standard deviation of the estimator αn given in (3.1). 

Estimation of δ

In Tables 23, we present results of numerical simulations for the estimator δn given in (3.2) conducted with the true value of the parameter δ 0 = 1, respectively for α 0 = 1.3 known and for α 0 estimated by αn as described in 3.2.1. We again let n range in the set {128, 256, 512, 1024, 2048, 4096} and simulate (X t ) using (1.1) with step (1000n) -1 . We give an estimation by Monte-Carlo of the mean of the estimators together with their standard deviations. In these Monte-Carlo experiments, we used n M C = 1000 replications. As expected, δn converges to δ 0 both when α 0 is known and when it is estimated, but the convergence is slower when α 0 is unknown and has to be estimated. This corresponds to the loss of rate ln(n) that happens when estimating δ and α simultaneously. This quasi-likelihood function is concave. We see that the maximum in (a, b) is reached near the true value (a 0 , b 0 ). Maximising with respect to the two parameters using the Python Scipy package, we get (â n , bn ) = (3.047, 5.068). We can see that there is an area where the quasi-likelihood doesn't vary much. This can lead to difficulties when maximising it, especially later for estimated values of δ and α.

The maximisation of L n is conducted using quasi-Newton methods implemented in Python Scipy package. It necessitates to compute numerically the values of the quasi-likelihood function as detailed in Section 2, and thus involves the numerous evaluations of (φ α (z n i (θ))) i=1,...,n . To make the estimation faster, these In order to check the convergence (3.5), in which the asymptotic law is conditionally Gaussian, we will check that for Σ = I 11 (θ 0 ) -1

n 1/α0-1/2 (â n -a 0 ) L-s ----→ n→∞ Σ 11 N and n 1/α0-1/2 ( bn -b 0 ) L-s ----→ n→∞ Σ 22 N .
We estimate Σ by Σ n = I 11 n (θ 0 ) -1 with

I 11 n (θ 0 ) = 1 n n i=1      1 δ 2 0 1 X 2/α 0 i-1 n E(h 2 α0 (L α0 1 )) -1 δ 2 0 X i-1 n X 2/α 0 i-1 n E(h 2 α0 (L α0 1 )) -1 δ 2 0 X i-1 n X 2/α 0 i-1 n E(h 2 α0 (L α0 1 )) 1 δ 2 0 X 2 i-1 n X 2/α 0 i-1 n E(h 2 α0 (L α0 1 ))     
where E(h 2 α0 (L α0 1 )) is calibrated once with a Monte-Carlo method with a very large n M C = 100000. The proof of Theorem 3.1. in [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF] shows that I 11 n (θ 0 ) converges in probability to I 11 (θ 0 ) > 0 which allows us to conclude From Table 4, we see that assuming δ 0 and α 0 known the joint estimation of drift parameters works well, but with a relatively slow rate of convergence n 1/α0-1/2 . Hence this estimation works better for a value of α 0 closer to 1. This is also highlighted by Figure 6, where the convergence is a lot quicker for α 0 = 1.1 where n 1/α0-1/2 ≈ n 0.41 , than for α 0 = 1.3 where n 1/α0-1/2 ≈ n 0.27 .

((Σ n ) 11 ) -1/2 n 1/α0-1/2 (â n -a 0 ) L ----→ n→∞ N and ((Σ n ) 22 ) -1/2 n 1/α0-1/2 ( bn -b 0 ) L ----→ n→∞ N . n Mean
In Table 5, we see that the asymptotic behaviour of the estimator is as predicted from the theoretical study, the rate of estimation for (â n , bn ) is n 1/α0-1/2 and the asymptotic rescaled standard deviations are very close to the theoretical one.

In Figure 7, we plot the distributions of the rescaled errors of estimation together with their Gaussian limits. We see that the empirical distributions fit very well the theoretical ones. 

((Σn) 11 ) -1/2 n 1/α 0 -1/2 (ân -a 0 ) ((Σn) 22 ) -1/2 n 1/α 0 -1/2 (

Simulation results for the one-step correction

In the following, we aim to show that the joint estimation of θ = (a, δ, α) is feasible in practice, assuming b 0 = 5 known, and that the one-step improvement leads to a rate-efficient estimator. The gradient and Hessian of the quasi-likelihood function G n and J n will be computed using finite differences, for reasons explained in Section 2.2. For this estimation, the theoretical variance is Σ = I(θ 0 ) -1 with where the integrals are estimated by Riemann sums, and the expectations are calibrated once with a Monte-Carlo method with a very large n M C = 100000. For instance

I(θ 0 ) =    1 δ 2 0 1 0 1 X 2/α 0 s dsE(h 2 α0 (L α0 1 )) 1 δ0 1 0 ds X 1/α 0 s E(h α0 k α0 (L α0 1 )) I 21 21 (θ) 1 δ0 1 0 ds X 1/α 0 s E(h α0 k α0 (L α0 1 )) E(k 2 α (L α 1 
(I n (θ 0 )) 11 = 1 δ 2 0 1 n n i=1 1 X 2/α0 i-1 n E(h 2 α0 (L α0 1 
)).

We have proved in [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF] that I n (θ 0 ) converges in probability to I(θ 0 ) > 0. Hence from (3.8) we have the convergences in law

((Σ n ) 11 ) -1/2 n 1/α0-1/2 (â 1,n -a 0 ) L-s ----→ n→∞ N , ((Σ n ) 33 ) -1/2 √ n ln(n) α 2 0 δ 0 ( δ1,n -δ 0 ) L-s ----→ n→∞ N , ((Σ n ) 33 ) -1/2 √ n( α1,n -α 0 ) L-s ----→ n→∞ N .
We consider larger values of n than we did previously, as smaller values such as n = 512 lead to mixed results. We have once again simulated the process (X t ) using the scheme described in (1.1) with step (1000n) -1 . From Tables 6 and7, we can check the impact of the one-step improvement. While the mean converges and the standard deviation decreases as n increases for both the preliminary and corrected estimators, we can see that the corrected estimators have much lower standard deviations. This significant improvement is also very clear in Figure 8. While both estimators are centered around the true value of the parameters, the lower variance of the one-step estimator leads to a more accurate estimation. In Figure 9, we plot the distributions of the rescaled errors of estimation of the one-step estimator, together with the standard Gaussian. We see that the empirical distributions of the one-step estimator fit the theoretical ones. Remark 3.1. When estimating α in Section 3.2.1, we already had a rate of convergence √ n, which is the same as the efficient rate. The improvement visible in Figure 8 comes from the better variance. This is also true for the estimation of δ. On the other hand, the estimation of the drift gains in rate with this improvement.

Remark 3.2. We also know from Section 5.6. in [START_REF] Bayraktar | Estimation of a pure-jump stable Cox-Ingersoll-Ross process[END_REF] that, for some neighbourhood of θ 0 V So we could try using (u T n ) -1 I( θ0,n )u -1 n instead of J n ( θ0,n ) in our one-step procedure. However, numerical computations show similar results in both cases. Moreover, we would need to estimate I( θ0,n ) by I n ( θ0,n ) using Riemann sums to estimate the integrals and to compute the expectations, for instance E(h αn (L αn 1 )). As the matrix I n ( θ0,n ) is full, the resulting Monte-Carlo simulation drastically slows down the estimation. In conclusion, this method would be significantly longer for similar results.

However, this method would be worth considering when working with a symmetric stable process S α such as in Brouste and Masuda [START_REF] Brouste | Efficient estimation of stable Lévy process with symmetric jumps[END_REF]. In this case a lot of terms in the matrix I n ( θ0,n ) are 0, leaving us with only a few expectations to compute which makes this technique viable.
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 1 Fig 1: Simulation of trajectories of the α-CIR process

Fig 2 :

 2 Fig 2: Graphs of the α-stable density φ α (β=1) for different values of α

Fig 3 :

 3 Fig 3: Distribution of simulated α-stable random variable (α = 1.5, β = 1, n = 100000 variables) and comparison with the expected density φ α

8 Fig 4 :

 84 Fig 4: Graph of φ ′ α for α 0 = 1.5 and α 0 = 1.8
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 23 Estimation of the drift for δ 0 and α 0 known To have an idea of what the quasi-likelihood function (3.3) looks like, we simulate one sample path of observations (X i n ) i=0,...,n with n = 1000, a 0 = 3, b 0 = 5, δ 0 = 1 and α 0 = 1.3, and we plot in Figure 5 the graph of [0.5, 5] × [3, 8] → R (a, b) → L n (a, b, δ 0 , α 0 ).

Fig 5 :

 5 Fig 5: Views of the quasi-likelihood

Fig 6 :

 6 Fig 6: Impact of α 0 on the convergence of the drift (a 0 = 3, b 0 = 5, δ 0 = 1, n=2048)

  restriction of I(θ 0 ) (defined in (3.8)) to the estimation of (a, δ, α). We estimate Σ = I(θ 0 ) -1 by Σ n = I -1 n

Fig 7 :

 7 Fig 7: Distribution of the rescaled errors of estimation and comparison with N (0, 1) (a 0 = 3, b 0 = 5, δ 0 = 1, α 0 = 1.3, n = 2048)

  n u T n J n (θ)u n -I(θ 0 ) → 0.

Fig 8 :Fig 9 :

 89 Fig 8: Distribution of estimation before and after one-step improvement (a 0 = 3, b 0 = 5, δ 0 = 1, α 0 = 1.3, n = 5000)

Table 1 .

 1 Mean and standard deviation of αn with 1000 replications

	n	Mean of αn	Standard deviation of αn
	128	1.473	3.65 * 10 -1
	256	1.396	1.98 * 10 -1
	512	1.351	1.27 * 10 -1
	1024	1.333	8.88 * 10 -2
	2048	1.319	6.25 * 10 -2
	4096	1.310	4.65 * 10 -2

Table 2 .

 2 Mean and standard deviation of δn for α 0 = 1.3 known with 1000 replications

	n	Mean of δn	Std of δn
	128	0.859	4.93 * 10 -1
	256	0.899	3.79 * 10 -1
	512	0.932	3.52 * 10 -1
	1024	0.941	2.89 * 10 -1
	2048	0.959	2.31 * 10 -1
	4096	0.978	1.94 * 10 -1

Table 3 .

 3 Mean and standard deviation of δn for αn estimating α 0 with 1000 replications

Table 4 .

 4 Mean and standard deviation of the drift estimators with δ 0 = 1 and α 0 = 1.3 known, with 1000 replications

Table 5 .

 5 Mean and standard deviation of the rescaled errors

	bn -b 0 )

Table 6 .

 6 Mean of the estimators before and after correction,

	n	Mean of ãn	Mean of â1,n	Mean of δn	Mean of δ1,n	Mean of αn	Mean of α1,n
	2048	3.017	2.854	0.948	0.984	1.322	1.289
	4096	3.011	2.913	0.962	0.989	1.314	1.294
	8192	3.020	2.932	0.976	0.991	1.307	1.298
				with 1000 replications		
	n	Std of ãn	Std of â1,n	Std of δn	Std of δ1,n	Std of αn	Std of α1,n
	2048	1.15	0.875	2.22 * 10 -1	1.19 * 10 -1	6.18 * 10 -2	4.43 * 10 -2
	4096	7.99 * 10 -1	5.27 * 10 -1	1.87 * 10 -1	7.55 * 10 -2	4.67 * 10 -2	2.24 * 10 -2
	8192	8.45 * 10 -1	4.37 * 10 -1	1.44 * 10 -1	5.07 * 10 -2	3.16 * 10 -2	1.21 * 10 -2

Table 7 .

 7 Standard deviation of the estimators before and after correction, with 1000 replications