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Abstract

We propose an analytical micromechanical model for studying the lamellar-
composite-like structure of fibrous soft tissue. The tissue under consideration is
made up of several lamellae, and is designed to resemble the annulus fibrosus (AF)
tissue or media layer of arterial tissue, for example. The collagen fibers are arranged
in parallel in each lamella and the fiber orientation differs from one lamella to its
neighbors. The parallel fibers in each lamella of AF tissue, for example, have been
observed to have a crimped microstructure. The proposed model incorporates this
quality, considering fiber waviness as a sinusoidal shape and taking into account
the fiber dispersion in different layers, where both fiber and matrix are considered
as solid phases. We find that collagen-fiber waviness and layer orientation have a
significant influence on Poisson’s ratio. The effective Poisson’s ratio predicted by
the proposed model demonstrates that the crimped collagen fiber microstructure
might weaken the auxetic effect of fibrous soft tissue, which might explain why,
as the literature suggests, the auxetic behavior is more difficult to observe than
large Poisson’s ratios. As opposed to the many studies that use the well-known hy-
perelastic fiber-based constitutive model, in which out-of-plane expansion is often
observed, the present work explains the auxetic response found in modeling and in
experimental data from the perspective of collagen fiber microstructure.

Keywords— Auxetic behavior, Biocomposite, Micromechanics, Constitutive relation,
Crimped fibers, Negative Poisson’s ratio, Collagen fiber, Fibrous soft tissues, Annulus fibrosus,
Arterial tissue

1 Introduction

Fibrous soft tissue composed of several families of collagen fibers is found, for example, in annulus
fibrosus (AF) and the media layer of arterial tissues. AF tissue is one of the components that
make up the intervertebral discs, which support the movements of the spine. The arteries are
vessels that transport blood from the heart to the other tissues and organs of the body. Arteries
can be distinguished by their layers: intima, media, and adventitia.

AF and arterial tissues are usually considered as orthotropic materials. Although the lin-
ear and nonlinear elastic properties of these tissues are well-established in the literature, the
link between their macroscopic behavior and microscopic structure remains only partially un-
derstood. The Poisson’s ratios of these soft tissues have motivated studies of their internal
microstructures; more specifically the collagen fiber structure and arrangement. In recent years,



the auxetic behavior of AF and arterial tissues have received increased attention [1][2]. Some
materials or structures exhibit negative Poisson’s ratios, and can therefore be described as having
an auxetic property, showing unusual and counterintuitive mechanical behavior; when stretched
(respectively, compressed), these materials become thicker (respectively, thinner) in the direction
perpendicular to that of the load.

Most of the tensile experiments reported in the literature for AF are uniaxial tests [3][4][5]
[6][7][8][9], although biaxial tensile tests have also been performed [10][11]. The measurements
of the Poisson’s ratio for AF reveal a large range of values, from -0.57 [12] to 2.32 [13]. The
difference in experimental results could be due to many factors, such as differences in: the types
of AF tissue analyzed, the subsections of AF tissue analyzed (inner or outer AF) [3], extension
conditions, test specimen status (degenerated or non-degenerated AF), strain-measurement tech-
niques, specimen-storage-solution osmolarity, and so on. Guerin and Elliott [4] and O’Connell et
al.[6] found that AF degeneration influences the results of Poisson’s ratio measurements. More-
over, Wagner and Lotz [13] showed that the loading type, that is, tension or compression, has
an effect on Poisson’s ratio results. Furthermore, Derrouiche et al. [12] presented results show-
ing that the different saline concentrations and strain rates used in extension tests also affect
such measurements. Although the range of reported Poisson’s ratio results is considerable, the
orthotropic features of AF along the longitudinal, circumferential, and radial directions are con-
sistently observed. Comparison of the experimental results in the literature reveals that, when
loading AF tissue in the the circumferential direction, the Poisson’s ratio that characterizes the
strain in the radial direction is usually much lower than the Poisson’s ratio that characterizes
the strain in the longitudinal direction [3][13][8][12]. Even negative νθr values (auxetic behavior)
were recently reported by Baldit et al. [8], Derrouiche et al. [12], and Dusfour et al. [9]. In other
words, with extension of AF tissue in the circumferential direction, it is observed to expand in
the radial direction in some cases.

In order to predict the mechanical behavior of AF using mechanical modeling, Elliott and
Setton [3] implemented a linear anisotropic material model to determine a complete set of model
properties under idealized kinematic states. According to the model predictions presented by
these authors, interactions between fiber populations in the multilamella AF contribute signifi-
cantly to the mechanical behavior of the material, suggesting that a model for AF made up of
physically isolated concentric lamellae may not be appropriate. Derrouiche et al. [12] presented
a chemo-mechanical approach to studying the intrinsic osmo-inelastic response of AF tissue in
relation to the microstructure of the layered and reinforced soft tissue, the biochemical envi-
ronment, and the mechanical loading conditions. This chemo-mechanical approach successfully
captured the variations in osmolarity, strain rate, and auxeticity. Kandil et al. [14] proposed a
chemo-viscoelastic model as part of a microstructure-based approach to predicting the regional
dependency of the annulus response, in which the auxetic behavior is identified in the plane of
the lamellae. Dusfour et al. [9] found an auxetic response by applying the HGO model ([15]),
but found poor agreement between model and experimental results. Furthermore, AF is widely
modeled as a fiber-induced anisotropic hyperelastic material [6][16][17][18]. These models de-
scribe the fibers and the matrix using the principle invariants of the Green deformation tensor
and structural tensors representing the collagen fiber populations[11].

Several studies have reported measurements of the Poisson’s ratio of arteries [19][20][21][22]
[23][24][25][26] [27][28][29][30][31]. In most studies, arteries are stretched in an in vitro environ-
ment, except for those of Patel et al. [19] and Hasegawa et al. [23], who evaluated the Poisson’s
ratio of dog and human arteries, respectively, in vivo. However, the Poisson’s ratios of arteries
reported so far are inconsistent, and both large (ν > 1.0) and negative (ν < 0.0) values have been
measured [27], while arteries have been widely observed to be orthotropic along the longitudinal,
circumferential, and radial directions. The causes for these significant discrepancies in experi-
mental results could be due to many factors, such as the different types of artery tissue studied
[23], the different layers (media or intact vessel) studied, or differences in extension conditions,



strain measurement techniques, test specimen conditions (fresh, or frozen and thawed), and so
on. As arterial tissue can be divided into three main types (intima, media, and adventitia),
rather than studying the intact arterial wall, more recently the media and adventitia layers were
isolated and studied separately [26][27][29][30][31]. Comparing the experimental extension con-
ditions in the literature, the strain velocity, loading pressure, and the maximum stretch strain
might also affect the measured values [19][22][20][28][30]. Santamaŕıa et al. [30] and Skacel and
Bursa[31] noted that using frozen and thawed artery specimens leads to different experimental
results compared to using fresh tissue. Indeed, Santamaŕıa et al. [30] note that frozen and
thawed tissues may have nonphysiological hydraulic permeability properties, and that freezing
and thawing may cause the destruction of cell membranes. Moreover, several individual negative
out-of-plane Poisson’s ratios were measured with frozen and thawed test specimens among the
12 specimens used in experiments [29][31] but no negative Poisson’s ratio was found in tests with
fresh specimens[31]. Negative Poisson’s ratios were measured by Timmins et al. [26], Lillie et al.
[25], Skacel and Bursa [29], and Santamaŕıa et al. [30] in arterial tissues, and Skacel and Bursa
[31] reject their previous experimental observations. In addition, auxetic behaviors have been
reported for tendon tissues [32][33][34], skin tissue [35][36], tibia bone [37], axoloti embryonic
epithelia [38], and for the bovine cornea [39].

Timmins et al. [26] proposed that the auxetic response could be due to the variable and
inhomogeneous alignment of elastin and collagen fibers in the arterial wall. Such lateral expan-
sion was predicted based on a nonlinear hyperelastic anisotropic model of arterial wall with two
families of perfectly aligned collagen fibers [15], (known as the HGO model), as presented by
Gasser et al. [40], who further proposed a GOH model with dispersed fiber orientations. Skacel
and Bursa [29] reported a negative Poisson’s ratio exhibited by a GOH model and provided a
comprehensive analysis of the auxetic response with distributed fiber orientations. Nolan et al.
[41] also identified auxetic behavior with a compressible form of the HGO model called HGO-C,
analyzing the predicted lateral stresses induced during uniaxial stretching, and proposed a mod-
ified anisotropic (MA) model to avoid them. Similarly, Latorre et al. [42] noticed an unrealistic
transversal deformation response predicted by the HGO and GOH models, and proposed their
what-you-prescribe-is-what-you-get (WYPIWYG) model as a solution. Volokh [43] applied the
HGO model to study auxetic behavior based on the angular integration (AI) approach. Fer-
eidoonnezhad et al. [2] consider that auxetic behavior is primarily influenced by the ratio of
fiber-to-matrix stiffness and is accentuated by strain-stiffening fibers in a constant stiffness ma-
trix. These authors propose a bilinear strain-stiffening fiber and matrix model (BLFM), which
allows close control of the fiber–matrix stiffness ratio to eliminate auxetic behavior.

The AF and media layer of arterial tissue consist of several families of collagen fibers, in
which the collagen fibers are observed to have a crimped microstructure. With our study, we
aim to investigate the microstructure function mechanism in fibrous soft tissue such as AF
and arterial media so as to understand how material microstructure parameter characteristics
might regulate the macroscopic effective Poisson’s ratio. We adopt the method of Xiao et
al. [44] to find the effective stiffness matrix of composite reinforced with fibers of a particular
sinusoidal waviness. Then, our proposed model takes into account the fiber dispersion in different
families of collagen fibers and considers fiber waviness as a sinusoidal shape. The layout of the
present paper is as follows: section 2 presents the micromechanical model we use to predict
the constitutive relations of a tissue-like biocomposite and section 3 summarizes the mechanical
parameters of the tissue found in the literature and provides the material parameters used to
study its mechanical behavior. In Section 4, we present our theoretical calculation results and
compare them with different studied cases of physiological ranges found in real tissues. This is
followed by a discussion of the implications and limitations of our micromechanical model and
our conclusions in section 5.



2 Micromechanical model

In this study, we propose to model the AF or media of arterial tissue as a fiber-reinforced com-
posite of which the fibers have a crimped microstructure. The AF and media of arterial tissues
consist of several concentric lamellae, with the collagen fibers of each individual lamina being
arranged in parallel. This model takes into account the dispersion of the fibers in different
families and considers fiber waviness as a sinusoidal shape. Furthermore, in our assumption,
the collagen fibers are only corrugated within the plane of the lamella. The proposed analytical
solution is based on the effective stiffness matrix of composite reinforced with fibers of a partic-
ular sinusoidal waviness, as proposed by Xiao et al. [44] for the unique direction of fibers, and
three-dimensional effective moduli of laminate composite proposed by Sun and Li [45] which
helps us to take in account the different families of fibers.

Figure 1: Scheme of AF or arterial tissue components and microstructure.

2.1 Composite reinforced with straight fibers

In order to develop our model, we first present an analytical solution based on the Eshelby
equivalent inclusion method [46] for a stiffness matrix of composite reinforced with straight
fibers.

The mechanical strain interaction between the fibers and matrix that make up a compos-
ite reinforced with straight fibers, based on the Eshelby equivalent inclusion method, can be
expressed as

ε̂f = B : ε̂m, (1)

where ε̂f and ε̂m are the average strain tensors in the fibers and matrix, respectively, and B
is the concentration tensor whose details can be found in Parnell’s monograph [47], which can
be expressed as

B = [I + (SE : Sm) : (Cf − Cm)]−1, (2)

where I is the identity tensor, Cf and Cm are the elastic stiffness tensors of isotropic fiber
and matrix, respectively, Sm is the elastic compliance of the isotropic matrix (Sm = [Cm]−1),
and SE is the Eshelby tensor.

The average stress of fibers σ̂f is



σ̂f = Cf : ε̂f = Cf : B : ε̂m. (3)

The average stress and strain tensors in the composite reinforced with straight fibers can be
written in terms of matrix average stress σ̂m as

σ̄ = Vmσ̂m + Vf σ̂f = Vmσ̂m + VfC
f : B : ε̂m = Vmσ̂m + VfC

f : B : (Sm : σ̂m), (4)

ε̄ = Vmε̂m + Vf ε̂f = Vm(Sm : σ̂m) + VfB : (Sm : σ̂m), (5)

where Vf and Vm are the volume fractions of the fibers and the matrix, respectively.
From Equations 4 and 5, the compliance matrix S̄ of the composite reinforced with straight

fibers can be obtained as

S̄ = (VmI + VfB) : (VmCm + VfC
f : B)−1. (6)

For the composite reinforced with straight fibers, which are parallel to the x-axis, details can
be found in the Mura’s monograph [48]. By reformulating the axis, the nonzero components of
the Eshelby tensor SE are SE

2222, S
E
3333, S

E
2233, S

E
3322, S

E
2211, S

E
3311, S

E
2323, and SE

1212.
Inserting the Eshelby tensor into Equation 6, we get the equivalent compliance matrix

for straight-fiber-reinforced composite S̄ with the following formula, where the details of each
nonzero component can be found in Xiao et al. [44]

[
S̄ij

]
=




S̄11 S̄12 S̄12 0 0 0
S̄12 S̄22 S̄23 0 0 0
S̄12 S̄23 S̄22 0 0 0
0 0 0 2(S̄22 − S̄23) 0 0
0 0 0 0 S̄66 0
0 0 0 0 0 S̄66



. (7)

2.2 Composite reinforced with crimped fibers

Here, we present the analytical solution to finding the effective stiffness matrix Ĉsin
ij (i, j =

1, 2, 3, 4, 5, 6) of composite reinforced with fibers of a particular sinusoidal shape [44], as shown
in Figure 2(a). The fiber corrugation is assumed to be planar sinusoidal in the x-z plane and
the corrugated fiber is shown in Figure 2(b) with Cartesian coordinates. Here, β represents the
tangent angle of the sinusoidal fiber.

(a) (b)

Figure 2: (a) Composite reinforced with fibers of uniform sinusoidal waviness. (b) Cor-
rugated fibers and Cartesian coordinates.





,

The crimped fiber shape is defined as

z = Asin(
2π

L
x), (8)

where A is the amplitude and L represents the wavelength of the wavy fiber as shown in
Figure 2(b).

The average transformed inverse compliance matrix Ŝsin
ij is obtained by integrating the com-

pliance matrix S̄ along one wavelength of the sinusoidal shape in the x-direction as (see the
details in Hsiao et al. [49])

Ŝsin
ij (β(A,L)) =

∫ L

0
Ŝij(β(A,L))dx, (9)

where

[
Ŝij

]
=

[
Rij

] [
T sin
ij

]−1[
Rij

]−1 [
S̄ij

] [
T sin
ij

]
, (10)

and β = arctan(2πAL cos(2πL x)) and x ∈ [0, L].
T sin
ij is the general transformation matrix expressed as

[
T sin
ij

]
=




cos2(β(x)) 0 sin2(β(x)) 0 2cos(β(x))sin(β(x)) 0
0 1 0 0 0 0

sin2(β(x)) 0 cos2(β(x)) 0 −2cos(β(x))sin(β(x)) 0
0 0 0 cos(β(x)) 0 −sin(β(x))

−sin(β(x))cos(β(x)) 0 sin(β(x))cos(β(x)) 0 cos2(β(x))− sin2(β(x)) 0
0 0 0 sin(β(x)) 0 cos(β(x))

(11)
and Rij can be expressed as

[
Rij

]
=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2



. (12)

We then have

[
Ĉsin
ij

]
=

[
Ŝsin
ij

]−1
. (13)

The nonzero element of matrix Ŝsin
ij can be expressed as

[
Ŝsin
ij

]
=




Ŝsin
11 Ŝsin

12 Ŝsin
13 0 0 0

Ŝsin
12 Ŝsin

22 Ŝsin
23 0 0 0

Ŝsin
13 Ŝsin

23 Ŝsin
33 0 0 0

0 0 0 Ŝsin
44 0 0

0 0 0 0 Ŝsin
55 0

0 0 0 0 0 Ŝsin
66



. (14)

2.3 Composite reinforced with crimped fibers with alternatively
oriented layers

We propose an analytical solution that takes into account the multiple layers and the relative
orientation of each layer to find the effective elastic stiffness matrix. To do so, single-layer
solutions are also presented.



2.3.1 Single layer of the multilayered composite

Figure 3: Composite orientation in the Cartesian coordinate system.

One layer, or “lamella” of the composite reinforced with fibres of uniform sinusoidal waviness is
rotated by an angle of θ around the y-axis as shown in Figure 3. The effective stiffness matrix
of this layer C̃ layer1

ij and its inverse compliance S̃layer1
ij can be deduced as

[
S̃layer1
ij

]
=

[
Rij

] [
T st
ij

]−1[
Rij

]−1
[
Ŝsin
ij

] [
T st
ij

] [
C̃ layer1
ij

]
=

[
S̃layer1
ij

]−1
, (15)

where the general transformation matrix T st
ij is

[
T st
ij

]
=




cos2(θ) 0 sin2(θ) 0 2cos(θ)sin(θ) 0
0 1 0 0 0 0

sin2(θ) 0 cos2(θ) 0 −2cos(θ)sin(θ) 0
0 0 0 cos(θ) 0 −sin(θ)

−sin(θ)cos(θ) 0 sin(θ)cos(θ) 0 cos2(θ)− sin2(θ) 0
0 0 0 sin(θ) 0 cos(θ)



. (16)

The nonzero element of matrix S̃layer1
ij can be expressed as

[
S̃layer1
ij

]
=




S̃layer1
11 S̃layer1

12 S̃layer1
13 0 S̃layer1

15 0

S̃layer1
12 S̃layer1

22 S̃layer1
23 0 S̃layer1

25 0

S̃layer1
13 S̃layer1

23 S̃layer1
33 0 S̃layer1

35 0

0 0 0 S̃layer1
44 0 S̃layer1

46

S̃layer1
15 S̃layer1

25 S̃layer1
35 0 S̃layer1

55 0

0 0 0 S̃layer1
46 0 S̃layer1

66



. (17)

2.4 Multiple layers

Here, we introduce an analytical approach to finding the effective elastic stiffness tensor of a
composite composed of several layers by applying formulations given in [45]. Each considered
layer, or lamella, is a composite reinforced with fibers of uniform sinusoidal waviness. The
coordinate system is set so that the x- and z-axes lie in the plane of the lamella and the y-axis
is perpendicular to that plane. The laminate composite contains r orthotropic fiber-composite
layers and each layer is rotated by a corresponding angle θk(k = 1, 2, 3 · · · ) around the y-axis as
shown in Figure 4(a).



(a) (b)

Figure 4: Organization of the synthetic laminate (a) Multilayer laminate with coordinate
system. Two lamellae are shown: the first and second lamellae are orientated by θ1 and
θ2 around the y-axis with respect to the x-axis, respectively. (b) Schema of laminate total
thickness h, and thickness of each layer ek(k = 1, 2, 3 · · · ).

The effective macro-stresses σtotal and macro-strains εtotal are defined as

σtotal
ij =

1

V

∫

V
σijdV, (18)

and

εtotalij =
1

V

∫

V
εijdV, (19)

where V is the volume that contains the total thickness of the lamellae.
The in-plane dimensions are kept infinitesimal so that the stresses and strains in each layer

are uniform in the planar directions. As the stresses and strains in each lamella are constant,
Equations 18 and 19 can be integrated as

σtotal
ij =

r∑

k=1

Vk(σij)k, (20)

and

εtotalij =
r∑

k=1

Vk(εij)k, (21)

where (σij)k and (εij)k are the stresses and strains in the kth (k = 1, 2, 3 · · · ) layer, and

Vk =
ek
h
, (22)

where ek is the thickness of the kth lamella, and h is the total thickness of the laminate as
shown in Figure 4(b).

We assume that the strain of each layer along the x-axis and z-axis is equal to the global
strain of the multi-layer laminate along the x-axis and z-axis, respectively. Additionally, we
assume that the stress on each layer along the y-axis is the same as the global stress along the
y-axis. Thus, the terms of the stress and strain conditions are assumed as follows:







(εxx)k = εtotalxx

(εzz)k = εtotalzz

(γxz)k = γtotalxz

(σyy)k = σtotal
yy

(σxy)k = σtotal
xy

(σyz)k = σtotal
yz

. (23)

The effective elastic stiffness matrix of the multilayer laminate C̃total
ij can be expressed as

[
C̃total
ij

]
=




C̃total
11 C̃total

12 C̃total
13 0 C̃total

15 0

C̃total
12 C̃total

22 C̃total
23 0 C̃total

25 0

C̃total
13 C̃total

23 C̃total
33 0 C̃total

35 0

0 0 0 C̃total
44 0 C̃total

46

C̃total
15 C̃total

25 C̃total
35 0 C̃total

55 0

0 0 0 C̃total
46 0 C̃total

66



. (24)

The nonzero elements of C̃total
ij can be obtained from Equations 20, 21, and 23 (see the details

of the developments limited to straight fibers in Sun et al. [45]).
The effective elastic compliance matrix of a multilayered composite S̃total

ij is

[S̃total
ij ] = [C̃total

ij ]−1. (25)

3 Material parameter study

We consider the lamellar structure in AF or arterial tissue as a composite reinforced with
corrugated fibers and study its mechanical behavior by applying the proposed micromechanical
model. Our parameter study is based on data reported in the literature. The elastic modulus
of collagen has been reported at different scales, from molecular to whole tissues, revealing that
the mechanical stiffness decreases as the hierarchy scale increases; in other words, Emonomer >
Efibril > Efiber > Etissue [50]. Although the collagen elastic modulus is most often reported
at the lamella scale [51][52], there are a few examples in the literature of the elastic modulus
studied at the single collagen fiber scale. Ambard and Cherblanc [53] showed the collagen fiber
elastic modulus to range from 6.6MPa to 12.3MPa using a tensile test on lamb and pig annulus
fibrosus tissues as part of their development of a rheological model. Also, the collagen Type I
single-fiber elastic modulus was measured between 100 MPa and 360 MPa in rat tail tendon
using an approach that combines optical tweezers, atomic force microscopy, and exploitation
of Euler-Bernoulli elasticity theory [54]. Type I collagen fibers are the most prevalent fibers
[55] in AF, and the type III collagen fiber is the most abundant collagen type in arterial tissue,
although type I collagen is also present here in significant amounts [56]. We consider that the
measured collagen fiber modulus for type I collagen reported by Dutov et al. [54] can also
be applied in our study. The mechanical properties of the ground matrix of bovine AF were
measured by Cortes et al. using tensile and confined compression tests, revealing an aggregate
modulus of 10.18 ± 3.32KPa [57]. As the arterial tissue contains amounts of smooth muscle
cells (SMCs) in the ground substance, we consider the elastic modulus of SMCs as the elastic
modulus of the matrix, which is reported to be about 10KPa by Nagayama et al. from rat
thoracic aortas [58]. The fiber volume fractions have been found to range from 0.05 to 0.245
based on the description that AF comprises 65%–90% wet weight (water) and 50%—70% dry
weight (collagen) [59]. Collagen recruitment was reported to be 10± 1% in rat abdominal aorta
by O’Connell et al. [60]. The Poisson’s ratios of the fiber (0.3) and matrix (0.4) used in our



study are based on a previous modeling study, which is summarized by Sharabi et al. [55]. The
fiber orientation in the circumferential direction varies between lamellae by 25◦ to 45◦ reported
by Baldit et al. [61]in porcine AF and ±10◦ in the aortic medial [60]. The individual medial
lamellar unit measured 13.9± 1.2µm for the aortic medial [60] measured 0.14 - 0.52 mm in the
lateral portion and inner layers of the AF [62]. The crimp level of collagen fibers, represented by
A
L , is assumed to vary between 0.08 and 0.25. This variation is based on the description provided
by Sharabi [63], where it is stated that the crimp angle increases from 20° to 45°. The crimp angle
is determined by taking the arctan of the sinusoidal amplitude divided by a quarter sinusoidal
period. Furthermore, the porcine AF consists of 7 - 25 lamellae [62][61] and rat abdominal aorta
contains about 8 lamellae [60]. The parameters used in our study are summarized in Table 1.

Parameter Meaning Value

Ef Collagen fiber modulus 100 MPa
Em Extracellular matrix modulus 10 KPa
Vf Collagen fiber volume fraction 0.2
Vm Matrix volume fraction 0.8
νf Collagen fiber Poisson’s ratio 0.3
νm Extracellular matrix Poisson’s ratio 0.4
θ Layer orientation angle 0◦ - 90◦
A
L

Collagen fiber crimp level 0.01 - 0.3
ek Thickness of each layer 0.5 mm
r Number of layers 1, 2, 10

Table 1: Parameters used in our study. Please note the wide ranges for layer orientation
angle, fiber crimp level, and number of layers (i.e., families of fibers).

4 Results

In this section, the effects of fiber crimp level, layer orientation angle, and number of layers on
the Poisson’s ratio of the fibrous-tissue-like composite are quantified using a theoretical analysis.
The effective Poisson’s ratio for a laminate of one or multiple layers is obtained from S̃ij (here,

S̃ij represents S̃layer1
ij or S̃total

ij according to the particular application) as:

νxy = − S̃21

S̃11

νxz = − S̃31

S̃11

, (26)

where the term νij is the effective Poisson’s ratio, which characterizes the strain in the j
direction produced by the loading in the i direction.

4.1 Single and double layer

In this section, we compare the difference in Poisson’s ratio between a single layer (i.e., a single
family of fibers) and a double layer (i.e., two families of fibers). The values of the model
parameters are shown in Table 1. For the double-layer analysis, the two layers are set to have
the same thickness of 0.5 mm (e1 = e2), and the orientation of the first and second layers is
symmetrical on either side of the x-axis, which means θ1 = −θ2. With these parameters, the
model is able to predict the effective Poisson’s ratio as functions of fiber crimp level (0.01 <
A
L < 0.3) and layer orientation angle (0◦ < θ < 90◦).



         
            
                 
Single layer νxy
(a)

Single layer νxz
(b)

Double layer νxy
(c)

Double layer νxz
(d)

Figure 5: Poisson’s ratio under the loading along the x-direction for single- (a)(b) and
double-layer composite (c)(d) as a function of fiber crimp level A

L
and layer orientation θ.

See the value settings for the parameters in Table 1.

Figure 5 shows how the effective Poisson’s ratios νxy and νxz vary with changes to fiber
crimp level A

L and layer orientation θ for single- and double-layer composites. For the single-
layer composite, νxy and νxz are affected by both A

L and θ. Interestingly, νxy and νxz show
opposite trends with changes to A

L and θ as shown in Figure 5 (a) and (b). When A
L is small

and θ is large, the effective Poisson’s ratio νxz has a minimum value of 0.004 and the effective
Poisson’s ratio νxy has a maximum value of 0.63. For the fiber crimp level (0.08 < A

L < 0.25)
and orientation angle (25◦ < θ < 45◦) in the physiological range of AF, the values of νxy and νxz
are neither negative nor larger than 0.5. For quasi-straight fibers (AL < 0.05), we find a Poisson’s
ratio νxz of over 0.6. For a double-layer composite with the two layers arranged symmetrically
on the x-axis, νxy and νxz are also affected by both A

L and θ. Moreover, νxy and νxz also show
opposite trends with changes to A

L and θ, as shown in Figure 5 (c) and (d). As opposed to the
single-layer composite, a negative Poisson’s ratio value for νxy and a Poisson’s ratio of greater
than 0.5 for νxz are observed for double-layer composite. When the fiber is almost straight
(AL < 0.05) the effective Poisson’s ratio νxy has a minimum value of -3.0 and νxz has a maximum
value of 5.7 when θ1 = −θ2 = 17 ◦ in this study. Note that the angle θ at which both νxy
and νxz reach their limit values is influenced by the ratio of stiffness between the fiber and the
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L

in the physiological range of AF, the values of νxz are usually larger than those of νxz, which
is in good agreement with the observations in the literature [12]; when subjected to loading in
the circumferential direction, the Poisson’s ratio characterizing the strain in the radial direction
is typically much lower than the Poisson’s ratio characterizing the strain in the longitudinal
direction. Additionally, with the extension of AF tissue in the circumferential direction, an
expansion in the radial direction is observed in some cases [9].

4.2 Ten-layer laminate

In this analysis, we study the effective mechanical properties of a composite model with ten
layers (r = 10) as a function of the relative orientation of the successive layers and fiber crimp
level; a laminate schematic diagram and the coordinate system are shown in Figure 4, where the
x- and z-axes lie in the plane of the lamella and the y-axis is perpendicular to that plane, and
the layer orientation angle settings are shown in Table 2. We note that the properties of the
ten-layer symmetrically arranged laminate with the constant angle between successive layers are
exactly the same as those of the two-layer laminate. In cases 1 and 2, the average orientation
angle of ten layers is |40◦|, and in case 1, a wider range of orientation angles is tested. In case
3, the orientation angle is set at a constant 40◦ between successive layers |θk| =40◦, (k = 1, 2,
3 · · · ). In case 4, the orientation angles increase from one layer to the next with a constant
step of 18◦ degrees. The thickness of each layer is set to 0.5 mm. These parameters predict the
effective Poisson’s ratio as a function of the orientation of the successive layers as well as fiber
crimp level in the range 0.01 < A

L < 0.3, as shown in Figure 6.

Layer number θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10
Case 1 20◦ -20◦ 30◦ -30◦ 40◦ -40◦ 50◦ -50◦ 60◦ -60◦

Case 2 30◦ -30◦ 35◦ -35◦ 40◦ -40◦ 45◦ -45◦ 50◦ -50◦

Case 3 40◦ -40◦ 40◦ -40◦ 40◦ -40◦ 40◦ -40◦ 40◦ -40◦

Case 4 0◦ 18◦ 36◦ 54◦ 78◦ 90◦ 108◦ 126◦ 144◦ 162◦

Table 2: Layer orientation angle settings for each of the ten lamellae of the model. Four
cases are studied.

νxy
(a)

νxz
(b)

Figure 6: Effective Poisson’s ratios (a) νxy, (b) νxz for a ten-layer laminate model as a
function of fiber crimp level and relative orientation of the successive layers of the laminate
model. See the value settings for the parameters in Table 1.

matrix. A decrease in the ratio
Ef

Em
results in an increase in the angle θ at which the limit

values occur. For fiber crimp levels (0.08 < < 0.25) and orientation angles (25◦ < θ < 45◦)



Figure 6 shows how the effective Poisson’s ratios νij of a ten-layer laminate model vary
with changes to fiber crimp level A

L in the laminate as a whole and changes to orientation
angle between each of its ten successive layers (or no change, as in case 3). The behavior of the
Poisson’s ratios in cases 1 and 2 is the same as that of case 3 where the orientation angle between
successive layers is constant. Each effective νij value in case 2 is always between the values of
cases 1 and 3 at each increment in A

L , which indicates that the trend seen for the Poisson’s
ratios is that the larger the range of layer orientation angles in the laminate, the larger the
difference between the global effective Poisson’s ratio and the constant average case Poisson’s
ratio. Moreover, we observe a negative Poisson’s ratio νxy in case 3, but not in case 1, which
shows that variation in the orientation between successive layers could also weaken the auxetic
response. In case 4, where the ten fiber families are regularly oriented and collectively span 180◦,
the Poisson’s ratios νxy and νxz are between 0.3 and 0.5, canceling all the effects found for two
fiber families oriented at 40◦. We conclude that only tissues with just two distinct orientations
of fibers can have negative apparent Poison’s ratios. We note that, in our parameter studies, not
shown here, we also found that the minimum value of the Poisson’s ratio νxy and the maximum
value of the Poisson’s ratio νxz vary as the Poisson’s ratio of the matrix changes. Modification
of the Poisson’s ratio of the matrix from 0.4 to 0.1 induces a change in the effective Poisson’s
ratio νxy from -3.0 to -0.85. Moreover, the orientation angle θ for which νxy has the minimum
value changes with modification of the elastic modulus ratio Ef/Em.

5 Discussion and conclusions

In this paper, we use an analytical micromechanical model to study the effective Poisson’s
ratio of the lamellar-composite-like structure of fibrous tissue, with a focus on the roles of the
orientation angle between the parallel fibers of successive lamellae and the corrugation (or crimp
level) of those fibers. Xiao et al. [44] proposed an analytical model to study the tendon tissue
that is based on an Eshelby tensor and takes into account the waviness of fibers. The originality
of the method used by these latter authors is that it can be used to predict — without any
strong assumptions, for example as to the equality of the deformation between phases — the
relationship between the deformation of the fibers and the deformation of the matrix. However,
the model used by Xiao et al. [44] is limited to unidirectional fibers. Hsiao et al. [49] proposed
an interesting 2D approach similar to that of Xiao et al., to take into account the waviness of
fibers in different directions. However, a significant assumption is required as part of this 2D
approach, namely that fibers and matrix have the same deformation, which limits the versatility
of the model and the conclusions that can be drawn from it. Based on the method presented by
Sun and Li [45], we propose an original 3D model that, without any strong assumptions as to
the affinity between the fibers and the matrix (no equality between their deformation), merges
the 2D multidirectional model of Hsiao et al. [49] with the 3D unidirectional wavy model of
Xiao et al [44].

Our proposed micromechanical model can be used to quickly estimate the small strain me-
chanical properties of a composite laminate embedded with crimped fibers of alternate orienta-
tion between layers using theoretical calculations only. Our model can easily be used to analyze
the influence of crimp level and relative fibre orientation on the effective mechanical properties
of the modeled material. The modulus of fiber Ef and matrix Em, the Poisson’s ratios of fiber
νf and matrix νm, the volume fraction of the fibers Vf and matrix Vm, fiber crimp level A

L , the
relative fibre orientation angle of successive layers θk, layer thickness ek, and total number of
layers r are taken into account as parameters potentially modifying the mechanical properties
of the laminate. The model described is designed to mimic, and therefore allows us to study,
the morphological aspects of AF and arterial wall, but the approaches and techniques employed
are also applicable to other fiber-reinforced biological tissues and biocomposites.

For a single-layer composite, νxy and νxz are affected by both fiber crimp level A
L and layer



orientation θ. For a two-layer laminate, the range of νij is significantly expanded: the minimum
value is even negative and the maximum value is 5.7. It is known that, for isotropic solids, the
Poisson’s ratio is in general smaller than 0.5, but the Poisson’s ratio in certain microstructures
of the composites under study can be significantly larger than 0.5, as shown in Figure 5. This is
because of the effects of corrugated fibers and alternately oriented layers. As fibers are considered
slightly corrugated, when the dispersed fibers are stretched, the fiber–matrix stiffness ratio causes
the matrix between the fibers to be compressed, which can lead to expansion in the x-y plane.
Similar observations were reported based on analytical analyses [64][45], numerical simulation
studies [43][2], and tensile experiments on AF or arterial tissue [8] [9][12][26][25][29].

The proposed model could explain the negative Poisson’s ratios found for AF or media of
arterial tissue in the plane perpendicular to that of the fibers. Moreover, our analytical model
confirms that just two fiber directions (not one, not three, etc) may confer an auxetic behavior
in the plane perpendicular to the direction of fibers (νxy < 0), while multiplying the number of
different fiber directions reduces this auxetic behavior. The same phenomenon is demonstrated
for the Poisson’s ratio νxz along the mean orientation of the fibres, with very high values possible
when there are only two families of fibers, which fades when multiplying the fiber orientations.
We note that our analytical model predicts that there must be an inter-fibrilar medium with
finite compressibility in order to to see such transverse behaviors. Moreover, as A

L increases, the
negative Poisson’s ratios gradually disappear, that is to say that one of the mechanical effects of
the corrugated fibers in the microstructure of the laminate model studied here is to reduce its
auxetic behavior. In conclusion, because of the fiber–matrix stiffness ratio and fiber dispersion,
the laminate composite shows an auxetic behavior in the planes perpendicular to the plane of
the fibers. However, this behavior is not easily measured because of the joint influence of fiber
crimp level and successive layer orientation. Therefore, the present work provides evidence of
the link between corrugated fiber structure and auxetic behavior, which answers speculation in
the literature. Furthermore, compared to the well-known HGO constitutive model [15] or HGO-
based models in the literature, which often observe out-of-plane expansion, this work could be a
solution to avoid the auxetic response in modeling from the perspective of fiber microstructure.

Our study focuses solely on the linear behavior of corrugated fiber composites. Our model
may be completed to describe non-linear composite behaviors. However, provided the mi-
crostructure is stable (e.g. no micro-buckling or micro-fractures), our linear model may predict
the behavior of such composite for finite strains. Classically admitted and shown for the arte-
rial tissue, the crimp level of the fibers is higher when the tissue is not stretched than when it’s
stretched. Our model would therefore predict a positive Poisson’s ratio for low deformation when
the fibers are undulated (i.e. for large A/L), and either a negative Poisson’s ratio (theta-r plan)
or a large Poisson’s ratio (theta-z plan) for higher deformations when the fibers are straight due
to stretching (i.e. low A/L). For AF tissue, this point seems to be in agreement with experimen-
tal measurements made by Dusfour et al.[9] in the laminate plan, but not out of the laminate
plan. In this study, for the laminate plan, the Poisson’s ratio increases with the circumferential
stretch, reaching elevated values, as our linear model could predict. However, in the plan out
of the laminate, their study shows that the samples are not auxetic beyond 4% circumferential
strain which is not in agreement with our model. For arterial tissues, no measures of non-linear
Poisson’s ratios have been made to our knowledge. Thus, to link our model to experimental
observations, we need to increase our knowledge on the evolution of the microstructure (and
especially the crimp level) with macroscopic finite strains. Our model should also be completed
to link the crimp level with the macroscopic deformation, which is not straightforward.

The present study is limited to testing the effects of small strains on the laminate material,
which is considered as a linear elastic behavior. It is also noted that the [46] Eshelby equivalent
inclusion method provides the best estimation when the fiber volume fractions are relatively
low (below 60%) [65][66][67]. The fiber volume fraction of AF or arterial tissue is estimated
to be much less than 60%. Therefore, we consider the Eshelby method to be suitable for use



              

             

                 

                

                 

              

               

             
               

              

               

              

            

             

                

             

                

               

             

            

                

              

           

                 

            

  

 

              

           

               
           
  

            
sue model for elimination of unphysical auxetic behaviour. Journal of Biomechanics,
111:110006, 2020.

[3] Dawn M Elliott and Lori A Setton. Anisotropic and inhomogeneous tensile behavior of
the human anulus fibrosus: experimental measurement and material model predictions.
Journal of biomechanical engineering, 123(3):256–263, 2001.

[4] Heather Anne L Guerin and Dawn M Elliott. Degeneration affects the fiber reorientation
of human annulus fibrosus under tensile load. Journal of biomechanics, 39(8):1410–1418,
2006.

in conjunction with the proposed model, but for other applications, the limits of fiber volume 

fraction should be reconsidered and an alternative method for estimation of fiber volume fraction 

may be needed. Moreover, in our model, the strain of each layer along the x-axis and z-axis is 
assumed to be equal to the global strain of the multi-layer laminate along the x-axis and z-axis,

respectively, and the stress on each layer along the y-axis is assumed to be the same as the 

global stress along the y-axis, as shown in Equation 23. However, no accepted method exists 

at present to verify these assumptions for AF and arterial tissues. Indeed, our model is not 
designed to predict how the Poisson’s Ratio varies throughout the thickness of these structures.
Furthermore, we have considered the fibers to be corrugated only in the plane of the lamella.

However, recent evidence [68] suggests that collagen fibers in the AF may also exhibit crimped 

properties in the plane perpendicular to the lamella plane, which has not been taken into account 

in this study. Although the macroscopic properties of AF and arterial tissues are well established 

in the literature, the link between their macroscopic behavior and microscopic structure still 

needs to be elucidated. Our study provides a method for predicting the macroscopic properties 

of fibrous soft tissues based on their fiber microstructure. It is noted that, here, the AF and 
arterial tissues are considered to be composite-like materials composed of fibers and solid matrix.

Although Derrouiche et al.’s [12] research shows that the auxetic behavior of AF is related to the 

osmolarity of the liquid phase, Dusfour et al.’s [9] research suggests that the auxetic behavior may 

be primarily influenced by the solid structure. This is because they conducted their experiments 

under steady-state stretching conditions, thus excluding the influence of the viscous and dynamic 

effects of the liquid phase. In our study, the fiber and matrix are considered as compressible solid 

phases; however, the structure and composition of real arterial tissue and AF are much more 

complex. By nature, our homogenization method requires precise knowledge of the mechanical 
behaviors of each component of the tissue under study. In order to make better use of our model,

further characterization of the different components of the microstructure of the studied tissue 
is also necessary.

6 Acknowledgements
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Project).

References

[1] Yuan Jin, Chaoqi Xie, Qing Gao, Xueyong Zhou, Guangyong Li, Jianke Du, and Yong He.
Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering. Materials &
Design, 197:109277, 2021.

[2] Behrooz Fereidoonnezhad, C O’connor, and JP McGarry. A new anisotropic soft tis-



[5] Naama T Lewis, Mohammad A Hussain, and Jeremy J Mao. Investigation of nano-
mechanical properties of annulus fibrosus using atomic force microscopy. Micron,
39(7):1008–1019, 2008.

[6] Grace D O’Connell, Heather L Guerin, and Dawn M Elliott. Theoretical and uniaxial
experimental evaluation of human annulus fibrosus degeneration. 2009.

[7] Fabien Cherblanc, Dominique Ambard, Adrien Baldit, and JM Lafosse. Mechanical be-
haviour of annulus fibrosus: the role of the fluid phase. In 3rd International Conference on
Porous Media, pages Clé–USB, 2011.
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[9] Gilles Dusfour, S LeFloc’h, Patrick Cañadas, and Dominique Ambard. Heterogeneous me-
chanical hyperelastic behavior in the porcine annulus fibrosus explained by fiber orientation:
An experimental and numerical approach. Journal of the mechanical behavior of biomedical
materials, 104:103672, 2020.

[10] EC Bass, FA Ashford, MR Segal, and JC Lotz. Biaxial testing of human annulus fibro-
sus and its implications for a constitutive formulation. Annals of biomedical engineering,
32(9):1231–1242, 2004.

[11] Grace D O’Connell, Sounok Sen, and Dawn M Elliott. Human annulus fibrosus material
properties from biaxial testing and constitutive modeling are altered with degeneration.
Biomechanics and modeling in mechanobiology, 11(3):493–503, 2012.
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